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Intro to EDAs

Last week. ..

Black-box optimization
_ GA vs. EDA
Features of continuous

spaces O GA approach: select — crossover — mutate
Real-valued EDAs

Content of the lectures

0 EDA approach: select — model — sample

Back to the Roots

State of the Art

EDA with binary representation

Summary

O the best possible (general, flexible) model: joint probability

O determine the probability of each possible combination of bits

0 2P — 1 parameters, exponential complexity

O less precise (less flexible), but simpler probabilistic models
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Content of the lectures

Last week. ..

Intro to EDAs Blnary EDAs

0 Without interactions

Features of continuous

spaces O 1-dimensional marginal probabilities p(X = x)

Real-valued EDAs

0 PBIL, UMDA, cGA

Back to the Roots

State of the Art 0 Pairwise interactions

Summary

O conditional probabilities p(X = x|Y = y)
O sequences (MIMIC), trees (COMIT), forrest (BMDA)
0 Multivariate interactions
O conditional probabilities p(X =x|Y =y, Z =z,...)
O Bayesian networks (BOA, EBNA, LFDA)
Continuous EDAs
O Histograms, mixtures of Gaussian distributions
O Analysis of a simple Gaussian EDA
O Remedies for premature convergence

O Evolutionary strategies
O AMS, Weighting, CMA-ES, classification
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Last week. ..

Features of continuous
spaces

The difference of binary
and real space

Local neighborhood

Real-valued EDAs

Back to the Roots

State of the Art

Summary

Features of continuous spaces
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The difference of binary and real space

Last week.. . .
Binary space 0110 1110
Features of continuous
spaces O Each possible solution is placed in
The difference of binary . . 0010 1010
one of the corners of D-dimensional
Local neighborhood hyper cube 0111
; : 1011 1111
Real valued EDAs 0 No values lying between them 0011
Back to the Roots L.
0 Finite number of elements 0101 1101
State of the Art 1001 N
- 0001
Summary 0 Not possible to mal§e 2'or more
steps in the same direction $1o6 1100
0000 1000
Real space

O The space in each dimension need not be bounded

0 Even when bounded by a hypercube, there are infinitely many points between the
bounds (theoretically; in practice we are limited by the numerical precision of
given machine)

O Infinitely many (even uncountably many) candidate solutions
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Local neighborhood

Last week. ..

How do you define a local neighborhood?

Features of continuous

spaces ' O ...asa set of points that do not have the distance to a reference point larger than a
The difference of binary thre ShOld?

and real space

Local neighborhood

Real-valued EDAs

Back to the Roots

State of the Art

Summary
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Local neighborhood

Last week. ..

Features of continuous
spaces

The difference of binary
and real space

Local neighborhood

Real-valued EDAs

Back to the Roots

State of the Art

Summary

How do you define a local neighborhood?

O ...as a set of points that do not have the distance to a reference point larger than a
threshold?

O The volume of the local neighborhood relative to the volume of the whole
space exponentially drops

O With increasing dimensionality the neighborhood becomes increasingly more
local
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Features of continuous
spaces

The difference of binary
and real space
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Real-valued EDAs

Back to the Roots

State of the Art

Summary

How do you define a local neighborhood?

O ...as a set of points that do not have the distance to a reference point larger than a
threshold?

O The volume of the local neighborhood relative to the volume of the whole
space exponentially drops

O With increasing dimensionality the neighborhood becomes increasingly more
local

O ...as a set of points that are closest to the reference point and their unification
covers part of the search space of certain (constant) size?
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Local neighborhood

Last week. ..

Features of continuous
spaces

The difference of binary
and real space

Local neighborhood

Real-valued EDAs

Back to the Roots

State of the Art

Summary

How do you define a local neighborhood?

O ...as a set of points that do not have the distance to a reference point larger than a
threshold?

O The volume of the local neighborhood relative to the volume of the whole
space exponentially drops

O With increasing dimensionality the neighborhood becomes increasingly more
local

O ...as a set of points that are closest to the reference point and their unification
covers part of the search space of certain (constant) size?

O The size of the local neighborhood rises with dimensionality of the search
space

O With increasing dimensionality of the search space the neighborhood is
increasingly less local

Another manifestation of the curse of dimensionality!
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Last week. ..

Features of continuous
spaces

Real-valued EDAs

Taxonomy

No Interactions Among
Variables

Distribution Tree
Global Coordinate
Transformations
Linear Coordinate
Transformations

Mixture of Gaussians
Non-li lobal
transformation Real-valued EDAs

Back to the Roots

State of the Art

Summary
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Taxonomy

Last week. ..

