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Intro to EDAS

Black-box optimization

GA vs. EDA
Last week...
e Intro to EDAs m  GA approach: select — crossover — mutate
e Content of the
lectures m  EDA approach: select — model — sample

Features of continuous
spaces

EDA with binary representation
Real-valued EDAs

m the best possible (general, flexible) model: joint probability

Back to the Roots

State of the Art m determine the probability of each possible combination of bits

Summary = 2P — 1 parameters, exponential complexity

m less precise (less flexible), but simpler probabilistic models
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Last week...

Content of the lectures

e Intro to EDAs
e Content of the
lectures

Features of continuous
spaces

Real-valued EDAs

Back to the Roots

State of the Art

Summary

Binary EDAs
m  Without interactions
m 1l-dimensional marginal probabilities p(X = x)
m PBIL, UMDA, cGA
m Pairwise interactions
m conditional probabilities p(X = x|Y = y)
m  sequences (MIMIC), trees (COMIT), forrest (BMDA)
m Multivariate interactions

m conditional probabilities p(X = x|Y =y, Z =z,...)
m Bayesian networks (BOA, EBNA, LFDA)

Continuous EDAs

= Histograms, mixtures of Gaussian distributions
m  Analysis of a simple Gaussian EDA

m  Remedies for premature convergence

m  Evolutionary strategies
s AMS, Weighting, CMA-ES, classification
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Features of continuous spaces
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The difference of binary and real space

Binary space 0110 1110
m  Each possible solution is placed in
Last week. .. one of the corners of D-dimensional 0010 1019
}?eatmjes of continuous hypercube 0111
spaces : 1011 1111
e The difference of = No values lying between them 0011
binary and real space ..
o Local neighborhood ™ Finite number of elements 0101 o
Real-valued EDAs =  Not possible to make 2 or more steps 0001 1001
Back to the Roots in the same direction
0100 1100
State of the Art
Summary
0000 1000

Real space

m  The space in each dimension need not be bounded

= Even when bounded by a hypercube, there are infinitely many points between the
bounds (theoretically; in practice we are limited by the numerical precision of given
machine)

= Infinitely many (even uncountably many) candidate solutions
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Local neighborhood

How do you define a local neighborhood?

m ...asa set of points that do not have the distance to a reference point larger than a
Last week. .. threshold?
Features of continuous
spaces

e The difference of
binary and real space

e Local neighborhood

Real-valued EDAs

Back to the Roots

State of the Art

Summary
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Local neighborhood

How do you define a local neighborhood?

m ...asa set of points that do not have the distance to a reference point larger than a

Last week. .. threshold?
Features of continuous . .
spaces m  The volume of the local neighborhood relative to the volume of the whole space

e The difference of exponentially drops

binary and real space ) ) ) . . )

e Local neighborhood m  With increasing dimensionality the neighborhood becomes increasingly more
Real-valued EDAs local

Back to the Roots

State of the Art

Summary
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Last week...

Features of continuous
spaces

e The difference of
binary and real space

e Local neighborhood

Real-valued EDAs

Back to the Roots

State of the Art

Summary

Local neighborhood

How do you define a local neighborhood?

...as a set of points that do not have the distance to a reference point larger than a
threshold?

m  The volume of the local neighborhood relative to the volume of the whole space
exponentially drops

m  With increasing dimensionality the neighborhood becomes increasingly more
local

...as a set of points that are closest to the reference point and their unification covers
part of the search space of certain (constant) size?

P. Pogik (© 2014

AOMB33EOA: Evolutionary Optimization Algorithms -7 / 34



Last week...

Features of continuous
spaces

o The difference of
binary and real space

e Local neighborhood

Real-valued EDAs

Back to the Roots

State of the Art

Summary

Local neighborhood

How do you define a local neighborhood?

m ...as a set of points that do not have the distance to a reference point larger than a
threshold?

m  The volume of the local neighborhood relative to the volume of the whole space
exponentially drops

m  With increasing dimensionality the neighborhood becomes increasingly more
local

® ...asa set of points that are closest to the reference point and their unification covers
part of the search space of certain (constant) size?

m  The size of the local neighborhood rises with dimensionality of the search space

= With increasing dimensionality of the search space the neighborhood is
increasingly less local

Another manifestation of the curse of dimensionality!
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Real-valued EDAs
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Taxonomy

2 basic approaches:

m discretize the representation and use EDA with discrete model

Last week...

= use EDA with natively continuous model
Features of continuous
spaces

Real-valued EDAs

e Taxonomy

e No Interactions
Among Variables

e Distribution Tree
e Global Coordinate
Transformations

e Linear Coordinate
Transformations

e Mixture of
Gaussians

e Non-linear global
transformation

Back to the Roots

State of the Art

Summary
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Taxonomy

2 basic approaches:

m discretize the representation and use EDA with discrete model

Last week...

