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Black-box optimization

GA vs. EDA

■ GA approach: select — crossover — mutate

■ EDA approach: select — model — sample

EDA with binary representation

■ the best possible (general, flexible) model: joint probability

■ determine the probability of each possible combination of bits

■ 2D − 1 parameters, exponential complexity

■ less precise (less flexible), but simpler probabilistic models
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Binary EDAs

■ Without interactions

■ 1-dimensional marginal probabilities p(X = x)

■ PBIL, UMDA, cGA

■ Pairwise interactions

■ conditional probabilities p(X = x|Y = y)

■ sequences (MIMIC), trees (COMIT), forrest (BMDA)

■ Multivariate interactions

■ conditional probabilities p(X = x|Y = y, Z = z, . . .)

■ Bayesian networks (BOA, EBNA, LFDA)

Continuous EDAs

■ Histograms, mixtures of Gaussian distributions

■ Analysis of a simple Gaussian EDA

■ Remedies for premature convergence

■ Evolutionary strategies

■ AMS, Weighting, CMA-ES, classification
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Binary space

■ Each possible solution is placed in
one of the corners of D-dimensional
hypercube

■ No values lying between them

■ Finite number of elements

■ Not possible to make 2 or more steps
in the same direction
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Real space

■ The space in each dimension need not be bounded

■ Even when bounded by a hypercube, there are infinitely many points between the
bounds (theoretically; in practice we are limited by the numerical precision of given
machine)

■ Infinitely many (even uncountably many) candidate solutions
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How do you define a local neighborhood?

■ . . . as a set of points that do not have the distance to a reference point larger than a
threshold?
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How do you define a local neighborhood?

■ . . . as a set of points that do not have the distance to a reference point larger than a
threshold?

■ The volume of the local neighborhood relative to the volume of the whole space
exponentially drops

■ With increasing dimensionality the neighborhood becomes increasingly more
local
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How do you define a local neighborhood?

■ . . . as a set of points that do not have the distance to a reference point larger than a
threshold?

■ The volume of the local neighborhood relative to the volume of the whole space
exponentially drops

■ With increasing dimensionality the neighborhood becomes increasingly more
local

■ . . . as a set of points that are closest to the reference point and their unification covers
part of the search space of certain (constant) size?
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How do you define a local neighborhood?

■ . . . as a set of points that do not have the distance to a reference point larger than a
threshold?

■ The volume of the local neighborhood relative to the volume of the whole space
exponentially drops

■ With increasing dimensionality the neighborhood becomes increasingly more
local

■ . . . as a set of points that are closest to the reference point and their unification covers
part of the search space of certain (constant) size?

■ The size of the local neighborhood rises with dimensionality of the search space

■ With increasing dimensionality of the search space the neighborhood is
increasingly less local

Another manifestation of the curse of dimensionality!
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2 basic approaches:

■ discretize the representation and use EDA with discrete model

■ use EDA with natively continuous model
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2 basic approaches:

■ discretize the representation and use EDA with discrete model

■ use EDA with natively continuous model

Again, classification based on the interactions complexity they can handle:

■ Without interactions

■ UMDA: model is product of univariate marginal models, only their type is
different

■ Univariate histograms?

■ Univariate Gaussian distribution?

■ Univariate mixture of Gaussians?
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2 basic approaches:

■ discretize the representation and use EDA with discrete model

■ use EDA with natively continuous model

Again, classification based on the interactions complexity they can handle:

■ Without interactions

■ UMDA: model is product of univariate marginal models, only their type is
different

■ Univariate histograms?

■ Univariate Gaussian distribution?

■ Univariate mixture of Gaussians?

■ Pairwise and higher-order interactions:

■ Many different types of interactions!

■ Model which would describe all possible kinds of interaction is virtually
impossible to find!



No Interactions Among Variables
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UMDA: EDA with marginal product model p(x) = ∏
D
d=1 p(xd)

Equi-width hist. Equi-height hist. Max-diff hist. Univar. mix. of Gaussians

0 5 10 15 20
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Equi−width Histogram

0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Equi−height Histogram

0 5 10 15 20
0

0.02

0.04

0.06

0.08

0.1

0.12

Max−diff Histogram

0 5 10 15 20 25
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Mixture of Gaussians

Lessons learned:

■ If a separable function is rotated, UMDA does not work.