Features of continuous
spaces

Real-valued EDAs

Taxonomy

No Interactions Among
Variables

Distribution Tree
Global Coordinate
Transformations

Linear Coordinate
Transformations

Mixture of Gaussians
Non-linear global
transformation

Back to the Roots

State of the Art

Summary

2 basic approaches:

O discretize the representation and use EDA with discrete model

0 use EDA with natively continuous model
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Taxonomy

Last week. ..

Features of continuous
spaces

Real-valued EDAs

Taxonomy

No Interactions Among
Variables

Distribution Tree
Global Coordinate
Transformations

Linear Coordinate
Transformations

Mixture of Gaussians
Non-linear global
transformation

Back to the Roots

State of the Art

Summary

2 basic approaches:

O discretize the representation and use EDA with discrete model

0 use EDA with natively continuous model

Again, classification based on the interactions complexity they can handle:

0 Without interactions

O UMDA: model is product of univariate marginal models, only their type is
different

O Univariate histograms?
[0 Univariate Gaussian distribution?

0 Univariate mixture of Gaussians?
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Taxonomy

Last week. ..

Features of continuous
spaces

Real-valued EDAs

Taxonomy

No Interactions Among
Variables

Distribution Tree
Global Coordinate
Transformations

Linear Coordinate
Transformations

Mixture of Gaussians
Non-linear global
transformation

Back to the Roots

State of the Art

Summary

2 basic approaches:

O discretize the representation and use EDA with discrete model

0 use EDA with natively continuous model

Again, classification based on the interactions complexity they can handle:

0 Without interactions

O UMDA: model is product of univariate marginal models, only their type is
different

O Univariate histograms?
[0 Univariate Gaussian distribution?

0 Univariate mixture of Gaussians?

O Pairwise and higher-order interactions:

O Many different types of interactions!

0 Model which would describe all possible kinds of interaction is virtually
impossible to find!
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No Interactions Among Variables

UMDA: EDA with marginal product model p(x) = [T5_; p(x,)

Equi-width hist. Equi-height hist. Max-diff hist. Univar. mix. of Gaussians
Equi-width Histogram Equi-height Histogram Max—diff Histogram Mixture of Gaussians
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Lessons learned:

O If a separable function is rotated, UMDA does not work.

O If there are nonlinear interactions, UMDA does not work.

0 EDASs with univariate marginal product models are not flexible enough!
[]

We need EDAs that can handle some kind of interactions!
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Distribution Tree

Last week. ..

Distribution Tree-Building Real-valued EA [P0s04]

Features of continuous

spaces
Griewangk function Rosenbrock function
Real-valued EDAs 5 R . 5
AL, ‘.".9.
Taxonoms . S
No Interactions Among -4 = 15 2 o
iabl 3 Y :_. ..sﬂ
Variables T S
T 1 a oA
Distribution Tree 2 Vhn 4827
Global Coordinate 1 Ao 0.5 b ";f.r B “
. oy e [ . o o o

Transformations Dl P2y M e ;{: '}a?;;"’
Linear Coordinate 0 R 0 e gV e
Transformations -1 e 05 c
Mixture of Gaussians - '
Non-linear global -1
transformation -3

1 s met S -15
Back to the Roots . RN

-5 R [T L2
State of the Art -5 0 5 -2 -15 -1 -05 0 05 1 15 2
Summary

Distribution-Tree model

O identifies hyper-rectangular areas of the search space with significantly different
densities

O can handle certain type of interactions
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Distribution Tree

Last week. ..

Features of continuous
spaces

Real-valued EDAs

Taxonomy

No Interactions Among
Variables

Distribution Tree

Global Coordinate
Transformations
Linear Coordinate
Transformations

Mixture of Gaussians
Non-linear global
transformation

Back to the Roots

State of the Art

Summary

Distribution Tree-Building Real-valued EA [P0s04]

Griewangk function

Distribution-Tree model

-
SRS
.
o 5987
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e’
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o See S0
3 .
‘ede . »
nl..u ';. o
0

Rosenbrock function

O identifies hyper-rectangular areas of the search space with significantly different

densities

O can handle certain type of interactions

Lessons learned:

0 Cannot model promising areas not aligned with the coordinate axes.

O We need models able to rotate the coordinate system!

[Pog04]

pages 372-381, Berlin, 2004. Springer. ISBN 3-540-23092-0.

Petr Posik. Distribution tree-building real-valued evolutionary algorithm. In Parallel Problem Solving From Nature — PPSN V1II,

P. Pogik © 2011
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Global Coordinate Transformations

Last week. ..

Features of continuous
spaces

Real-valued EDAs

Taxonomy

No Interactions Among
Variables

Distribution Tree
Global Coordinate
Transformations
Linear Coordinate
Transformations

Mixture of Gaussians
Non-linear global
transformation

Back to the Roots

State of the Art

Summary

O© ® g O

Algorithm 1: EDA with global coordinate transformation

begin

Initialize the population.

while termination criteria are not met do

Select parents from the population.