= use EDA with natively continuous model

Features of continuous

spaces
Real-valued EDAs Again, classification based on the interactions complexity they can handle:

° Taxonomy . . .

e No Interactions m  Without interactions

Among Variables . ) . ) ) )

 Distribution Tree s  UMDA: model is product of univariate marginal models, only their type is

e Global Coordinate different

Transformations

¢ Linear Coordinate m  Univariate histograms?

Transformations

° Mixture of m Univariate Gaussian distribution?

Gaussians

e Non-linear global m Univariate mixture of Gaussians?

transformation

Back to the Roots

State of the Art

Summary
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Last week...

Features of continuous
spaces

Real-valued EDAs

e Taxonomy

e No Interactions
Among Variables

e Distribution Tree
e Global Coordinate
Transformations

e Linear Coordinate
Transformations

e Mixture of
Gaussians

e Non-linear global
transformation

Back to the Roots

State of the Art

Summary

Taxonomy

2 basic approaches:

m discretize the representation and use EDA with discrete model

= use EDA with natively continuous model

Again, classification based on the interactions complexity they can handle:
= Without interactions

s  UMDA: model is product of univariate marginal models, only their type is
different

m  Univariate histograms?
m Univariate Gaussian distribution?

m  Univariate mixture of Gaussians?

m Pairwise and higher-order interactions:

= Many different types of interactions!

=  Model which would describe all possible kinds of interaction is virtually
impossible to find!
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No Interactions Among Variables

UMDA: EDA with marginal product model p(x) = [T5_; p(x4)

Equi-width hist.
Equi-width Histogram

0.18f
0.161 I
0.141
0.12r
0.1
0.08(
0.06
0.04-

0.02-

0 5 10 15

2D PDF using Equi-width Histograms

Lessons learned:

m If a separable function is rotated, UMDA does not work.

20

0.45f

0.4f

0.351

0.3r

0.25f

0.2r

0.15f

0.1

0.05f

Equi-height hist.

Equi-height Histogram

i

[ 5 10 15 20

2D PDF using Equi-height Histograms

0.12f

0.1

0.08r

0.06f

0.04f

0.02f

Max-diff hist.

Max~diff Histogram

[

5 10 15

2D PDF using Max-diff Histograms

m [f there are nonlinear interactions, UMDA does not work.

m EDAs with univariate marginal product models are not flexible enough!

m  We need EDAs that can handle some kind of interactions!

20

Univar. mix. of Gaussians

Mixture of Gaussians
0.35

0.3

0.25f

0.2r

0.15f

0.1r

0.05-

0 . .
0 5 10 15 20 25

2D PDF using Marginal Mixtures of Gaussians
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Distribution Tree

Distribution Tree-Building Real-valued EA [P0304]

Griewangk function

Rosenbrock function

Last week. .. 5 g ’ -
Jl
Features of continuous 4 . . 3’ .
spaces 3 e . 15 _.‘: '
L
Real-valued EDAs 2 1 K
e Taxonomy 1 L. 05
e No Interactions e .;g'..:’.'
Among Variables 0 sy 0
e Distribution Tree -1 S 05
e Global Coordinate - '
Transformations -1
e Linear Coordinate -3 .
Transformations 4 : ¥ -15
e Mixture of . -"
. _ . -2
Gaussians %5 0 5 2 -15 -1 -05 0 05 1 15 2
e Non-linear global
transformation
Back to the Roots Distribution-Tree model
Slate of the Art = identifies hyper-rectangular areas of the search space with significantly different
Summary densities

m can handle certain type of interactions
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Distribution Tree

Distribution Tree-Building Real-valued EA [P0304]

Griewangk function

Rosenbrock function

Last week. .. 5 3
Features of continuous 4 . : A A
. . e a . 15 KX ot
spaces 3 “‘ et
Real-valued EDAs 2 1 i

e Taxonomy 1 e 05

e No Interactions e

. 0 ~..'- .:v'. g

Among Variables e 0

e Distribution Tree -1 - v 05

e Global Coordinate 5 '

Transformations -1

e Linear Coordinate -3

Transformations 4 : ¥ -15

e Mixture of . ;

. _ : -2

Gaussians 25 0 5 -2 -15 -1 -05 0 05 1 15 2

e Non-linear global

transformation
Back to the Roots Distribution-Tree model
State of the Art

= identifies hyper-rectangular areas of the search space with significantly different
Summary densities

m can handle certain type of interactions
Lessons learned:

m  Cannot model promising areas not aligned with the coordinate axes.
m  We need models able to rotate the coordinate system!

[Pos04] Petr Posik. Distribution tree-building real-valued evolutionary algorithm. In Parallel Problem Solving From Nature — PPSN VIII, pages
372-381, Berlin, 2004. Springer. ISBN 3-540-23092-0.
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Global Coordinate Transformations

Algorithm 1: EDA with global coordinate transformation

p—

begin

Initialize the population.

while termination criteria are not met do

Select parents from the population.