■ If there are nonlinear interactions, UMDA does not work.

■ EDAs with univariate marginal product models are not flexible enough!

■ We need EDAs that can handle some kind of interactions!
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Distribution Tree-Building Real-valued EA [Poš04]
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Distribution-Tree model

■ identifies hyper-rectangular areas of the search space with significantly different
densities

■ can handle certain type of interactions
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Distribution Tree-Building Real-valued EA [Poš04]
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Distribution-Tree model

■ identifies hyper-rectangular areas of the search space with significantly different
densities

■ can handle certain type of interactions

Lessons learned:

■ Cannot model promising areas not aligned with the coordinate axes.

■ We need models able to rotate the coordinate system!

[Poš04] Petr Pošı́k. Distribution tree–building real-valued evolutionary algorithm. In Parallel Problem Solving From Nature — PPSN VIII, pages
372–381, Berlin, 2004. Springer. ISBN 3-540-23092-0.
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Algorithm 1: EDA with global coordinate transformation

1 begin
2 Initialize the population.
3 while termination criteria are not met do
4 Select parents from the population.
5 Transform the parents to a space where the variables are independent of each

other.
6 Learn a model of the transformed parents distribution.
7 Sample new individuals in the tranformed space.
8 Tranform the offspring back to the original space.
9 Incorporate offspring into the population.

The individuals are

■ evaluated in the original space (where the fitness function is defined), but

■ bred in the transformed space (where the dependencies are reduced).
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UMDA with equi-height histogram models [Poš05]:

■ No tranformation vs. PCA vs. ICA

■ PCA and ICA are used to find a suitable rotation of the space, not to reduce the space dimensionality
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UMDA with equi-height histogram models [Poš05]:

■ No tranformation vs. PCA vs. ICA

■ PCA and ICA are used to find a suitable rotation of the space, not to reduce the space dimensionality
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Lessons learned:

■ The global information extracted by linear transformations was often not useful.

■ We need non-linear transformations or local transformations!!!

[Poš05] Petr Pošı́k. On the utility of linear transformations for population-based optimization algorithms. In Preprints of the 16th World Congress of the International
Federation of Automatic Control, Prague, 2005. IFAC. CD-ROM.
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Gaussian mixture model (GMM):

P(x) =
K

∑
k=1

αkN (x|µk, Σk) (1)

Normalization and the requirement of
positivity:

K

∑
k=1

αk = 1

0 ≤ αk ≤ 1

Model learned by EM algorithm.

−40

−30

−20

−10

0

10

20

30

40 −20

−10

0

10

20

30

40

50

0

5

x 10
−3



Mixture of Gaussians

Last week. . .

Features of continuous
spaces

Real-valued EDAs

• Taxonomy

• No Interactions
Among Variables

• Distribution Tree
• Global Coordinate
Transformations
• Linear Coordinate
Transformations
•Mixture of
Gaussians
• Non-linear global
transformation

Back to the Roots

State of the Art

Summary
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Gaussian mixture model (GMM):

P(x) =
K

∑
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Lessons learned:

■ GMM is able to model locally linear dependencies.

■ We need to specify the number of components beforehand!

■ If the optimum is not covered by at least one of the Gaussian peaks, the EA will miss
it!



Non-linear global transformation

Last week. . .

Features of continuous
spaces

Real-valued EDAs

• Taxonomy

• No Interactions
Among Variables

• Distribution Tree
• Global Coordinate
Transformations
• Linear Coordinate
Transformations
•Mixture of
Gaussians
• Non-linear global
transformation

Back to the Roots

State of the Art

Summary
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Kernel PCA as the transformation technique in EDA [Poš04]
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Works too well:

■ It reproduces the pattern with high fidelity

■ If the population is not centered around the optimum, the EA will miss it
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Kernel PCA as the transformation technique in EDA [Poš04]
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Works too well:

■ It reproduces the pattern with high fidelity

■ If the population is not centered around the optimum, the EA will miss it

Lessons learned:

■ Continuous EDA must be able to effectively move the whole population!!!

■ Is the MLE principle actually suitable for model building in EAs???

[Poš04] Petr Pošı́k. Using kernel principal components analysis in evolutionary algorithms as an efficient multi-parent crossover operator. In
IEEE 4th International Conference on Intelligent Systems Design and Applications, pages 25–30, Piscataway, 2004. IEEE. ISBN 963-7154-29-9.



