
Genetic Programming & Bloat

Jǐŕı Kubaĺık

Czech Institute of Informatics, Robotics and Cybernetics
CTU Prague

http://cw.felk.cvut.cz/doku.php/courses/a0m33eoa/start



pBloat

Bloat – an uncontrolled program growth without (significant) return in terms of fitness [Poli08].

The bloat has significant practical effects:

� slows the evolutionary search process as large programs can be computationally expensive to

evolve,

� large programs can be hard to interpret,

� large programs can exhibit poor generalization,

� consumes memory,

� can hamper effective breeding.

High-level general explanation of bloat [Luke06]: Adding material to a tree is more strongly

correlated (or less negatively correlated) with fitness improvement than removing material from

the tree is.

� However, the question is how or why this correlation arises?

Dynamics of GP selection, breeding and evaluation are complex =⇒ though, there have been

many theories proposed to explain various aspects of bloat, there is still no single unifying
theory of code bloat.

� � � � � � � � � � � � � � � � � � � � � � � GP & Bloat



pTheories of Code Bloat Based on Introns

Introns – regions of code that do not contribute to an individual’s function (do not contribute

to the fitness).

1. Inviable code – a particular form of intron that cannot be replaced with any code which

can possibly contribute to the individual’s function. This is due to the presence of so-called

invalidator, a structure in the tree that nullifies the entire intron’s effect.

Inviable code examples

� (and false inviable), (if false inviable executed), (if inviable a0 a0) where

− the invalidator true can be created as (not (and a0 (not a0)))

− the invalidator false can be created as (and d1 (not d1))

� (* 0 inviable), (% 0 inviable) where the invalidator ’0’ can be created as (- x x)

2. Unoptimized code – code regions that do not contribute to an individual’s function, but

can be replaced with code which does contribute or an optimized form of the code. Examples:

� (not (not (not (not foo))))

� (and d1 d1)

� � � � � � � � � � � � � � � � � � � � � � � GP & Bloat



pTheories of Code Bloat Based on Introns

Hitchhiking – based on genetic algorithms, where unfit building blocks propagate in the popu-

lation because they adjoin highly fit building blocks.

� There is no real need to get rid of hitchhikers that do not damage fitness of the program.

Introns are hitchhikers in GP.

� The theory only suggests a propagation method.

It does not explain why it is more likely that the introns become attached in the first place

than to be removed eventually.

� � � � � � � � � � � � � � � � � � � � � � � GP & Bloat



pTheories of Code Bloat Based on Introns

Hitchhiking – based on genetic algorithms, where unfit building blocks propagate in the popu-

lation because they adjoin highly fit building blocks.

� There is no real need to get rid of hitchhikers that do not damage fitness of the program.

Introns are hitchhikers in GP.

� The theory only suggests a propagation method.

It does not explain why it is more likely that the introns become attached in the first place

than to be removed eventually.

Defense Against Crossover

� Genetic operators seldom create better individuals than their parents.

� Offspring who have the same fitness as their parents have a selective advantage.

Introns provide code where changes will not affect fitness.

� Inviable code was selected because it made it more difficult to damage the fitness of an

individual through a crossover event (more inviable code results in a higher likelihood that

crossover would occur in an inviable code region).

� � � � � � � � � � � � � � � � � � � � � � � GP & Bloat



pTheories of Code Bloat Based on Introns

Removal Bias – branches (subtrees) added to parents are deeper on average than branches

removed from parents.

The presence of inviable code provides regions where removal or addition of genetic material does

not modify the fitness of the individual.

� To maintain fitness, the removed subtree must be contained within the inviable region –

they cannot be deeper than the inviable subtree.

� On the other hand, the inserted subtree can have any size.

� � � � � � � � � � � � � � � � � � � � � � � GP & Bloat



pNon-Intron Theories of Code Bloat

Fitness Causes Bloat – when better solutions become hard to find there is a selection bias

towards programs that have the same fitness as their parents.

� There are many more longer ways than shorter ways to represent the same program, so a

natural drift occurs to longer programs. Beyond a certain program length, the distribution of

fitness does not vary with size.

� Since there are more longer programs, the number of long programs of a given fitness is greater

than the number of short programs of the same fitness.

� Over time, GP samples longer and longer programs simply because there are more of them.

� � � � � � � � � � � � � � � � � � � � � � � GP & Bloat



pNon-Intron Theories of Code Bloat

Fitness Causes Bloat – when better solutions become hard to find there is a selection bias

towards programs that have the same fitness as their parents.