Transform the parents to a space where the variables are independent of each

Last week...

N

Features of continuous
spaces

OM]

Real-valued EDAs

e Taxonomy

(6 B

e No Interactions

Among Variables other.
Learn a model of the transformed parents distribution.

Sample new individuals in the tranformed space.
Tranform the offspring back to the original space.
Incorporate offspring into the population.

e Distribution Tree
e Global Coordinate
Transformations

e Linear Coordinate
Transformations

e Mixture of
Gaussians —
e Non-linear global
transformation

© o N o

Bk o the Roote The individuals are

State of the Art m evaluated in the original space (where the fitness function is defined), but

Summary m  bred in the transformed space (where the dependencies are reduced).
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Linear Coordinate Transformations

UMDA with equi-height histogram models [Po305]:

= No tranformation vs. PCA vs. ICA
m PCA and ICA are used to find a suitable rotation of the space, not to reduce the space dimensionality

PC1 PC2 PC1 PC 2

IC1 IC 2
S — 5
0 » 0 »
-5 -5
-10 0 10 -10 0 10

0 2 4 6 0 2 4 6

Different results: the difference does not matter. Different results: the difference matters!
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Linear Coordinate Transformations

UMDA with equi-height histogram models [Po305]:

= No tranformation vs. PCA vs. ICA
m PCA and ICA are used to find a suitable rotation of the space, not to reduce the space dimensionality

PC1 PC2 PC1 PC 2

IC 1 IC 2 IC1 IC 2
6 6 -
5 H 5
4 4
s 0 » 0 »
2 > 2 :
o — |
0 0 - -
0 2 4 &6 o 2 4 &6 10 0 10 10 0 10

Different results: the difference does not matter. Different results: the difference matters!

Lessons learned:

m  The global information extracted by linear transformations was often not useful.

m  We need non-linear transformations or local transformations!!!

[Pos05]  Petr Posik. On the utility of linear transformations for population-based optimization algorithms. In Preprints of the 16th World Congress of the International
Federation of Automatic Control, Prague, 2005. IFAC. CD-ROM.
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Last week...

Features of continuous
spaces

Real-valued EDAs

e Taxonomy

e No Interactions
Among Variables

e Distribution Tree
e Global Coordinate
Transformations

e Linear Coordinate
Transformations

e Mixture of
Gaussians

e Non-linear global
transformation

Back to the Roots

State of the Art

Summary

Mixture of Gaussians

Gaussian mixture model (GMM):

K
P(x) =Y o (x|pe, Zi) (1)
|

Normalization and the requirement of
positivity:

Model learned by EM algorithm.
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Last week...

Features of continuous
spaces

Real-valued EDAs

e Taxonomy

e No Interactions
Among Variables

e Distribution Tree
e Global Coordinate
Transformations

e Linear Coordinate
Transformations

e Mixture of
Gaussians

e Non-linear global
transformation

Back to the Roots

State of the Art

Summary

Mixture of Gaussians

Gaussian mixture model (GMM):

K
P(x) =Y agN (x|pe, Zi) (1)
k=1

Normalization and the requirement of
positivity:

K
lek:1
k=1
OScxkgl

Model learned by EM algorithm.

Lessons learned:

A

50

40

s  GMM is able to model locally linear dependencies.

= We need to specify the number of components beforehand!

= [f the optimum is not covered by at least one of the Gaussian peaks, the EA will miss

it!
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Non-linear global transformation

Kernel PCA as the transformation technique in EDA [P0os04]

T \ T T T
-x«§§< e ¢ Training data points

Lastweek. . 8 x){'g"‘%?‘ % .’séi x Data points sampled from KPCA 1

Features of continuous {Q;? * 353‘

spaces 7 9% x &2 :

.? §¥ x L] L]
o % %S e

Real-valued EDAs 6 ?":"55' ::gﬁ ,)gt". ]
e Taxonomy 5l ¢ X% |
e No Interactions
Among Variables 4r oo ]
e Distribution Tree . é&?“.‘-x’

. 37 3 x % % |

e Global Coordinate oo x X .
Transformations ol o * s§a‘ |
e Linear Coordinate . X %
Transformations 1k X %o
e Mixture of Se .'&&‘ i&'
Gaussians ! ! - ! e Lo .
e Non-linear global 0 2 4 6 8 10
transformation

Back to the Roots WOI' kS too Well:

State of the Art m [t reproduces the pattern with high fidelity

Summary m If the population is not centered around the optimum, the EA will miss it
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Non-linear global transformation

Kernel PCA as the transformation technique in EDA [P0os04]