Transform the parents to a space where the variables are independent of each
other.

Learn a model of the transformed parents distribution.

Sample new individuals in the tranformed space.

Tranform the offspring back to the original space.

Incorporate offspring into the population.

The individuals are

O evaluated in the original space (where the fitness function is defined), but

O bred in the transformed space (where the dependencies are reduced).
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Linear Coordinate Transformations

UMDA with equi-height histogram models [Po$05]:
O No tranformation vs. PCA vs. ICA

0 PCA and ICA are used to find a suitable rotation of the space, not to reduce the space dimensionality

PC1 PC 2 PC1 PC 2

IC1 IC 2 IC1 IC 2
6 6 :
5 H 5
4 4
7 0 - 0
2 ’ 2 .
o PR e |
0 o 5 4 6 0 0 5 4 6 -10 0 10 -10 0 10
. . 1 . 1 |
Different results: the difference does not matter. Different results: the difference matters!
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Linear Coordinate Transformations

UMDA with equi-height histogram models [Po$05]:
O No tranformation vs. PCA vs. ICA

0 PCA and ICA are used to find a suitable rotation of the space, not to reduce the space dimensionality

PC1 PC2 PC1 PC2
\% ]
. 0
-5
10 -10
IC 1 IC 2 IC1 IC 2
6 6 -
5 H 5
4 4
o 0 .‘, o 0
2 ’ 2 .
Al Bl
0 0 - _
0 2 4 6 0 2 4 6 10 0 10 10 0 10

Different results: the difference does not matter. Different results: the difference matters!

Lessons learned:

O The global information extracted by linear transformations was often not useful.

O We need non-linear transformations or local transformations!!!

[Pos05]  Petr Posik. On the utility of linear transformations for population-based optimization algorithms. In Preprints of the 16th World Congress of the International
Federation of Automatic Control, Prague, 2005. IFAC. CD-ROM.
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Mixture of Gaussians

Last week...

Features of continuous
spaces

Real-valued EDAs

Taxonomy

No Interactions Among
Variables

Distribution Tree
Global Coordinate
Transformations
Linear Coordinate
Transformations

Mixture of Gaussians

Non-linear global
transformation

Back to the Roots

State of the Art

Summary

Gaussian mixture model (GMM):

K
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=1

Normalization and the requirement of WA
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Model learned by EM algorithm.
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Mixture of Gaussians

Last week...

Features of continuous
spaces

Real-valued EDAs

Taxonomy

No Interactions Among
Variables

Distribution Tree
Global Coordinate
Transformations
Linear Coordinate
Transformations

Mixture of Gaussians

Non-linear global
transformation

Back to the Roots

State of the Art

Summary

Gaussian mixture model (GMM):

K
= ) N (x| e, i) (1)
=1

Normalization and the requirement of
positivity:

K
Zoék:1
k=1
OSakgl

Model learned by EM algorithm.

Lessons learned:

AR
A\\
\\ “'

50

40
30

40

-20

0 GMMis able to model locally linear dependencies.

O We need to specify the number of components beforehand!

O If the optimum is not covered by at least one of the Gaussian peaks, the EA will

miss it!

P. Pogik © 2011
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Non-linear global transformation

Last week. ..

Features of continuous
spaces

Real-valued EDAs

Taxonomy

No Interactions Among
Variables

Distribution Tree
Global Coordinate
Transformations
Linear Coordinate
Transformations

Mixture of Gaussians
Non-linear global
transformation

Back to the Roots

State of the Art

Summary

Kernel PCA as the transformation technique in EDA [P0s04]

o X% % e * Training data points
8 x,;a?-ugs“ X e o x Data points sampled from KPCA|
. x
N &
Tr )'.?”5’-: x & )
o % x .. x.
61 &’)‘:(-"S 3 )‘g ¢ i
. X »:&. °
L o
® X%
5r ¢ i
4+ X )
3 ‘. °
3r * xX kg(.' X i
yyx x x .
1f ) ﬁ‘ S
- ,',,.‘& 5
0 2 4 6 8- 10

Works too well:

O It reproduces the pattern with high fidelity

O If the population is not centered around the optimum, the EA will miss it

P. Pogik © 2011

AOMB33EOA: Evolutionary Optimization Algorithms —15 / 34



Non-linear global transformation

Last week. ..

Features of continuous
spaces

Real-valued EDAs

Taxonomy

No Interactions Among
Variables

Distribution Tree
Global Coordinate
Transformations
Linear Coordinate
Transformations

Mixture of Gaussians
Non-linear global
transformation

Back to the Roots

State of the Art

Summary

Kernel PCA as the transformation technique in EDA [P0s04]

- : ‘ ‘
o %% % ) ¢ Training data points
8r x,{’-u@&" % s s8% * Data points sampled from KPCA

o SR ’
il : |
ar . :
| oo o
i 4% *ﬁg 7

0 2 4 6 8 10

Works too well:

O It reproduces the pattern with high fidelity

O If the population is not centered around the optimum, the EA will miss it

Lessons learned:

O Continuous EDA must be able to effectively move the whole population!!!
O Is the MLE principle actually suitable for model building in EAs???