� There are many more longer ways than shorter ways to represent the same program, so a

natural drift occurs to longer programs. Beyond a certain program length, the distribution of

fitness does not vary with size.

� Since there are more longer programs, the number of long programs of a given fitness is greater

than the number of short programs of the same fitness.

� Over time, GP samples longer and longer programs simply because there are more of them.

Modification Point Depth – there is a correlation between the depth of the modified node

and its effect on the fitness of the offspring when compared to the parent.

� When a genetic operator modifies an individual, the deeper the modification point the smaller

the change in fitness.

� Small changes are less likely to be disruptive, so there is a preference for deeper modification

points, and consequently a preference for larger trees (removal bias).

� The larger the individual, the deeper its modification nodes can be, so large parents have and

advantage over small parents.

� � � � � � � � � � � � � � � � � � � � � � � GP & Bloat



pNon-Intron Theories of Code Bloat

Crossover Bias

� Subtree crossover operators do not add to or remove from the population any amount of

genetic code, they simply swap it between individuals.

� So the average program length in the population is not changed by the crossover.

� There is a bias of the crossover operators to create many small, and unfit, individuals.

� When these small unfit individuals compete for breeding, they are always discarded by selection

in favor of the larger ones.

� � � � � � � � � � � � � � � � � � � � � � � GP & Bloat



pLexicographic Parsimony Pressure Method

Idea: Two objectives with fixed priorities assigned are used in the selection procedure

� fitness – a primary objective,

� tree size – a secondary objective.

Realization: Uses a modified tournament selection rule of the form

A) An individual is considered superior to another if it is better in fitness.

B) If they have the same fitness, then an individual is considered superior if it is smaller.

C) If they have the same fitness and they are of the same size, the superior individual is determined

at random.

� � � � � � � � � � � � � � � � � � � � � � � GP & Bloat



pLexicographic Parsimony Pressure Method

Idea: Two objectives with fixed priorities assigned are used in the selection procedure

� fitness – a primary objective,

� tree size – a secondary objective.

Realization: Uses a modified tournament selection rule of the form

A) An individual is considered superior to another if it is better in fitness.

B) If they have the same fitness, then an individual is considered superior if it is smaller.

C) If they have the same fitness and they are of the same size, the superior individual is determined

at random.

Characteristics:

� Non-parametric method – nothing to tune.

� Works well only in environments which have a large number of individuals with identical fitness.

Otherwise, the branch B) of the tournament operator would not be activated with a sufficient

frequency.

To overcome this inefficiency, two modifications based on grouping individuals of similar fitness

into buckets with the same quality were proposed.

� � � � � � � � � � � � � � � � � � � � � � � GP & Bloat



pLexicographic Parsimony Pressure Method: Direct Bucketing

Realization: The number of buckets, b, is specified beforehand, and each is assigned a quality

rank from 1 to b (the bucket with rank 1 contains the worst-fit individuals).

1. The population of size p is sorted by fitness.

2. The bottom dp/be individuals are placed in the worst bucket.

All individuals remaining in the population with the same fitness as the best individual in the

bucket are placed in the bucket as well.

This is to guarantee that all individuals of the same fitness fall into the same bucket (they

have the same rank).

3. The same procedure is used to fill in the second worst bucket, the third one etc.

This continues until there are no individuals in the population.

4. The fitness of each individual is set to the rank assigned to the bucket holding it.

� � � � � � � � � � � � � � � � � � � � � � � GP & Bloat



pLexicographic Parsimony Pressure Method: Direct Bucketing

Realization: The number of buckets, b, is specified beforehand, and each is assigned a quality

rank from 1 to b (the bucket with rank 1 contains the worst-fit individuals).

1. The population of size p is sorted by fitness.

2. The bottom dp/be individuals are placed in the worst bucket.

All individuals remaining in the population with the same fitness as the best individual in the

bucket are placed in the bucket as well.

This is to guarantee that all individuals of the same fitness fall into the same bucket (they

have the same rank).

3. The same procedure is used to fill in the second worst bucket, the third one etc.

This continues until there are no individuals in the population.

4. The fitness of each individual is set to the rank assigned to the bucket holding it.

Characteristics:

� It has the effect of trading off fitness differences for size.

� The larger the bucket, the stronger the emphasis on size as a secondary objective.

� The topmost bucket with the best-fit individuals can hold fewer than dp/be individuals.

� � � � � � � � � � � � � � � � � � � � � � � GP & Bloat



pLexicographic Parsimony Pressure Method: Ratio Bucketing

Realization: The buckets are proportioned, so that low-fitness individuals are placed into larger

buckets than high-fitness individuals. A parameter of the method is the bucket ratio 1/r.