T \ T T T
-,g;i‘i e ¢ Training data points

Lastweek. . 8 x){'g"‘%?‘ X o .’séi x Data points sampled from KPCA 1

Features of continuous {Q;? * 353‘

spaces 7 9% x &2 :

B e
o % %S e

Real-valued EDAs 6T " 1
e Taxonomy 5 © %% |
e No Interactions
Among Variables 4r .o 1
e Distribution Tree . é&?“.‘-x’
e Global Coordinate 3 '><)’(‘x x xoge
Transformations ol & * 5§a‘ i
e Linear Coordinate . X %
Transformations 1k X SR
e Mixture of % -‘&&( ig‘.
Gaussians ! ! ! : e .
e Non-linear global 0 2 4 6 8 10
transformation

Back to the Roots WOI' kS too Well:

State of the Art m [t reproduces the pattern with high fidelity

Summary m If the population is not centered around the optimum, the EA will miss it

Lessons learned:

m  Continuous EDA must be able to effectively move the whole population!!!
m [s the MLE principle actually suitable for model building in EAs???

[Pos04] Petr Posik. Using kernel principal components analysis in evolutionary algorithms as an efficient multi-parent crossover operator. In
IEEE 4th International Conference on Intelligent Systems Design and Applications, pages 25-30, Piscataway, 2004. IEEE. ISBN 963-7154-29-9.
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Back to the Roots
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90 Ul R W N R

Simple Gaussian EDA

Consider a simple EDA with the following settings:

Algorithm 2: Gaussian EDA

begin
{u', L'} < InitializeModel ()
g<1
while not TerminationCondition() do
X < SampleGaussian(ué, k- X8)
f < Evaluate(X)
Xsel < Select(X, f, T)
{us*1, 281} « LearnGaussian(X)
| g g+1

P. Pogik (© 2014

Generational model: no member of the
current population survives to the next one

Truncation selection: use T - N best
individuals to build the model

Gaussian distribution: fit the Gaussian
using maximum likelihood (ML) estimate
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Simple Gaussian EDA

Consider a simple EDA with the following settings:
m  Generational model: no member of the
current population survives to the next one

Algorithm 2: Gaussian EDA

1 begin m  Truncation selection: use 7 - N best
2 {p', L'} < InitializeModel() individuals to build the model
> 8 <_ 1 , _ o m  Gaussian distribution: fit the Gaussian
! while not Termlnatlor}Condltlon() do using maximum likelihood (ML) estimate
5 X < SampleGaussian(ué, k- X8)
6 f < Evaluate(X)
7 Xsel < Select(X, f, T)
{u8*1, 28T ¢ LearnGaussian(X,)
9 g g+1

Gaussian distribution:

N(x|u,Z) =

ex —lx— TeHx -
22} pl-s(x—p) T (x—p)}

Maximum likelihood (ML) estimates of parameters
1 N 1 N

PML = Y xy, where x,, € Xq IML = o 2 (%0 — p) (X — pini)
n=1 n=1
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Last week...

Features of continuous
spaces

Real-valued EDAs

Back to the Roots

e Simple Gaussian
EDA

e Premature
convergence

e What happens on
the slope?

e Variance
Enlargement in a
Simple EDA

e Summary of
Continuous EDAs So
Far

State of the Art

Summary

Premature convergence

Using Gaussian distribution and ML estimation seems as a good idea. ..

... but it is actually very bad optimizer!!!

Two situations:

Population centered around optimum
(population in the valley):

Population far away from optimum
(population on the slope):
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Premature convergence

Using Gaussian distribution and ML estimation seems as a good idea. ..

... but it is actually very bad optimizer!!!

Last week. ..
Features of continuous . .
spaces Two situations:
Real-valued EDAs Population centered around optimum Population far away from optimum
Back to the Roots (population in the valley): (population on the slope):
e Simple Gaussian =08
EDA 14 \
e Premature
convergence 1o |
e What happens on '
the slope?
e Variance 1 ]
Enlargement in a
Simple EDA 0.8 |
e Summary of
Continuous EDAs So
Far 0.6 i
State of the Art
0.4 ,
Summary
0.2 ,
-3 -2 -1 0 1 2 3
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Premature convergence

Using Gaussian distribution and ML estimation seems as a good idea. ..

... but it is actually very bad optimizer!!!

Last week. ..
Features of continuous . .
spaces Two situations:
Real-valued EDAs Population centered around optimum Population far away from optimum
Back to the Roots (population in the valley): (population on the slope):
e Simple Gaussian =08
EDA 14 \
e Premature
convergence 1o |
e What happens on '
the slope?
e Variance 1 ]
Enlargement in a
Simple EDA 0.8 |
e Summary of
Continuous EDAs So
Far 0.6 i
State of the Art
0.4 ,
Summary
0.2 ,
-3 -2 -1 0 1 2 3
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Premature convergence

Using Gaussian distribution and ML estimation seems as a good idea. ..