[Pos04]  Petr Posik. Using kernel principal components analysis in evolutionary algorithms as an efficient multi-parent crossover operator.
In IEEE 4th International Conference on Intelligent Systems Design and Applications, pages 25-30, Piscataway, 2004. IEEE. ISBN
963-7154-29-9.
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Last week. ..

Features of continuous
spaces

Real-valued EDAs

Back to the Roots

Simple Gaussian EDA

Premature convergence
What happens on the
slope?

Variance Enlargement in
a Simple EDA

Summary of Continuous
EDAs So Far

State of the Art

Summary

Back to the Roots
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Simple Gaussian EDA

Consider a simple EDA with the following settings:

Algorithm 2: Gaussian EDA

begin

{p!', L1} < InitializeModel ()

g<1

while not TerminationCondition() do
X < SampleGaussian(us, k- Xf)

f < Evaluate(X)

Xgel < Select(X, f, T)

{“g“, Z‘,gH} < LearnGaussian (X))
| 88+ 1

P. Pogik © 2011

Generational model: no member of the
current population survives to the next one

Truncation selection: use T - N best
individuals to build the model

Gaussian distribution: fit the Gaussian
using maximum likelihood (ML) estimate
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Simple Gaussian EDA

Consider a simple EDA with the following settings:

Algorithm 2: Gaussian EDA 0 Generational mpdel: no member of the
current population survives to the next one
1 begin ) .
) (1], Z1} « InitializeModel() 0 Truncation selection: use T - N best
5 gi’ 1 individuals to build the model
4 while not TerminationCondition() do 0 Gaussian distribution: fit the Gaussian
5 X < SampleGaussian(us, k- Xf) using maximum likelihood (ML) estimate
6 f < Evaluate(X)
7 Xgel < Select(X, f, T)
8 {p8*1,E81) < LearnGaussian(Xg)
9 | g g+1

Gaussian distribution:

Nl Z) = ——p—— exp{—5 (@ — )" (@ — )}
2m) P[5!

Maximum likelihood (ML) estimates of parameters

1 N N
PML = 5 Y @, where @, € Xg IML = —— Y (20 — ) (0 — o)’
n=1
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Premature convergence

Last week. ..

Features of continuous
spaces

Real-valued EDAs

Back to the Roots
Simple Gaussian EDA

Premature convergence

What happens on the
slope?

Variance Enlargement in
a Simple EDA

Summary of Continuous
EDAs So Far

State of the Art

Summary

Using Gaussian distribution and ML estimation seems as a good idea. ..

... but it is actually very bad optimizer!!!

Two situations:

Population centered around optimum Population far away from optimum
(population in the valley): (population on the slope):
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Premature convergence

Last week.. . . . . . . . . .
Using Gaussian distribution and ML estimation seems as a good idea. ..
Features of continuous
spaces ... but it is actually very bad optimizer!!!
Real-valued EDAs
Back to the Roots T ituati .
Simple Gaussian EDA WO situatons:
Population centered around optimum Population far away from optimum
What happens on the 1 . . h 11 . 1 . th 1 .
slope? (population in the valley): (population on the slope):
Variance Enlargement in 7=0.8
a Simple EDA 1.4
Summary of Continuous
EDAs So Far 1.2f 1
State of the Art i |
Summary
0.8 ]
0.6 1
0.4f :
0.2 1
93 —é -1 0 1 é 3
Algorithm works:
O the optimum is located
O the algorithm focuses the population
on the optimum
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Premature convergence
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Features of continuous
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Real-valued EDAs

Back to the Roots
Simple Gaussian EDA

Premature convergence

What happens on the
slope?

Variance Enlargement in
a Simple EDA

Summary of Continuous
EDAs So Far

State of the Art

Summary

Using Gaussian distribution and ML estimation seems as a good idea. ..

... but it is actually very bad optimizer!!!

Two situations:

Population centered around optimum

(population in the valley):
T=08

14

T
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Algorithm works:

O the optimum is located

O the algorithm focuses the population
on the optimum

Population far away from optimum

(population on the slope):
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Algorithm fails:

O the optimum is far away

O the algorithm is not able to shift the
population towards optimum
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What happens on the slope?

Last week. ..

The change of population statistics in 1 generation:

Features of continuous

spaces
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The change of population statistics in 1 generation:
Features of continuous
spaces
Real-valued EDAs Expected value:
Back to the Roots where
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Premature convergence d _ 4) ( ( T) )
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slope?
Variance Enlargement in . .
a Simple EDA Variance:
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EDAs So Far t+1\2 _ — ()2
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Summary T
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What happens on the slope (cont.)