Back to the Roots
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Consider a simple EDA with the following settings:

Algorithm 2: Gaussian EDA

1 begin

2 {µ1, Σ
1} ← InitializeModel()

3 g← 1
4 while not TerminationCondition() do
5 X ← SampleGaussian(µg, k · Σg)

6 f ← Evaluate(X)

7 Xsel ← Select(X, f , τ)

8 {µg+1, Σ
g+1} ← LearnGaussian(Xsel)

9 g← g + 1

■ Generational model: no member of the
current population survives to the next one

■ Truncation selection: use τ · N best
individuals to build the model

■ Gaussian distribution: fit the Gaussian
using maximum likelihood (ML) estimate
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Consider a simple EDA with the following settings:

Algorithm 2: Gaussian EDA

1 begin

2 {µ1, Σ
1} ← InitializeModel()

3 g← 1
4 while not TerminationCondition() do
5 X ← SampleGaussian(µg, k · Σg)

6 f ← Evaluate(X)

7 Xsel ← Select(X, f , τ)

8 {µg+1, Σ
g+1} ← LearnGaussian(Xsel)

9 g← g + 1

■ Generational model: no member of the
current population survives to the next one

■ Truncation selection: use τ · N best
individuals to build the model

■ Gaussian distribution: fit the Gaussian
using maximum likelihood (ML) estimate

Gaussian distribution:

N (x|µ, Σ) =
1

(2π)
D
2 |Σ| 12

exp{− 1

2
(x− µ)T

Σ
−1(x− µ)}

Maximum likelihood (ML) estimates of parameters

µML =
1

N

N

∑
n=1

xn, where xn ∈ Xsel ΣML =
1

N − 1

N

∑
n=1

(xn − µML)(xn − µML)
T
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Using Gaussian distribution and ML estimation seems as a good idea. . .

. . . but it is actually very bad optimizer!!!

Two situations:

Population centered around optimum
(population in the valley):

Population far away from optimum
(population on the slope):
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Using Gaussian distribution and ML estimation seems as a good idea. . .

. . . but it is actually very bad optimizer!!!
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Using Gaussian distribution and ML estimation seems as a good idea. . .

. . . but it is actually very bad optimizer!!!

Two situations:

Population centered around optimum
(population in the valley):
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Algorithm fails:

■ the optimum is far away

■ the algorithm is not able to shift the
population towards optimum
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P. Pošı́k c© 2014 A0M33EOA: Evolutionary Optimization Algorithms – 19 / 34

The change of population statistics in 1 generation:

Expected value:

µt+1 = E(X|X > xmin) = µt + σt · d(τ),
where

d(τ) =
φ(Φ−1(τ))

τ
.
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The change of population statistics in 1 generation:

Expected value:

µt+1 = E(X|X > xmin) = µt + σt · d(τ),
where

d(τ) =
φ(Φ−1(τ))

τ
.

Variance:

(σt+1)2 = Var(X|X > xmin) = (σt)2 · c(τ),
where

c(τ) = 1+
Φ−1(1− τ) · φ(Φ−1(τ))

τ
− d(τ)2.
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The change of population statistics in 1 generation:

Expected value:

µt+1 = E(X|X > xmin) = µt + σt · d(τ),
where

d(τ) =
φ(Φ−1(τ))

τ
.

Variance:

(σt+1)2 = Var(X|X > xmin) = (σt)2 · c(τ),
where

c(τ) = 1+
Φ−1(1− τ) · φ(Φ−1(τ))

τ
− d(τ)2.
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Population statistics in generation t:

µt = µ0 + σ0 · d(τ) ·∑t
i=1

√

c(τ)i−1

σt = σ0 ·
√

c(τ)t

Convergence of population statistics:

lim
t→∞

µt = µ0 + σ0 · d(τ) · 1

1−
√

c(τ)

lim
t→∞

σt = 0
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P. Pošı́k c© 2014 A0M33EOA: Evolutionary Optimization Algorithms – 20 / 34

Population statistics in generation t:

µt = µ0 + σ0 · d(τ) ·∑t
i=1

√

c(τ)i−1

σt = σ0 ·
√

c(τ)t

Convergence of population statistics:

lim
t→∞

µt = µ0 + σ0 · d(τ) · 1

1−
√

c(τ)

lim
t→∞

σt = 0

Geometric series



What happens on the slope (cont.)