... but it is actually very bad optimizer!!!

Last week. ..
Features of continuous . .
spaces Two situations:
Real-valued EDAs Population centered around optimum Population far away from optimum
Back to the Roots (population in the valley): (population on the slope):
e Simple Gaussian =08
EDA 1.4 \
e Premature
convergence Lol |
e What happens on '
the slope?
e Variance 1F ]
Enlargement in a
Simple EDA 0.8k |
e Summary of '
Continuous EDAs So
Far 0.6f 7
State of the Art
0.4r 1
Summary
0.2 i
0 1 |
-3 -2 -1 0 1 2 3
Algorithm works:

m the optimum is located

m the algorithm focuses the population
on the optimum
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Premature convergence

Using Gaussian distribution and ML estimation seems as a good idea. ..

... but it is actually very bad optimizer!!!

Last week. ..
Features of continuous . .
spaces Two situations:
Real-valued EDAs Population centered around optimum Population far away from optimum
Back to the Roots (population in the valley): (population on the slope):
e Simple Gaussian =08 =02
EDA 1.4 \ 4 \
e Premature
convergence Lol | 3.5 ,
e What happens on '
the slope? 3l i
e Variance 1F ]
Enlargement in a 25l |
Simple EDA 0.8l | '
e Summary of ' ol 4
Continuous EDAs So
Far 0.6 i
1.5 1
State of the Art
0.4r 1 1l |
Summary
0.2 1 0.5 i
0 1 1 0 A
9 ) 1 0 1 5 3 -103  -102  -101  -100 ~99 -08 -97
Algorithm works:

m the optimum is located

m the algorithm focuses the population
on the optimum
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Premature convergence

Using Gaussian distribution and ML estimation seems as a good idea. ..

... but it is actually very bad optimizer!!!

Last week. ..
Features of continuous . .
spaces Two situations:
Real-valued EDAs Population centered around optimum Population far away from optimum
Back to the Roots (population in the valley): (population on the slope):
e Simple Gaussian =08 =02
EDA 1.4 \ 4 \
e Premature
convergence Lol | 3.5 ,
e What happens on '
the slope? 3l i
e Variance 1F ]
Enlargement in a 25l |
Simple EDA 0.8l | '
e Summary of ' ol 4
Continuous EDAs So
Far 0.6 i
1.5 1
State of the Art
0.4r 1 1l |
Summary
0.2 . 0.5 i
0 L ! 0 .
9 ) 1 0 1 5 3 -103  -102  -101  -100 ~99 -98 ~97
Algorithm works:

m the optimum is located

m the algorithm focuses the population
on the optimum
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Last week...

Features of continuous
spaces

Real-valued EDAs

Back to the Roots

e Simple Gaussian
EDA

e Premature
convergence

e What happens on
the slope?
e Variance

Enlargement in a
Simple EDA

e Summary of
Continuous EDAs So
Far

State of the Art

Summary

Premature convergence

Using Gaussian distribution and ML estimation seems as a good idea. ..

... but it is actually very bad optimizer!!!

Two situations:

Population centered around optimum

(population in the valley):

7=0.8
1.4 w

T
1

1.2

0.8

T
1

0.6 i

0.4 1

T
1

0.2

% 2 -1 0 1 2 3
Algorithm works:
m the optimum is located

m the algorithm focuses the population
on the optimum

Population far away from optimum
(population on the slope):

7T=0.2

4

T

3.5

T

25

15

T

T

0.5

0 L
-103 -102 -101

Algorithm fails:

-100 -99 -98

= the optimum is far away

m the algorithm is not able to shift the
population towards optimum

=97
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What happens on the slope?

The change of population statistics in 1 generation:

Last week. . Expected value:
Features of continuous Where

spaces t—|—1:EXX> min) = t t_d , —
Real-valued EDAs H ( | * ) ]/l o (T) d(T) (P((I) 1(T))

Back to the Roots T
e Simple Gaussian
EDA
e Premature
convergence

e What happens on
the slope?

e Variance
Enlargement in a
Simple EDA

e Summary of
Continuous EDAs So
Far

State of the Art

Summary
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Last week...

Features of continuous
spaces

Real-valued EDAs

Back to the Roots

e Simple Gaussian
EDA

e Premature
convergence

e What happens on
the slope?

e Variance
Enlargement in a
Simple EDA

e Summary of
Continuous EDAs So
Far

State of the Art

Summary

What happens on the slope?

The change of population statistics in 1 generation:

Expected value:

yt“ = E(X|X > Xmin) = yt +at-d(r),

Variance:

(c"1)2 = Var(X|X > xmin) = (1) -c(7),

where

P. Pogik © 2014
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Last week...

Features of continuous
spaces

Real-valued EDAs

Back to the Roots

e Simple Gaussian
EDA

e Premature
convergence

e What happens on
the slope?

e Variance
Enlargement in a
Simple EDA

e Summary of
Continuous EDAs So
Far

State of the Art

Summary

What happens on the slope?

