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Intro to EDAs
Black-box optimization
GA vs. EDA
0 GA approach: select — crossover — mutate

O EDA approach: select — model — sample

EDA with binary representation
O the best possible (general, flexible) model: joint probability

O determine the probability of each possible combination of bits
o 2P -1 parameters, exponential complexity

O less precise (less flexible), but simpler probabilistic models
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Content of the lectures
Binary EDAs
0 Without interactions
O 1-dimensional marginal probabilities p(X = x)
0 PBIL, UMDA, cGA
0 Pairwise interactions
O conditional probabilities p(X = x|Y = y)
O sequences (MIMIC), trees (COMIT), forrest (BMDA)
0 Multivariate interactions
O conditional probabilities p(X = x|Y =y, Z =z,...)
O Bayesian networks (BOA, EBNA, LFDA)
Continuous EDAs
O Histograms, mixtures of Gaussian distributions
O Analysis of a simple Gaussian EDA
O Remedies for premature convergence
O Evolutionary strategies
0 AMS, Weighting, CMA-ES, classification
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Features of continuous spaces 5/34

The difference of binary and real space

Binary space 0110 1110
O Each possible solution is placed in one of the corners of
D-dimensional hypercube
No values lying between them 0010 1010
Finite number of elements 0111
O Not possible to make 2 or more steps in the same direction 1011 1111
0011
0101 1101
0001 1001
0100 1100
0000 1000

Real space
O The space in each dimension need not be bounded

O Even when bounded by a hypercube, there are infinitely many points between the bounds (theoretically; in practice we are
limited by the numerical precision of given machine)

O Infinitely many (even uncountably many) candidate solutions
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Local neighborhood
How do you define a local neighborhood?
O ...asasetof points that do not have the distance to a reference point larger than a threshold?
O The volume of the local neighborhood relative to the volume of the whole space exponentially drops
O With increasing dimensionality the neighborhood becomes increasingly more local

O ...asasetof points that are closest to the reference point and their unification covers part of the search space of certain
(constant) size?

O The size of the local neighborhood rises with dimensionality of the search space
O With increasing dimensionality of the search space the neighborhood is increasingly less local

Another manifestation of the curse of dimensionality!

P. Posik (© 2011 AOMB33EOA: Evolutionary Optimization Algorithms -7 / 34



Real-valued EDAs 8/ 34

Taxonomy
2 basic approaches:
O discretize the representation and use EDA with discrete model

O use EDA with natively continuous model

Again, classification based on the interactions complexity they can handle:
0 Without interactions
0 UMDA: model is product of univariate marginal models, only their type is different
O Univariate histograms?
0 Univariate Gaussian distribution?
0 Univariate mixture of Gaussians?
O Pairwise and higher-order interactions:
0 Many different types of interactions!

O Model which would describe all possible kinds of interaction is virtually impossible to find!
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No Interactions Among Variables

UMDA: EDA with marginal product model p(x) = [T5_; p(x,)

Equi-width hist. Equi-height hist. Max-diff hist. Univar. mix. of Gaussians

Equi-width Histogram Equi-height Histogram Max-diff Histogram Mixture of Gaussians

Lessons learned:
O If a separable function is rotated, UMDA does not work.
0 If there are nonlinear interactions, UMDA does not work.
O EDAs with univariate marginal product models are not flexible enough!
m]

We need EDAs that can handle some kind of interactions!
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Distribution Tree
Distribution Tree-Building Real-valued EA [Po304]
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Distribution-Tree model
O identifies hyper-rectangular areas of the search space with significantly different densities
O can handle certain type of interactions

Lessons learned:
0 Cannot model promising areas not aligned with the coordinate axes.

O We need models able to rotate the coordinate system!

[Po304]  Petr Posik. Distribution tree-building real-valued evolutionary algorithm. In Parallel Problem Solving From Nature — PPSN VIII, pages 372-381, Berlin, 2004. Springer. ISBN 3-540-23092-0.
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Global Coordinate Transformations

Algorithm 1: EDA with global coordinate transformation

1 begin

o Initialize the population.

d while termination criteria are not met do

4 Select parents from the population.

5 Transform the parents to a space where the variables are independent of each other.
6 Learn a model of the transformed parents distribution.

u Sample new individuals in the tranformed space.

s Tranform the offspring back to the original space.

o Incorporate offspring into the population.