1. The population of size p is sorted by fitness.

2. The bottom d1/re fraction of individuals are placed into the worst bucket.

All individuals remaining in the population with the same fitness as the best individual in the

bucket are placed in the bucket as well.

3. The same procedure is used to fill in the second worst bucket with the bottom d1/re fraction

of the remaining population, etc.

This continues until every individual of the population has been placed in a bucket.

4. The fitness of each individual is set to the rank assigned to the bucket holding it.

� � � � � � � � � � � � � � � � � � � � � � � GP & Bloat



pLexicographic Parsimony Pressure Method: Ratio Bucketing

Realization: The buckets are proportioned, so that low-fitness individuals are placed into larger

buckets than high-fitness individuals. A parameter of the method is the bucket ratio 1/r.

1. The population of size p is sorted by fitness.

2. The bottom d1/re fraction of individuals are placed into the worst bucket.

All individuals remaining in the population with the same fitness as the best individual in the

bucket are placed in the bucket as well.

3. The same procedure is used to fill in the second worst bucket with the bottom d1/re fraction

of the remaining population, etc.

This continues until every individual of the population has been placed in a bucket.

4. The fitness of each individual is set to the rank assigned to the bucket holding it.

Characteristics:
� As the remaining population decreases, the d1/re fraction decreases as well.

� Higher-ranked buckets hold fewer individuals than lower-ranked buckets.

Thus, the tree-size comparisons are more frequently applied to low-fitness individuals than

high-fitness individuals.

� Both bucketing schemes require user-specified bucket parameters b or r that determines how

strong an effect of parsimony can have on the selection procedure.

� � � � � � � � � � � � � � � � � � � � � � � GP & Bloat



pLinear Parametric Parsimony Method

Idea: Parsimony pressure methods consider size as part of the selection process – a fitness

of the program is a function of its quality and size. A fitness of a program is decreased by an

amount that depends on its size. The intensity with which bloat is controlled is determined by a

parameter called parsimony coefficient.

� If it is too small then the control of bloat is not effective.

� If it is too large then the minimization of tree size will become a primary target and fitness

will be ignored.

� � � � � � � � � � � � � � � � � � � � � � � GP & Bloat



pLinear Parametric Parsimony Method

Idea: Parsimony pressure methods consider size as part of the selection process – a fitness

of the program is a function of its quality and size. A fitness of a program is decreased by an

amount that depends on its size. The intensity with which bloat is controlled is determined by a

parameter called parsimony coefficient.

� If it is too small then the control of bloat is not effective.

� If it is too large then the minimization of tree size will become a primary target and fitness

will be ignored.

Realization:
� Linear Parametric Parsimony Method treats the individual’s size as a linear factor in fitness

g = x · f + y · s
where the parameters x and y weight contributions of raw fitness f and the size s to the final

fitness g, that is to be minimized.

� Linear Parametric Parsimony Method with a limit applies the size component only if s is

greater than some specified limit z. Then

g = x · f , if s ≤ z

g = x · f + y · (s− z), otherwise.

� � � � � � � � � � � � � � � � � � � � � � � GP & Bloat



pLinear Parametric Parsimony Method

Characteristics:

� A user must set up the parsimony coefficient so that it optimally defines f as being worth so

many units of s.

− This can be difficult when the fitness assessment procedure is nonlinear.

Assume a situation where a difference between 0.9 and 0.91 in raw fitness is much more

dramatic than a difference between 0.7 and 0.9. Then the size can be given an advantage

over the raw fitness when the difference in raw fitness is only 0.01 as opposed to 0.2.

− Proper setting of the parsimony coefficient can be hard when the raw fitness values are

converging late in the evolution procedure.

� � � � � � � � � � � � � � � � � � � � � � � GP & Bloat



pDynamic Limits

Idea: A dynamic limit, that can increase or decrease during the run, is applied to the depth or

size of evolving trees.

� The dynamic limit is initially set with a low value.

� A new individual who breaks this limit is discarded and replaced with one of its parents,

unless it is the best individual found so far.

In this case, the individual is inserted to the population and the dynamic limit is raised to

match the depth of the new best-of-run.

� � � � � � � � � � � � � � � � � � � � � � � GP & Bloat



pDynamic Limits: Procedure

initialize dynamic limit

for all newly created individuals

depthi = depth of individual

fitnessi = fitness of individual

if depthi ≤ dynamic limit

accept individual

if(fitnessi is better than best fitness)

best fitness = fitnessi
if((depthi > dynamic limit) and (fitnessi is better than best fitness))

accept individual

best fitness = fitnessi
dynamic limit = depthi

� � � � � � � � � � � � � � � � � � � � � � � GP & Bloat



pDynamic Limits: Heavy Variants

Heavy variant allows the dynamic limit to decrease its value in case the depth of the new best

individual becomes lower than the current limit. The value of dynamic limit cannot drop below

the initialization value.