The change of population statistics in 1 generation:

Expected value:

yt“ = E(X|X > Xmin) = yt +at-d(r),

Variance:

(c™1)? = Var(X|X > xmin)

2.5¢

1.5F

0.5r

On slope
- - -In the valley

where

T
where
C(T) — 14+ cI)—l(l B T)FL;(P(CI)_l(T)) _d(T)z.

0.9

0.8

0.7

0.6

©0.5

0.4

0.3

0.2

0.1

- = =In the valley
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What happens on the slope (cont.)

Population statistics in generation ¢:
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What happens on the slope (cont.)
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Features of continuous
spaces

Real-valued EDAs
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EDA

e Premature
convergence
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e Variance
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Continuous EDAs So
Far

State of the Art
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What happens on the slope (cont.)

Population statistics in generation ¢:

t ) Liog vVe(r) !

uh=u+o"d(t
ot =0 /(1)

Convergence of population statistics:

Geometric series

lim pf = p’ +0%-d(1) ——

t—o0 1—4/c(7)
lim ot =0
t—00

The distance the population can “travel” in this algorithm is bounded!

Premature convergence!

Lessons learned:

@ Maximum likelihood estimates are suitable in situations when model fits the fitness
function well (at least in local neighborhood)

m  Gaussian distribution may be suitable in the neighborhood of optimum.

m  Gaussian distribution is not suitable on the slope of fitness function!

m  We need something different from MLE to traverse the slopes!!!
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Variance Enlargement in a Simple EDA

What happens if we enlarged the MLE estimate of variance with a constant multiplier k? [Po308]

= What is the minimal value kni, ensuring that the model will not converge on the slope?

m  What is the maximal value kmax ensuring that the model will not diverge in the valley?

m [s there a single value k of the multiplier for MLE variance estimate that would ensure a reasonable
behavior in both situations?

= Does it depend on the type of the single-peak distribution being used?

Gaussian “Isotropic” Gaussian “Isotropic” Cauchy
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..QP\

4999953554549

DN U i Ly e e
;:
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m  For Gaussian and “isotropic Gaussian”, allowable k is hard or impossible to find.

m For isotropic Cauchy, allowable k seems to always exist. ..

® ...but this does not guarantee a reasonable behavior.

[Pos08]  Petr Posik. Preventing premature convergence in a simple EDA via global step size setting. In Giinther Rudolph, editor, Parallel Problem Solving from Nature —
PPSN X, volume 5199 of Lecture Notes in Computer Science, pages 549-558. Springer, 2008.
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Summary of Continuous EDAs So Far

Initially, high expectations:
m Started with structurally simple models for complex objective functions.

m  They did not work, partially because of the discrepancy between the
complexities of the model and the function.
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Initially, high expectations:

m Started with structurally simple models for complex objective functions.

m  They did not work, partially because of the discrepancy between the
complexities of the model and the function.

m  Used increasingly complex and flexible models.

= Some improvements were gained, but even the most complex models did not

tulfill the expectations.

m Realized that a fundamental mistake was present all the time:

m  MLE principle builds models which try to reconstruct the points they were build

upon.

m This allows to focus on already covered areas, but not to shift the population to

unexplored places.
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Summary of Continuous EDAs So Far

Initially, high expectations:

m Started with structurally simple models for complex objective functions.

m  They did not work, partially because of the discrepancy between the
complexities of the model and the function.

m  Used increasingly complex and flexible models.

= Some improvements were gained, but even the most complex models did not

tulfill the expectations.

m Realized that a fundamental mistake was present all the time:

m  MLE principle builds models which try to reconstruct the points they were build

upon.

m This allows to focus on already covered areas, but not to shift the population to

unexplored places.

Current research directions:

=  Aimed at understanding and developing principles critical for successful continuous

EDAs.

m  Studying behavior on simple functions first.

m  Using simple, single-peak models so that the resulting algorithm behave (more

or less) as local search procedures.

P. Pogik (© 2014

AOMB3EOA: Evolutionary Optimization Algorithms —22 / 34



State of the Art
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Current Trend: Population-based Adaptive Local Search
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There’s something about the population:

m data set forming a basis for offspring creation

(replaced by restarted local search with adaptive neighborhood)

P. Pogik (© 2014

AOMB33EOA: Evolutionary Optimization Algorithms —24 / 34



Last week...