The individuals are
O evaluated in the original space (where the fitness function is defined), but

O bred in the transformed space (where the dependencies are reduced).
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Linear Coordinate Transformations

UMDA with equi-height histogram models [Po305]:
0 No tranformation vs. PCA vs. ICA

0 PCA and ICA are used to find a suitable rotation of the space, not to reduce the space dimensionality

PC1 PC2 PC1
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Different results: the difference does not matter. Different results: the difference matters!

Lessons learned:
O The global information extracted by linear transformations was often not useful.

O We need non-linear transformations or local transformations!!!

[Po305]  Petr Posik. On the utility of linear transformations for population-based optimization algorithms. In Preprints of the 16th World Congress of the International Federation of Automatic Control, Prague, 2005.
IFAC. CD-ROM.
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Mixture of Gaussians

Gaussian mixture model (GMM):
K
P(x) = ) e (x| i Zo) M
k=1

Normalization and the requirement of positivity:
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Lessons learned:
0 GMM is able to model locally linear dependencies.
O We need to specify the number of components beforehand!

O If the optimum is not covered by at least one of the Gaussian peaks, the EA will miss it!
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Non-linear global transformation
Kernel PCA as the transformation technique in EDA [Po304]

* Training data points
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Works too well:
O It reproduces the pattern with high fidelity

Lessons learned:

Applications, pages 25-30, Piscataway, 2004. IEEE. ISBN 963-7154-29-9.

O If the population is not centered around the optimum, the EA will miss it

0 Continuous EDA must be able to effectively move the whole population!!!

O Is the MLE principle actually suitable for model building in EAs???

[Po304] Petr Posik. Using kernel principal components analysis in evolutionary algorithms as an efficient multi-parent crossover operator. In IEEE 4th International Conference on Intelligent Systems Design and
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Back to the Roots
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16 / 34

Simple Gaussian EDA

Consider a simple EDA with the following settings:

Algorithm 2: Gaussian EDA

1 begin

{p!, L'} < InitializeModel()

g1

while not TerminationCondition() do
X < SampleGaussian(us$, k- Xf)
f ¢ Evaluate(X)
Xsel < Select(X, f, T)
{811,281}  LearnGaussian (X))
g+ g+1

[ o O R @~

S ®

Gaussian distribution:

N (| E) = expl—y(@— )= (@~ )}

1
(2n)?|z)2

Maximum likelihood (ML) estimates of parameters

1 N
HvL = Y x,, where @, € Xl
n=1

0 Generational model: no member of the current
population survives to the next one

0 Truncation selection: use 7 - N best individuals to build
the model

O Gaussian distribution: fit the Gaussian using maximum
likelihood (ML) estimate

P. Posik © 2011
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Premature convergence

... but it is actually very bad optimizer!!!

Two situations:

Population centered around optimum (population in the
valley):
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Algorithm works:
O the optimum is located

O the algorithm focuses the population on the optimum

Using Gaussian distribution and ML estimation seems as a good idea. ..

Population far away from optimum (population on the slope):
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Algorithm fails:

O the optimum is far away

O the algorithm is not able to shift the population towards
optimum
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What happens on the slope?

The change of population statistics in 1 generation:
Expected value:

pt = E(X|X > xmin) = p' + 0" - d(1),

Variance:

(0'™)2 = Var(X|X > Xmin) =
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What happens on the slope (cont.)
Population statistics in generation #:

=

W+ d(r
=00y /e(r)!

. .. Geometric series
Convergence of populatlon statistics:

s gt 0 4 0, .
}L)n;lfl =H +o d(T) 1—+/c(7)
lim ¢! =0
t—o0
The distance the population can “travel” in this algorithm is bounded!

Premature convergence!

Lessons learned:

0 Maximum likelihood estimates are suitable in situations when model fits the fitness function well (at least in local
neighborhood)

O Gaussian distribution may be suitable in the neighborhood of optimum.
O Gaussian distribution is not suitable on the slope of fitness function!

O We need something different from MLE to traverse the slopes!!!
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Variance Enlargement in a Simple EDA

What happens if we enlarged the MLE estimate of variance with a constant multiplier k? [Pos08]
What is the minimal value knin ensuring that the model will not converge on the slope?
What is the maximal value kmax ensuring that the model will not diverge in the valley?

Is there a single value k of the multiplier for MLE variance estimate that would ensure a reasonable behavior in both situations?

O o o o

Does it depend on the type of the single-peak distribution being used?

Gaussian “Isotropic” Gaussian “Isotropic” Cauchy

v
e
-V

10° 10

dim dim dim

O For Gaussian and “isotropic Gaussian”, allowable k is hard or impossible to find.
O For isotropic Cauchy, allowable k seems to always exist. ...