Last week. ..

Features of continuous
spaces

Real-valued EDAs

Back to the Roots
Simple Gaussian EDA

Premature convergence

What happens on the
slope?

Variance Enlargement in
a Simple EDA

Summary of Continuous
EDAs So Far

State of the Art

Summary

Population statistics in generation ¢:
pt = 4 0”d(T) - Ty V(T
ot =o' \/c(T)!

Convergence of population statistics:

lim ! = p + 00 -d(1) —A—

t—oc0 1—4/c(7)

lim ! =0
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What happens on the slope (cont.)

Last week. ..

Population statistics in generation ¢:

Features of continuous

spaces 0 0
t_ . .yt i—1

Real-valued EDAs H =H +0o d <T> =1 ¢ ( T)

Back to the Roots t 0 ¢

Simple Gaussian EDA v =0 ¢ ( T)

Premature COnVergence Geometric Series

Convergence of population statistics:
slope?

Variance Enlargement in

a Simple EDA lim ‘ut — ‘1,[0 —|—0’0 . d(T) L1
Summary of Continuous t—o0 I—=4/c (T)
EDAs So Far .

lim o =0
State of the Art f—00
Summary
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What happens on the slope (cont.)

Last week. ..

Population statistics in generation ¢:

Features of continuous

spaces 0 0
t_ . .yt i—1

Real-valued EDAs H =H +0o d <T> =1 ¢ ( T)

Back to the Roots t 0 ¢

Simple Gaussian EDA v =0 ¢ ( T)

Premature COnVergence Geometric Series

Convergence of population statistics:
slope?

Variance Enlargement in

a Simple EDA lim ‘ut — ‘1,[0 —|—0’0 . d(T) L1
Summary of Continuous t—o0 I—=4/c (T)
EDAs So Far .

lim o =0
State of the Art f—00
Summary

The distance the population can “travel” in this algorithm is bounded!

Premature convergence!
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What happens on the slope (cont.)

Last week. ..

Features of continuous
spaces

Real-valued EDAs

Back to the Roots
Simple Gaussian EDA

Premature convergence

What happens on the
slope?

Variance Enlargement in
a Simple EDA

Summary of Continuous
EDAs So Far

State of the Art

Summary

Population statistics in generation ¢:
o=+ old(T) - Ting Ve(r)!

ot =o' \/c(T)!

: - Geometric series
Convergence of population statistics:

lim ! = p + 00 -d(1) —A—

t—o0 1—4/c(7)
limot =0
t—o00

The distance the population can “travel” in this algorithm is bounded!

Premature convergence!

Lessons learned:

0 Maximum likelihood estimates are suitable in situations when model fits the
fitness function well (at least in local neighborhood)

O Gaussian distribution may be suitable in the neighborhood of optimum.

O Gaussian distribution is not suitable on the slope of fitness function!

O We need something different from MLE to traverse the slopes!!!
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Variance Enlargement in a Simple EDA

What happens if we enlarged the MLE estimate of variance with a constant multiplier k? [P0308]

0 What is the minimal value kp,j, ensuring that the model will not converge on the slope?
O What is the maximal value knax ensuring that the model will not diverge in the valley?

O Is there a single value k of the multiplier for MLE variance estimate that would ensure a reasonable
behavior in both situations?

O Does it depend on the type of the single-peak distribution being used?

Gaussian “Isotropic” Gaussian “Isotropic” Cauchy

EEEE
[ T (1}

Soeeo
o~ Ui =

O For Gaussian and “isotropic Gaussian”, allowable k is hard or impossible to find.

O For isotropic Cauchy, allowable k seems to always exist. ..

O ...but this does not guarantee a reasonable behavior.

[Pos08] Petr Posik. Preventing premature convergence in a simple EDA via global step size setting. In Glinther Rudolph, editor, Parallel Problem Solving from Nature —
PPSN X, volume 5199 of Lecture Notes in Computer Science, pages 549-558. Springer, 2008.
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Summary of Continuous EDAs So Far

Last week. ..

Features of continuous
spaces

Real-valued EDAs

Back to the Roots
Simple Gaussian EDA

Premature convergence
What happens on the
slope?

Variance Enlargement in
a Simple EDA

Summary of Continuous
EDAs So Far

State of the Art

Summary

Initially, high expectations:

O Started with structurally simple models for complex objective functions.

0 They did not work, partially because of the discrepancy between the
complexities of the model and the function.
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Simple Gaussian EDA

Premature convergence
What happens on the
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Variance Enlargement in
a Simple EDA

Summary of Continuous
EDAs So Far

State of the Art

Summary

Initially, high expectations:

O Started with structurally simple models for complex objective functions.

