Coevolution

Petr Pošík

Dept. of Cybernetics CTU FEE

Coevolution and its basic types	2
What is "coevolution"?	
Types of coevolution	4
1-population competitve coevolution	5
2-population competitive coevolution	6
N-population cooperative coevolution	
1-population cooperative coevolution.	8
Problems in coevolution	ç
Fitness in coevolution	10
"Fitness" in competitions	11
Problems with fitness assessment: 1-pop. competitive coevolution	12
2 competitive populations (illustration)	
Problems with fitness assessment: 2-pop. competitive coevolution	
Problems with fitness assessment: N-pop. cooperative coevolution	15
Summary	

What is "coevolution"?

Coevolution in EAs:

- ✔ The fitness of individuals in a population
 - \boldsymbol{x} is not given by the characteristics of the individual (only), but
 - \boldsymbol{x} is affected by the presence of other individuals in the population.
- ✓ It is closer to the biological evolution than ordinary EAs are.

Coevolution can help in:

- ✓ dealing with increasing difficulty of the problem
- ✓ providing diversity in the system
- ✔ producing not just high-quality, but also robust solutions
- ✓ solving complex or high-dimensional problems by breaking them into nearly decomposable parts

P. Pošík © 2011

A0M33EOA: Evolutionary Optimization Algorithms – 3 / 16

Types of coevolution

By relation type:

- ✓ cooperative (synergic, compositional)
- ✓ competitive (antagonistic, test-based)

By the entities playing role in the relation:

- ✓ 1-population
 - **x** intra-population
 - **x** individuals from the same population cooperate or compete
- N-population
 - \boldsymbol{x} inter-population
 - x individuals from distinct populations cooperate or compete

P. Pošík © 2011

A0M33EOA: Evolutionary Optimization Algorithms – 4 / 16

1-population competitve coevolution

Example: The goal is to evolve a game playing strategy

✓ successful against diverse opponents!!!

How would you proceed in an ordinary EA?

Problem: fitness evaluation

- ✓ by playing several games against human player? Against conventional program?
 - Y Problem: No learning gradient! Needle in a haystack. All randomly generated players will almost surely loose against any advanced player.
- ✓ by playing several games against internet players?
 - **✗** A bit better...but beware (Blondie24)

Solution: Intra-population competitive coevolution

- ✔ by playing several games against other strategies in the population.
- ✔ All individuals of the same type.
- \checkmark In the beginning, all are probably quite bad, but some of them are a bit better.
- ✓ The fitness (the number of games won) may not rise as expected since your opponents improve with you.

P. Pošík © 2011

A0M33EOA: Evolutionary Optimization Algorithms – 5 / 16

2-population competitive coevolution

Example: The goal is to evolve a sorting algorithm

- ✓ able to sort any sequence of numbers
- correctly and quickly.

How would you proceed in an ordinary EA?

Problem: fitness evaluation

- ✔ Test all possible input sequences? Slow, intractable.
- ✔ Test only a fixed set of sequences? Which ones?

Solution: Inter-population competitive coevolution

- ✓ 2 populations, 2 species:
 - \boldsymbol{x} sorting algorithms
 - **x** test cases (sequences to sort)
- ✔ Fitness evaluation:
 - ✗ Algorithm: by its ability to sort. How many sequences is it able to sort correctly? How quickly?
 - \boldsymbol{x} Test case: by its difficulty for the current sorting algorithms. How many algorithms did not sort it?
- ✔ Predator-prey relationship

P. Pošík © 2011

A0M33EOA: Evolutionary Optimization Algorithms – 6 / 16

N-population cooperative coevolution

Example: The goal is to evolve a team consisting of

- ✓ a goalie, back, midfielder, and forward
- ✓ so that they form a good team together.

How would you proceed in an ordinary EA?

Fitness evaluation:

✓ by simulating a number of games between teams

Problem: Evolution

- ✔ Represent all 4 strategies in 1 genome, evolve them all in 1 population.
- ✔ Theoretically possible, but the space is too large.
- ✓ May result in a team of players which wouldn't perform well if substituted to another team.

Solution: N-population cooperative coevolution

- ✓ 4 separate populations
- ✔ Evolve players which would play well with any other team members

Cooperation:

- ✓ symbiotic relationship
- \checkmark good performance of the team \Rightarrow high contribution to fitness of all members

P. Pošík © 2011

A0M33EOA: Evolutionary Optimization Algorithms – 7 / 16

1-population cooperative coevolution

Example: Niching methods for

- ✓ diversity preservation
- ${\boldsymbol \nu}$ maintaining several stable subpopulations in diverse parts of the search space

Examples of niching methods:

- ✓ fitness sharing
- ✓ crowding

Principle:

- ✓ better individuals similar to others already in population are thrown away in favour of worse, but diverse individuals
- ${m arepsilon}$ the selection process is affected by the presence of other individual in the neighborhood

P. Pošík © 2011

A0M33EOA: Evolutionary Optimization Algorithms – 8 / 16

Problems in coevolution 9 / 16

Fitness in coevolution

Some important classifications of fitness

- ✓ by its time-dependence:
 - **x** static: does not change with time
 - **x** dynamic: changes with time
- ✓ by the stochastic element:
 - x deterministic: generates the same ordering of a set of individuals
 - **x stochastic**: can generate different orderings of the same set of individuals
- **✓** by the role of other individuals in evaluation:
 - * absolute: measured independently of other individuals
 - x relative: measured with respect to individuals in the current population
- ✓ by its role in the EA:
 - **x** internal: optimization criterion used by selection
 - **x** external: used to measure the progress of the algorithm

Ideally, external fitness

- ✓ should be static, deterministic and absolute
- ✓ can easily be used as internal fitness