Last week. . .

Features of continuous
spaces

Real-valued EDAs

Back to the Roots
• Simple Gaussian
EDA
• Premature
convergence

•What happens on
the slope?

• Variance
Enlargement in a
Simple EDA

• Summary of
Continuous EDAs So
Far

State of the Art

Summary
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Population statistics in generation t:
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The distance the population can “travel” in this algorithm is bounded!

Premature convergence!
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Population statistics in generation t:

µt = µ0 + σ0 · d(τ) ·∑t
i=1

√

c(τ)i−1

σt = σ0 ·
√

c(τ)t

Convergence of population statistics:

lim
t→∞

µt = µ0 + σ0 · d(τ) · 1

1−
√

c(τ)

lim
t→∞

σt = 0

Geometric series

The distance the population can “travel” in this algorithm is bounded!

Premature convergence!

Lessons learned:

■ Maximum likelihood estimates are suitable in situations when model fits the fitness
function well (at least in local neighborhood)

■ Gaussian distribution may be suitable in the neighborhood of optimum.

■ Gaussian distribution is not suitable on the slope of fitness function!

■ We need something different from MLE to traverse the slopes!!!
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What happens if we enlarged the MLE estimate of variance with a constant multiplier k? [Poš08]

■ What is the minimal value kmin ensuring that the model will not converge on the slope?

■ What is the maximal value kmax ensuring that the model will not diverge in the valley?

■ Is there a single value k of the multiplier for MLE variance estimate that would ensure a reasonable
behavior in both situations?

■ Does it depend on the type of the single-peak distribution being used?
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■ For Gaussian and “isotropic Gaussian”, allowable k is hard or impossible to find.

■ For isotropic Cauchy, allowable k seems to always exist. . .

■ . . . but this does not guarantee a reasonable behavior.

[Poš08] Petr Pošı́k. Preventing premature convergence in a simple EDA via global step size setting. In Günther Rudolph, editor, Parallel Problem Solving from Nature –
PPSN X, volume 5199 of Lecture Notes in Computer Science, pages 549–558. Springer, 2008.
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Initially, high expectations:

■ Started with structurally simple models for complex objective functions.

■ They did not work, partially because of the discrepancy between the
complexities of the model and the function.
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Initially, high expectations:

■ Started with structurally simple models for complex objective functions.

■ They did not work, partially because of the discrepancy between the
complexities of the model and the function.

■ Used increasingly complex and flexible models.

■ Some improvements were gained, but even the most complex models did not
fulfill the expectations.
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Initially, high expectations:

■ Started with structurally simple models for complex objective functions.

■ They did not work, partially because of the discrepancy between the
complexities of the model and the function.

■ Used increasingly complex and flexible models.

■ Some improvements were gained, but even the most complex models did not
fulfill the expectations.

■ Realized that a fundamental mistake was present all the time:

■ MLE principle builds models which try to reconstruct the points they were build
upon.

■ This allows to focus on already covered areas, but not to shift the population to
unexplored places.
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Initially, high expectations:

■ Started with structurally simple models for complex objective functions.

■ They did not work, partially because of the discrepancy between the
complexities of the model and the function.

■ Used increasingly complex and flexible models.

■ Some improvements were gained, but even the most complex models did not
fulfill the expectations.

■ Realized that a fundamental mistake was present all the time:

■ MLE principle builds models which try to reconstruct the points they were build
upon.

■ This allows to focus on already covered areas, but not to shift the population to
unexplored places.

Current research directions:

■ Aimed at understanding and developing principles critical for successful continuous
EDAs.

■ Studying behavior on simple functions first.

■ Using simple, single-peak models so that the resulting algorithm behave (more
or less) as local search procedures.
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There’s something about the population:
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P. Pošı́k c© 2014 A0M33EOA: Evolutionary Optimization Algorithms – 24 / 34

There’s something about the population:

■ data set forming a basis for offspring creation
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There’s something about the population:

■ data set forming a basis for offspring creation

■ allows for searching the space in several places at once
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There’s something about the population:

■ data set forming a basis for offspring creation

■ allows for searching the space in several places at once
(replaced by restarted local search with adaptive neighborhood)



Current Trend: Population-based Adaptive Local Search

Last week. . .