0 They did not work, partially because of the discrepancy between the
complexities of the model and the function.

0 Used increasingly complex and flexible models.

0 Some improvements were gained, but even the most complex models did not
fulfill the expectations.
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Summary of Continuous EDAs So Far

Last week. ..

Initially, high expectations:

Features of continuous

spaces O Started with structurally simple models for complex objective functions.
Real-valued EDAs

0 They did not work, partially because of the discrepancy between the

Back to the Roots .. .

Simple Gaussian EDA complexities of the model and the function.

Premature convergence . . .

What happens on the 0 Used increasingly complex and flexible models.

slope?

Variance Enlargement in 0 Some improvements were gained, but even the most complex models did not

a Simple EDA

_ fulfill the expectations.
Summary of Continuous
EDAs So Far

State of the Art O Realized that a fundamental mistake was present all the time:

Summary O MLE principle builds models which try to reconstruct the points they were
build upon.

O This allows to focus on already covered areas, but not to shift the population to
unexplored places.
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Summary of Continuous EDAs So Far

Last week. ..

Features of continuous
spaces

Real-valued EDAs

Back to the Roots
Simple Gaussian EDA

Premature convergence
What happens on the
slope?

Variance Enlargement in
a Simple EDA

Summary of Continuous
EDAs So Far

State of the Art

Summary

Initially, high expectations:

O Started with structurally simple models for complex objective functions.

0 They did not work, partially because of the discrepancy between the
complexities of the model and the function.

0 Used increasingly complex and flexible models.

0 Some improvements were gained, but even the most complex models did not
fulfill the expectations.

O Realized that a fundamental mistake was present all the time:

O MLE principle builds models which try to reconstruct the points they were
build upon.

O This allows to focus on already covered areas, but not to shift the population to
unexplored places.

Current research directions:

0 Aimed at understanding and developing principles critical for successtul
continuous EDAs.

O Studying behavior on simple functions first.

O Using simple, single-peak models so that the resulting algorithm behave (more
or less) as local search procedures.
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Current Trend: Population-based Adaptive Local Search

Last week. ..

Features of continuous
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Summary

EP

GA

Local search

ES .

There’s something about the population:
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Current Trend: Population-based Adaptive Local Search

Last week. ..

Features of continuous
spaces

Real-valued EDAs

Back to the Roots

State of the Art

Current Trend

Preventing the
Premature Convergence

AVS

AVS Triggers

AMS

Weighted ML Estimates

CMA-ES
Optimization via
Classification

Remarks on SotA

Summary

EP

GA

Local search >

ES

There’s something about the population:

O data set forming a basis for offspring creation

O allows for searching the space in several places at once
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There’s something about the population:

O data set forming a basis for offspring creation
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(replaced by restarted local search with adaptive neighborhood)
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Current Trend: Population-based Adaptive Local Search

Last week. ..

Features of continuous
spaces

Real-valued EDAs

Back to the Roots

State of the Art

Current Trend

Preventing the
Premature Convergence

AVS

AVS Triggers

AMS

Weighted ML Estimates

CMA-ES
Optimization via
Classification

Remarks on SotA

Summary

Local search ii %v Adaptive local search

There’s something about the population:

O data set forming a basis for offspring creation

[

(replaced by restarted local search with adaptive neighborhood)
Hypothesis:

0 The data set (population) is very useful when creating (sometimes implicit) global
model of the fitness landscape or a local model of the neighborhood.

O Itis often better to have a robust adaptive local search procedure and restart it,
than to deal with a complex global search algorithm.

P. Posik (© 2011 AOMB33EOA: Evolutionary Optimization Algorithms —24 / 34



Preventing the Premature Convergence

Last week. ..

Features of continuous
spaces

Real-valued EDAs

Back to the Roots

State of the Art

Current Trend
Preventing the
Premature Convergence

AVS

AVS Triggers

AMS

Weighted ML Estimates

CMA-ES
Optimization via
Classification
Remarks on SotA

Summary

O self-adaptation of the variance [OKHKO04] (let the variance be part of the
chromosome)

0 adaptive variance scaling when population is on the slope, ML estimate of variance
when population is in the valley

O anticipate the shift of the mean and move part of the offspring in the anticipated
direction

O use weighted estimates of distribution parameters

O do not estimate the distribution of selected points, but rather a distribution of
selected mutation steps

O use a different principle to estimate the parameters of the Gaussian

[OKHKO04] Jifi O¢endsek, Stefan Kern, Nikolaus Hansen, and Petros Koumoutsakos. A mixed bayesian optimization algorithm with
variance adaptation. In Xin Yao, editor, Parallel Problem Solving from Nature — PPSN VIII, pages 352-361. Springer-Verlag, Berlin,
2004.
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Adaptive Variance Scaling