External fitness in coevolution:

- impossible (hard) to define
- often, it is relative, but measured with a carefully chosen, large enough set of other individuals (static) sufficiently many times (almost deterministic)

Internal fitness in coevolution:

- ✓ relative: affected by other individuals
- dynamic: affected by evolving individuals (needs re-evaluation)
- ✓ stochastic: usually evaluated against a smaller number of individuals

P. Pošík © 2011

A0M33EOA: Evolutionary Optimization Algorithms – 10 / 16

"Fitness" in competitions

Football league:

- all teams play against all others
- ✓ points awarded for win, draw, and loss
- ✓ teams sorted by the earned points

Tennis players:

- tournaments divided to various levels, with different point amounts
- points awarded to players by their final standings in tournament

Golf players:

- tournaments have different prize money to distribute to tournament winners
- highly paid tournaments attract more players and are harder to win
- ✓ players sorted by the won prize money

Chess Elo ratings:

- ✓ each player is assigned a level, based on historic results
- matches between players of different levels
- the player's level increases (decreases) if she recently won more (less) matches than expected

None of these systems is static:

- ✔ Is Pete Sampras better than Roger Federer?
- ✔ Is Arnold Palmer better than Tiger Woods?
- v ..

The same holds for fitness assessment in coevolution!

P. Pošík © 2011

A0M33EOA: Evolutionary Optimization Algorithms – 11 / 16

Problems with fitness assessment: 1-pop. competitive coevolution

Cycles, etc.

- ✓ What if A beats B, B beats C, but C beats A?
- ✓ What if A beats B, but B beats far more individuals than A?
- ✓ The quality assessment depends on what we really want:
 - **x** A player that beats the most other players?
 - **✗** A player that beats the most other "good" players?
 - **x** A player that wins by the most total points on average?
- ✔ Often, other tests are executed.
- ✔ But, do you want to spend your fitness budget
 - **x** on evaluating current individuals more precisely, or
 - **x** on searching further?

P. Pošík © 2011

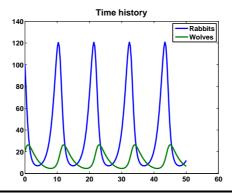
A0M33EOA: Evolutionary Optimization Algorithms – 12 / 16

2 competitive populations (illustration)

Lotka-Volterra model (Predator-prey population dynamics):

$$\frac{dx}{dt} = \alpha x - \beta x y$$

$$\frac{dy}{dt} = -\gamma y + \delta xy$$


where x is the number of prey (rabbits) and y is the number of predators (wolves).

Assumptions:

- 1. The prey population has always food enough.
- 2. The predators eat only the prey.
- 3. The rate of change of population is proportional to its
- 4. The environment is static.

Meaning:

- ✓ The change of the prey population (dx/dt) is composed of
 - **x** increase due to the newly born individuals (proportional to the population size, αx) and
 - **x** decrese caused by the predation (which is proportional to the rate of predator-prey meetings, βxy).
- \checkmark The change of the predator population (dy/dt) is composed of
 - **x** decrease due to natural death (proportional to the population size, γy) and
 - **x** increase allowed by the food suply (proportional to the rate of predator-prey meetings, δxy).

P. Pošík © 2011

A0M33EOA: Evolutionary Optimization Algorithms – 13 / 16

Problems with fitness assessment: 2-pop. competitive coevolution

Arms races

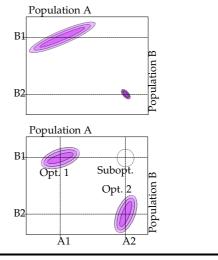
- ✓ one population learns a trick and forces the second population to learn a new trick to beat the first one...
- ✓ one population may evolve faster than the other:
 - \boldsymbol{x} all individuals from that population beat all the individuals from the other
 - **x** no selection gradient in either population \Rightarrow uniform random selection
 - **x** external fitness in both populations drops until the gradient re-emerges
- ✓ not exactly what was shown by Lotka-Volterra, but similar
- Solution:
 - **x** detect such situation (but how?)
 - **x** delay the evolution of the better population until the worse one catches up

P. Pošík © 2011

A0M33EOA: Evolutionary Optimization Algorithms - 14 / 16

Problems with fitness assessment: N-pop. cooperative coevolution

Hijacking


- ✓ a really good forward takes over one population, any team will play well thanks to him
- \checkmark members of all other populations have almost the same fitness \Rightarrow uniform random selection
- ✓ Solution: apply some form of credit assignment

Relative overgeneralization

- when evaluated by average score, worse (but more robust) individual B1 will have higher score than better (but volatile) B2
- ✓ use maximum score (more tests needed)
- but again, the choice depends on what we want a player able to get the highest score, or a player that would compare well with the most other opponents?

Miscoordination

- $\ensuremath{\boldsymbol{\mathcal{V}}}$ when the team components are not independent
- ✔ Pop. A evolved A2 (but not A1), pop. B evolved B1 (but not B2)
- ✓ Neither A2 nor B1 survives

P. Pošík © 2011

A0M33EOA: Evolutionary Optimization Algorithms – 15 / 16

Summary

Coevolution

- ✓ can be cooperative or competitive (or both)
- \checkmark can take place in 1 population or in more populations
- \checkmark fitness is not fixed during evolution
- ✓ introduces new unexpected dynamics to the system (new issues to be solved)

Appropriate when

- \checkmark no explicit fitness function can be formed
- \checkmark there are too many fitness cases
- ✓ the problem is modularizable (divide and conquer)

P. Pošík © 2011

A0M33EOA: Evolutionary Optimization Algorithms – 16 / 16