Features of continuous
spaces

Real-valued EDAs

Back to the Roots

State of the Art

• Current Trend
• Preventing the
Premature
Convergence

• AVS

• AVS Triggers

• AMS
•Weighted ML
Estimates

• CMA-ES
• Optimization via
Classification

• Remarks on SotA

Summary
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There’s something about the population:

■ data set forming a basis for offspring creation

■ allows for searching the space in several places at once
(replaced by restarted local search with adaptive neighborhood)

Hypothesis:

■ The data set (population) is very useful when creating (sometimes implicit) global
model of the fitness landscape or a local model of the neighborhood.

■ It is often better to have a robust adaptive local search procedure and restart it, than
to deal with a complex global search algorithm.
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■ self-adaptation of the variance [OKHK04] (let the variance be part of the
chromosome)

■ adaptive variance scaling when population is on the slope, ML estimate of variance
when population is in the valley

■ anticipate the shift of the mean and move part of the offspring in the anticipated
direction

■ use weighted estimates of distribution parameters

■ do not estimate the distribution of selected points, but rather a distribution of
selected mutation steps

■ use a different principle to estimate the parameters of the Gaussian

[OKHK04] Jiřı́ Očenášek, Stefan Kern, Nikolaus Hansen, and Petros Koumoutsakos. A mixed bayesian optimization algorithm with variance
adaptation. In Xin Yao, editor, Parallel Problem Solving from Nature – PPSN VIII, pages 352–361. Springer-Verlag, Berlin, 2004.
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AVS [GBR06]:

■ Enlarge the ML estimate of Σ by an adaptive coefficient cAVS

■ If an improvement was not found in the current generation, we explore too much,
thus decrease cAVS: cAVS ← ηDECcAVS, ηDEC ∈ (0, 1).

■ If an improvement was found in the current generation, we may get better results
with increased cAVS: cAVS ← ηINCcAVS, ηINC

> 1.

■ cAVS is bounded: cAVS−MIN ≤ cAVS ≤ cAVS−MAX

■ Stimulate exploration: if cAVS < cAVS−MIN, reset it to cAVS−MAX.

[GBR06] Jörn Grahl, Peter A. N. Bosman, and Franz Rothlauf. The correlation-triggered adaptive variance scaling IDEA. In Proceedings of the
8th annual conference on Genetic and Evolutionary Computation Conference – GECCO 2006, pages 397–404, New York, NY, USA, 2006.
ACM Press.
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With AVS, all improvements increase cAVS:

■ This is not always needed, especially in the valleys.

■ Trigger AVS when on slope; in the valley, use ordinary MLE.
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With AVS, all improvements increase cAVS:

■ This is not always needed, especially in the valleys.

■ Trigger AVS when on slope; in the valley, use ordinary MLE.

Correlation trigger for AVS (CT-AVS) [GBR06]:

■ Compute the ranked correlation coefficient of p.d.f. values and function values, p(xi) and f (xi).

■ If the distribution is placed around optimum, function values increase with decreasing p.d.f.,
correlation will be large. Use ordinary MLE.

■ If the distribution is on a slope, correlation will be close to zero. Use AVS.
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With AVS, all improvements increase cAVS:

■ This is not always needed, especially in the valleys.

■ Trigger AVS when on slope; in the valley, use ordinary MLE.

Correlation trigger for AVS (CT-AVS) [GBR06]:

■ Compute the ranked correlation coefficient of p.d.f. values and function values, p(xi) and f (xi).

■ If the distribution is placed around optimum, function values increase with decreasing p.d.f.,
correlation will be large. Use ordinary MLE.

■ If the distribution is on a slope, correlation will be close to zero. Use AVS.

Standard-deviation ratio trigger for AVS (SDR-AVS) [BGR07]:

■ Compute xIMP as the average of all improving individuals in the current population

■ If p(xIMP) is “low” (the improvements are found far away from the distribution center), we are
probably on a slope. Use AVS.

■ If p(xIMP) is “high” (the improvements are found near the distribution center), we are probably in a
valley. Use ordinary MLE.

[BGR07] Peter A. N. Bosman, Jörn Grahl, and Franz Rothlauf. SDR: A better trigger for adaptive variance scaling in normal EDAs. In GECCO ’07: Proceedings of the 9th
annual conference on Genetic and Evolutionary Computation, pages 492–499, New York, NY, USA, 2007. ACM Press.