Last week. ..
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Current Trend
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AMS

Weighted ML Estimates

CMA-ES
Optimization via
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Remarks on SotA

Summary

AVS [GBRO6]:
O Enlarge the ML estimate of X by an adaptive coefficient cays

O If an improvement was not found in the current generation, we explore to much,
thus decrease cays: cavs < 712 cavs, nPFC € (0,1)

O If an improvement was found in the current generation, we may get better results
with increased cays: cavs < 7N Ccays, 7NC > 1

0 cays isbounded: 1 < cayg < cAVS—MIN

[GBRO6]  Jorn Grahl, Peter A. N. Bosman, and Franz Rothlauf. The correlation-triggered adaptive variance scaling IDEA. In Proceedings of
the 8th annual conference on Genetic and Evolutionary Computation Conference — GECCO 2006, pages 397-404, New York, NY, USA,
2006. ACM Press.
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AVS Triggers

With AVS, all improvements increase cays:

O This is not always needed, especially in the valleys.

O Trigger AVS when on slope; in the valley, use ordinary MLE.
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AVS Triggers

With AVS, all improvements increase cays:

O This is not always needed, especially in the valleys.

O Trigger AVS when on slope; in the valley, use ordinary MLE.

Correlation trigger for AVS (CT-AVS) [GBRO6]:

0 Compute the ranked correlation coefficient of p.d.f. values and function values, p(x;) and f(x;).

O If the distribution is placed around optimum, function values increase with decreasing p.d.f.,
correlation will be large. Use ordinary MLE.

O If the distribution is on a slope, correlation will be close to zero. Use AVS.
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AVS Triggers

With AVS, all improvements increase cays:

O This is not always needed, especially in the valleys.

O Trigger AVS when on slope; in the valley, use ordinary MLE.

Correlation trigger for AVS (CT-AVS) [GBRO6]:

0 Compute the ranked correlation coefficient of p.d.f. values and function values, p(x;) and f(x;).

O If the distribution is placed around optimum, function values increase with decreasing p.d.f.,
correlation will be large. Use ordinary MLE.

O If the distribution is on a slope, correlation will be close to zero. Use AVS.

Standard-deviation ratio trigger for AVS (SDR-AVS) [BGRO7]:

0 Compute x™P as the average of all improving individuals in the current population

0 If p(x™MP) is “low” (the improvements are found far away from the distribution center), we are
probably on a slope. Use AVS.

0 If p(x™P) is “high” (the improvements are found near the distribution center), we are probably in a
valley. Use ordinary MLE.

[BGRO7] Peter A. N. Bosman, Jorn Grahl, and Franz Rothlauf. SDR: A better trigger for adaptive variance scaling in normal EDAs. In GECCO 07: Proceedings of the 9th
annual conference on Genetic and Evolutionary Computation, pages 492-499, New York, NY, USA, 2007. ACM Press.

[GBRO6]  Jorn Grahl, Peter A. N. Bosman, and Franz Rothlauf. The correlation-triggered adaptive variance scaling IDEA. In Proceedings of the 8th annual conference on
Genetic and Evolutionary Computation Conference — GECCO 2006, pages 397-404, New York, NY, USA, 2006. ACM Press.
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Anticipated Mean Shift

Anticipated mean shift (AMS) [BGT08]:

0 AMS is defined as: ghift = p(#) — pu(t —1 0 When centered around optimum, gshift = Q
p

O AMS is an estimate of the direction of and the original approach is unchanged.

improvement O Selection must choose parent from both the
O 100a% of offspring are moved by certain ;ll?tzgsl the shifted regions to adjust Z

fraction of AMS: & = x + i shift

[BGTO08] Peter Bosman, Jorn Grahl, and Dirk Thierens. Enhancing the performance of maximum-likelihood Gaussian EDAs using anticipated mean shift. In
Giinter Rudolph et al., editor, Parallel Problem Solving from Nature — PPSN X, volume 5199 of LNCS, pages 133-143. Springer, 2008.
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Anticipated Mean Shift

Anticipated mean shift (AMS) [BGT08]:

0 AMSis defined as: asMift = a(t) — a(t —1) 0 When centered around optimum, ghift = 0

O AMS is an estimate of the direction of and the original approach is unchanged.

improvement O Selection must choose parent from both the
O 100a% of offspring are moved by certain ;ll?tzgsl the shifted regions to adjust Z

fraction of AMS: & = x + i shift
AMS: 'ashift _ (1,0>T

(x—3)2 +5 y2

[BGTO08] Peter Bosman, Jorn Grahl, and Dirk Thierens. Enhancing the performance of maximum-likelihood Gaussian EDAs using anticipated mean shift. In
Giinter Rudolph et al., editor, Parallel Problem Solving from Nature — PPSN X, volume 5199 of LNCS, pages 133-143. Springer, 2008.
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Weighted ML Estimates

Account for the values of p.d.f. of the selected parents Xq. [TT09]:

O assign weights inversely proportional the the values of p.d.f.