Features of continuous

spaces

Real-valued EDAs

Back to the Roots

State of the Art

e Current Trend
e Preventing the
Premature
Convergence

e AVS

e AVS Triggers
o AMS

e Weighted ML
Estimates

e CMA-ES

e Optimization via
Classification

e Remarks on SotA

Summary

P. Pogik (© 2014

Current Trend: Population-based Adaptive Local Search

EP —_—

o

ES

Local search Adaptive local search

Y

Y

There’s something about the population:

m data set forming a basis for offspring creation

(replaced by restarted local search with adaptive neighborhood)
Hypothesis:

m The data set (population) is very useful when creating (sometimes implicit) global
model of the fitness landscape or a local model of the neighborhood.

m [tis often better to have a robust adaptive local search procedure and restart it, than
to deal with a complex global search algorithm.
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Last week...

Preventing the Premature Convergence
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Summary

m self-adaptation of the variance [OKHKO04] (let the variance be part of the
chromosome)

m adaptive variance scaling when population is on the slope, ML estimate of variance
when population is in the valley

= anticipate the shift of the mean and move part of the offspring in the anticipated
direction

m  use weighted estimates of distribution parameters

m  do not estimate the distribution of selected points, but rather a distribution of
selected mutation steps

= use a different principle to estimate the parameters of the Gaussian

[OKHKO04] Jiff O¢endsek, Stefan Kern, Nikolaus Hansen, and Petros Koumoutsakos. A mixed bayesian optimization algorithm with variance
adaptation. In Xin Yao, editor, Parallel Problem Solving from Nature — PPSN VIII, pages 352-361. Springer-Verlag, Berlin, 2004.
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Adaptive Variance Scaling

AVS [GBRO6]:

m Enlarge the ML estimate of X by an adaptive coefficient cays

Last week...

m If an improvement was not found in the current generation, we explore too much,
thus decrease cays: Cavg qDECc AVS, UDEC € (0,1).

Features of continuous

spaces
Real-valued EDAs m If an improvement was found in the current generation, we may get better results
I . INC INC
Back to the Roots with increased CAVS: CAVS < n CAVS, 1 > 1.
State of the Art B CAvS is bounded: CAVS_MIN <c AVS < CAVS—MAX
e Current Trend AVS—MIN AVS—MAX

m  Stimulate exploration: if cays < ¢ , reset it to c

e Preventing the
Premature
Convergence

e AVS

e AVS Triggers

o AMS
e Weighted ML
Estimates

e CMA-ES

e Optimization via
Classification

e Remarks on SotA

Summary

[GBR0O6] Jorn Grahl, Peter A. N. Bosman, and Franz Rothlauf. The correlation-triggered adaptive variance scaling IDEA. In Proceedings of the
8th annual conference on Genetic and Evolutionary Computation Conference — GECCO 2006, pages 397-404, New York, NY, USA, 2006.
ACM Press.
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AVS Triggers

With AVS, all improvements increase cays:

m This is not always needed, especially in the valleys.
m  Trigger AVS when on slope; in the valley, use ordinary MLE.
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AVS Triggers

With AVS, all improvements increase cays:

m This is not always needed, especially in the valleys.

m  Trigger AVS when on slope; in the valley, use ordinary MLE.

Correlation trigger for AVS (CT-AVS) [GBRO6]:

s Compute the ranked correlation coefficient of p.d.f. values and function values, p(x;) and f(x;).

m [f the distribution is placed around optimum, function values increase with decreasing p.d.f.,
correlation will be large. Use ordinary MLE.

m If the distribution is on a slope, correlation will be close to zero. Use AVS.
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With AVS, all improvements increase cays:

m This is not always needed, especially in the valleys.
m  Trigger AVS when on slope; in the valley, use ordinary MLE.

Correlation trigger for AVS (CT-AVS) [GBRO6]:

s  Compute the ranked correlation coefficient of p.d.f. values and function values, p(x;) and f(x;).

m [f the distribution is placed around optimum, function values increase with decreasing p.d.f.,
correlation will be large. Use ordinary MLE.

m If the distribution is on a slope, correlation will be close to zero. Use AVS.

Standard-deviation ratio trigger for AVS (SDR-AVS) [BGRO7]:

s Compute xMP as the average of all improving individuals in the current population

m If p(x™P) is “low” (the improvements are found far away from the distribution center), we are
probably on a slope. Use AVS.

m  If p(x™P) is “high” (the improvements are found near the distribution center), we are probably in a
valley. Use ordinary MLE.

[BGR07] Peter A. N. Bosman, Jorn Grahl, and Franz Rothlauf. SDR: A better trigger for adaptive variance scaling in normal EDAs. In GECCO ’07: Proceedings of the 9th
annual conference on Genetic and Evolutionary Computation, pages 492-499, New York, NY, USA, 2007. ACM Press.