Individuals, already present in the population that break the new limit become illegals:

� Illegals are allowed to remain in the population and breed children.

� If an individual has illegal parents then it cannot be deeper than its deepest parent.

Very heavy variant allows to fall back even below the dynamic limit initialization value

� � � � � � � � � � � � � � � � � � � � � � � GP & Bloat



pDynamic Limits: Final Remarks

� Uses a dynamic limit that can be raised or lowered during the search process, depending on

the best solution found so far.

� The depth limit performs very well across various problems, achieving high quality solutions

using significantly smaller trees.

� The size limits did not perform so well.

� Does not require specific genetic operators, modifications in fitness evaluation or different

selection schemes, nor does it add any parameters to the search process.

� Works even better when coupled together with other techniques such as the Lexicographic

Parsimony Pressure.

� � � � � � � � � � � � � � � � � � � � � � � GP & Bloat



pOperator Equalisation

Should have rather been called ”Program Length Equalisation”.

Motivation: To control a distribution of program lengths in the population by biasing the search

towards the desired lengths. Too small and excessively large programs are eliminated from the

population.

� Too small programs – very likely to be of poor quality, so would be discarded by selection in

favor of the large ones.

� Too large programs – beyond a certain program length, the distribution of fitness converges

to a limit. So, there is no need for large programs if they do not bring significantly better

fitness.

� � � � � � � � � � � � � � � � � � � � � � � GP & Bloat



pOperator Equalisation: Histograms

Concept of histograms

� bin width – the range of lengths that fall into the bin.

b =

⌊
l − 1

bin width

⌋
+ 1,

where b is the number of the bin to which the program

of length l is assigned.

� bin capacity – the number of programs allowed within.

The population is biased towards a desired target distribution by accepting or rejecting each
newly created individual into the corresponding bin in the population.

� � � � � � � � � � � � � � � � � � � � � � � GP & Bloat



pOperator Equalisation: Two Concepts

Static

� fixed number of bins,

� fixed predetermined target distribution.

Dynamic

� variable number of bins,

� target distribution self adapted every generation.

� � � � � � � � � � � � � � � � � � � � � � � GP & Bloat



pDynamic Operator Equalisation: Calculating the Target Distribution

Target number of individuals in bin b is proportional to the average fitness of individuals

within the bin, calculated as

binCapacity(b) = round(n× (f b/
∑
i

f i))

where

� f i is the average fitness of the individuals in bin i, and

� n is the number of individuals in the population.

The target is updated every generation.

Bins with better average fitness will have higher capacity – allowing the population to

sample regions where the search proved to be more successful.

� � � � � � � � � � � � � � � � � � � � � � � GP & Bloat



pDynamic Operator Equalisation: Following the Target Distribution

First, a length of the offspring and its corresponding bin is identified.

Rule for accepting/rejecting newly created offspring in the bin

1. If the bin already exists and is not full

then the offspring is accepted.

2. If the bin does not exist yet and the fitness of the offspring is the new best-of-run value

then the bin is created to accept the new individual.

Any other non-existing bins between the new bin and the target boundaries also become

available with capacity for only one individual each.

3. If the bin exists but is already at its full capacity and the offspring is the new best-of-bin one

then the bin is forced to increase its capacity and accept the individual.

4. Otherwise the new individual is rejected.

The dynamic creation of new bins and allowing the addition of individuals beyond the
bin capacity allows overriding of the target distribution by biasing the population towards the

lengths where the search is having high degree of success.

� � � � � � � � � � � � � � � � � � � � � � � GP & Bloat



pDynamic Operator Equalisation: Final Remarks

� Uses concept of a histogram as a target distribution of programs length in the population

� Dynamic self-adaptive target distribution

� Variable number of bins

� � � � � � � � � � � � � � � � � � � � � � � GP & Bloat



pReading

[Poli08] Poli, R., Langdon, W., McPhee, N.F.: A Field Guide to Genetic Programming, 2008.

[Luke06] Luke, S. and Panait, L.: A Comparison of Bloat Control Methods for Genetic Programming.

Evolutionary Computation, Volume 14 Issue 3, 2006.

http://portal.acm.org/citation.cfm?id=1182892.1182897

� � � � � � � � � � � � � � � � � � � � � � � GP & Bloat