Weighted (ML) estimates of parameters

3 g
1 N
Al ] PW = - w;x;, where @, € X
Li=1
L , V1 N T
' Iw = a2 Wil@i— ) (@ — i)
1~ Y2i=1
> 0fF -
* where
_17 - 1
w; =
p(xi)
g * h=Yu
-3 b I 1 I I I V2 — Zwlz
-3 -2 -1 0 1 2 3

[TTO9] Fabien Teytaud and Olivier Teytaud. Why one must use reweighting in estimation of distribution algorithms. In GECCO "09: Proceedings of the 11th Annual
conference on Genetic and evolutionary computation, pages 453-460, New York, NY, USA, 2009. ACM.
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AMS

Weighted ML Estimates
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Optimization via
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Remarks on SotA

Summary

Evolutionary strategy with cov. matrix adaptation [HOO01]
0 (u/p, A)-ES (recombinative, mean-centric)
0 model is adapted, not built from scratch each generation

O accumulates the successful steps over many generations
Compare:

O Simple Gaussian EDA estimates the distribution of selected individuals (left fig.)
O CMA-ES estimates the distribution of successful mutation steps (right fig.)

-l ™ ‘ ‘ : -1
—1.5 I -15)
2 2
25 25
® ®
-3t ® -3t
~35 ~35

[HOO01] Nikolaus Hansen and Andreas Ostermeier. Completely derandomized self-adaptation in evolution strategies. Evolutionary
Computation, 9(2):159-195, 2001.
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Optimization via Classification

Build a quadratic classifier separating the selected and the discarded individuals [PF07]

1 1 1
of of of
-1t -1t -1r
-2t -2t =2
-3} -3t -3
B 3 % 1 2 3 % 0 1 2 3

Ellipsoid Function

O Classifier built by moditied perceptron

. . . s . -- C‘MA—ES
algorithm or by semidefinite programming - - -Perceptron
——SDP

O Works well for pure quadratic functions ]
0 If the selected and discarded individuals are £ S

not separable by an ellipsoid, the training % S ]

procedure fails to create a good model 5 '

o E "
. z " N
O Work in progress; not solved yet < |
107 ‘ ‘ ‘ ‘ ‘
0 1000 2000 3000 4000 5000 6000

Number of Evaluations

[PFO7]  Petr Posik and Vojtéch Franc. Estimation of fitness landscape contours in EAs. In GECCO 07: Proceedings of the 9th annual conference on Genetic and evolutionary
computation, pages 562-569, New York, NY, USA, 2007. ACM Press.
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Remarks on SotA

Last week. ..

Features of continuous
spaces

Real-valued EDAs

Back to the Roots

State of the Art

Current Trend
Preventing the
Premature Convergence

AVS

AVS Triggers

AMS

Weighted ML Estimates

CMA-ES
Optimization via
Classification

Remarks on SotA

Summary

0 Many techniques to fight premature convergence

O Although based on different principles, some of them converge to similar

algorithms (weighted MLE, CMA-ES, NES)

O Only a few sound principles; the most of them are heuristic approaches
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Real-valued EDAs

Last week. ..

0 much less developed than EDAs for binary representation

Features of continuous
spaces

O the difficulties are caused mainly by
Real-valued EDAs

Back to the Roofs O much more severe effects of the curse of dimensionality

State of the Art 0 many different types of interactions among variables

Summary . . . . . . . .

O Gaussian distribution used most often, but pure maximum-likelihood estimates are

BAD! Some other remedies are needed.

O Despite of that, EDA (and EAs generally) are able to gain better results then
conventional optimization techniques (line search, Nelder-Mead search, ...)

P. Posik (© 2011 AOMB33EOA: Evolutionary Optimization Algorithms —34 / 34



	Last week…
	Intro to EDAs
	Content of the lectures

	Features of continuous spaces
	The difference of binary and real space
	Local neighborhood

	Real-valued EDAs
	Taxonomy
	No Interactions Among Variables
	Distribution Tree
	Global Coordinate Transformations
	Linear Coordinate Transformations
	Mixture of Gaussians
	Non-linear global transformation

	Back to the Roots
	Simple Gaussian EDA
	Premature convergence
	What happens on the slope?
	Variance Enlargement in a Simple EDA
	Summary of Continuous EDAs So Far

	State of the Art
	Current Trend
	Preventing the Premature Convergence
	AVS
	AVS Triggers
	AMS
	Weighted ML Estimates
	CMA-ES
	Optimization via Classification
	Remarks on SotA

	Summary
	Real-valued EDAs