[GBRO6] Jorn Grahl, Peter A. N. Bosman, and Franz Rothlauf. The correlation-triggered adaptive variance scaling IDEA. In Proceedings of the 8th annual conference on
Genetic and Evolutionary Computation Conference — GECCO 2006, pages 397-404, New York, NY, USA, 2006. ACM Press.
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Anticipated Mean Shift

Anticipated mean shift (AMS) [BGTO08]:

= AMS is defined as: #*Mft = a(t) — a(t — 1) = When centered around optimum, A"t = 0

=  AMS is an estimate of the direction of and the original approach is unchanged.
improvement m  Selection must choose parent from both the

m  100a% of offspring are moved by certain old and the shifted regions to adjust Z
fraction of AMS: x = x + Spshift suitably.

[BGT08] Peter Bosman, Jorn Grahl, and Dirk Thierens. Enhancing the performance of maximum-likelihood Gaussian EDAs using anticipated mean shift. In
Giinter Rudolph et al., editor, Parallel Problem Solving from Nature — PPSN X, volume 5199 of LNCS, pages 133-143. Springer, 2008.
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Weighted ML Estimates

Account for the values of p.d.f. of the selected parents X, [TT09]:

m assign weights inversely proportional the the values of p.d.f.

Weighted (ML) estimates of parameters

1 | uw = Vil iNl w;x;, where x,, € Xgq|
N
1 1 Ly = % i:1wi(xi — pw) (o — )
~ T x 7 where

B ] 1

O )
ol 1 Vi=) w
} k | | | ‘ | Vo =) w;

[TT09] Fabien Teytaud and Olivier Teytaud. Why one must use reweighting in estimation of distribution algorithms. In GECCO "09: Proceedings of the 11th Annual
conference on Genetic and evolutionary computation, pages 453-460, New York, NY, USA, 2009. ACM.
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CMA-ES

Evolutionary strategy with cov. matrix adaptation [HOO01]

®  (u/p,A)-ES (recombinative, mean-centric)

Last week...

=  model is adapted, not built from scratch each generation

Features of continuous

spaces m accumulates the successful steps over many generations

Real-valued EDAs

Compare:
Back to the Roots

m  Simple Gaussian EDA estimates the distribution of selected individuals (left fig.)

State of the Art

e Current Trend s CMA-ES estimates the distribution of successful mutation steps (right fig.)

e Preventing the

Premature

Convergence

o AVS I | | | I

AN Y AN )

o AVS Triggers ~— S—

o AMS ~1.5 1 -15}

e Weighted ML

Estimates 2t , -2t

o CMA-ES

e Optimization via

Classification -2.5¢ -2.5

e Remarks on SotA x x
Summary =37 % -3t

-3.5 -3.5

[HOO01] Nikolaus Hansen and Andreas Ostermeier. Completely derandomized self-adaptation in evolution strategies. Evolutionary
Computation, 9(2):159-195, 2001.
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Optimization via Classification

Build a quadratic classifier separating the selected and the discarded individuals [PF07]

1 1 1
Of of ol
-1f -1} -1}
-2/ -2} -2}
-3} -3} -3}
4 : -4 : : : -4 : : : :
-2 -1 3 -2 -1 1 2 3 -2 -1 0 1 2 3
m C(lassifier built by modified perceptron 101 Elipsoid Function |
1 1 1 i -- CMA-ES
algorithm or by semidefinite programming e
. . ——SDP
m  Works well for pure quadratic functions .
10 1
m If the selected and discarded individuals are 8
not separable by an ellipsoid, the training © N L T T e
. 0 \,‘ i
procedure fails to create a good model @ 10
® .
1 [¢] . it
= Work in progress; not solved yet g |
10° 5 A ]
107" ‘ ‘ ‘ ‘ ‘
0 1000 2000 3000 4000 5000 6000

Number of Evaluations

[PFO7]  Petr Posik and Vojtéch Franc. Estimation of fitness landscape contours in EAs. In GECCO ’07: Proceedings of the 9th annual conference on Genetic and evolutionary
computation, pages 562-569, New York, NY, USA, 2007. ACM Press.
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Remarks on SotA

= Many techniques to fight premature convergence

= Although based on different principles, some of them converge to similar algorithms

Last week. .. (Welghted MLE, CMA'ES, NES)
fg;i‘ies ofcontinuous — m Only a few sound principles; the most of them are heuristic approaches
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Summary

P. Posik (© 2014 AOMB3EOA: Evolutionary Optimization Algorithms —33 / 34



Last week...

Real-valued EDAs

Features of continuous
spaces

Real-valued EDAs

Back to the Roots

State of the Art

Summary

e Real-valued EDAs

= much less developed than EDAs for binary representation

m the difficulties are caused mainly by

= much more severe effects of the curse of dimensionality

=  many different types of interactions among variables

m  Gaussian distribution used most often, but pure maximum-likelihood estimates are
BAD! Some other remedies are needed.

= Despite of that, EDA (and EAs generally) are able to gain better results then
conventional optimization techniques (line search, Nelder-Mead search, ...)
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