[GBR06] Jörn Grahl, Peter A. N. Bosman, and Franz Rothlauf. The correlation-triggered adaptive variance scaling IDEA. In Proceedings of the 8th annual conference on
Genetic and Evolutionary Computation Conference – GECCO 2006, pages 397–404, New York, NY, USA, 2006. ACM Press.
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Anticipated mean shift (AMS) [BGT08]:

■ AMS is defined as: µ̂shift = µ̂(t)− µ̂(t− 1)

■ AMS is an estimate of the direction of
improvement

■ 100α% of offspring are moved by certain

fraction of AMS: x = x + δµ̂shift

■ When centered around optimum, µ̂shift = 0
and the original approach is unchanged.

■ Selection must choose parent from both the
old and the shifted regions to adjust Σ

suitably.

MLE
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[BGT08] Peter Bosman, Jörn Grahl, and Dirk Thierens. Enhancing the performance of maximum-likelihood Gaussian EDAs using anticipated mean shift. In
Günter Rudolph et al., editor, Parallel Problem Solving from Nature – PPSN X, volume 5199 of LNCS, pages 133–143. Springer, 2008.
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Anticipated mean shift (AMS) [BGT08]:

■ AMS is defined as: µ̂shift = µ̂(t)− µ̂(t− 1)

■ AMS is an estimate of the direction of
improvement

■ 100α% of offspring are moved by certain

fraction of AMS: x = x + δµ̂shift

■ When centered around optimum, µ̂shift = 0
and the original approach is unchanged.

■ Selection must choose parent from both the
old and the shifted regions to adjust Σ

suitably.

AMS: µ̂shift = (1, 0)T
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[BGT08] Peter Bosman, Jörn Grahl, and Dirk Thierens. Enhancing the performance of maximum-likelihood Gaussian EDAs using anticipated mean shift. In
Günter Rudolph et al., editor, Parallel Problem Solving from Nature – PPSN X, volume 5199 of LNCS, pages 133–143. Springer, 2008.
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Account for the values of p.d.f. of the selected parents Xsel [TT09]:

■ assign weights inversely proportional the the values of p.d.f.
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[TT09] Fabien Teytaud and Olivier Teytaud. Why one must use reweighting in estimation of distribution algorithms. In GECCO ’09: Proceedings of the 11th Annual
conference on Genetic and evolutionary computation, pages 453–460, New York, NY, USA, 2009. ACM.
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Evolutionary strategy with cov. matrix adaptation [HO01]

■ (µ/µ, λ)-ES (recombinative, mean-centric)

■ model is adapted, not built from scratch each generation

■ accumulates the successful steps over many generations

Compare:

■ Simple Gaussian EDA estimates the distribution of selected individuals (left fig.)

■ CMA-ES estimates the distribution of successful mutation steps (right fig.)
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[HO01] Nikolaus Hansen and Andreas Ostermeier. Completely derandomized self-adaptation in evolution strategies. Evolutionary
Computation, 9(2):159–195, 2001.
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P. Pošı́k c© 2014 A0M33EOA: Evolutionary Optimization Algorithms – 31 / 34

Build a quadratic classifier separating the selected and the discarded individuals [PF07]
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■ Classifier built by modified perceptron
algorithm or by semidefinite programming

■ Works well for pure quadratic functions

■ If the selected and discarded individuals are
not separable by an ellipsoid, the training
procedure fails to create a good model

■ Work in progress; not solved yet
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[PF07] Petr Pošı́k and Vojtěch Franc. Estimation of fitness landscape contours in EAs. In GECCO ’07: Proceedings of the 9th annual conference on Genetic and evolutionary
computation, pages 562–569, New York, NY, USA, 2007. ACM Press.
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■ Many techniques to fight premature convergence

■ Although based on different principles, some of them converge to similar algorithms
(weighted MLE, CMA-ES, NES)

■ Only a few sound principles; the most of them are heuristic approaches



Summary
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■ much less developed than EDAs for binary representation

■ the difficulties are caused mainly by

■ much more severe effects of the curse of dimensionality

■ many different types of interactions among variables

■ Gaussian distribution used most often, but pure maximum-likelihood estimates are
BAD! Some other remedies are needed.

■ Despite of that, EDA (and EAs generally) are able to gain better results then
conventional optimization techniques (line search, Nelder-Mead search, . . . )
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