O ...but this does not guarantee a reasonable behavior.

[Po308]  Petr Posik. Preventing premature convergence in a simple EDA via global step size setting. In Giinther Rudolph, editor, Parallel Problem Solving from Nature — PPSN X, volume 5199 of Lecture Notes in
Computer Science, pages 549-558. Springer, 2008.
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Summary of Continuous EDAs So Far
Initially, high expectations:
O Started with structurally simple models for complex objective functions.
O They did not work, partially because of the discrepancy between the complexities of the model and the function.
O Used increasingly complex and flexible models.
0 Some improvements were gained, but even the most complex models did not fulfill the expectations.
O Realized that a fundamental mistake was present all the time:
0 MLE principle builds models which try to reconstruct the points they were build upon.
O This allows to focus on already covered areas, but not to shift the population to unexplored places.

Current research directions:
O Aimed at understanding and developing principles critical for successful continuous EDAs.
0 Studying behavior on simple functions first.

0 Using simple, single-peak models so that the resulting algorithm behave (more or less) as local search procedures.
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State of the Art 23/ 34

Current Trend: Population-based Adaptive Local Search
EP

o

Local search
L ES 4 ..
EP

Es/r
N

Local search Adaptive local search

sl

There’s something about the population:
O data set forming a basis for offspring creation
O allows for searching the space in several places at once

O
(replaced by restarted local search with adaptive neighborhood)
Hypothesis:
O The data set (population) is very useful when creating (sometimes implicit) global model of the fitness landscape or a local
model of the neighborhood.

O Itis often better to have a robust adaptive local search procedure and restart it, than to deal with a complex global search
algorithm.

P. Posik (© 2011 AOMB33EOA: Evolutionary Optimization Algorithms —24 / 34
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O
O

O o o g

Preventing the Premature Convergence

[OKHKO04] Jifi O¢enések, Stefan Kern, Nikolaus Hansen, and Petros Koumoutsakos. A mixed bayesian optimization algorithm with variance adaptation. In Xin Yao, editor, Parallel Problem Solving from Nature —

self-adaptation of the variance [OKHKO04] (let the variance be part of the chromosome)

adaptive variance scaling when population is on the slope, ML estimate of variance when population is in the valley
anticipate the shift of the mean and move part of the offspring in the anticipated direction

use weighted estimates of distribution parameters

do not estimate the distribution of selected points, but rather a distribution of selected mutation steps

use a different principle to estimate the parameters of the Gaussian

PPSN VIII, pages 352-361. Springer-Verlag, Berlin, 2004.
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O
O

O

Adaptive Variance Scaling
AVS [GBRO6]:

[GBRO06]  Jorn Grahl, Peter A. N. Bosman, and Franz Rothlauf. The correlation-triggered adaptive variance scaling IDEA. In Proceedings of the 8th annual conference on Genetic and Evolutionary Computation

Enlarge the ML estimate of I by an adaptive coefficient cays

If an improvement was not found in the current generation, we explore to much, thus decrease cays: cays UDEC

ﬂDEC c (O, l)

If an improvement was found in the current generation, we may get better results with increased cays: cays < UINCC AVS,
INC

s > 1

cavs is bounded: 1 < cays < ¢

CAVS,

AVS—MIN

Conference — GECCO 2006, pages 397-404, New York, NY, USA, 2006. ACM Press.
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AVS Triggers

With AVS, all improvements increase cays:
O This is not always needed, especially in the valleys.

O Trigger AVS when on slope; in the valley, use ordinary MLE.

Correlation trigger for AVS (CT-AVS) [GBRO06]:
O Compute the ranked correlation coefficient of p.d.f. values and function values, p(z;) and f(x;).

O If the distribution is placed around optimum, function values increase with decreasing p.d.f., correlation will be large. Use
ordinary MLE.

O If the distribution is on a slope, correlation will be close to zero. Use AVS.
Standard-deviation ratio trigger for AVS (SDR-AVS) [BGRO07]:
O Compute x™P as the average of all improving individuals in the current population

O If p(x™P) is “low” (the improvements are found far away from the distribution center), we are probably on a slope. Use AVS.

O If p(x™P) is “high” (the improvements are found near the distribution center), we are probably in a valley. Use ordinary MLE.

[BGRO7]  Peter A. N. Bosman, Jérn Grahl, and Franz Rothlauf. SDR: A better trigger for adaptive variance scaling in normal EDAs. In GECCO '07: Proceedings of the 9th annual conference on Genetic and Evolutionary
Computation, pages 492-499, New York, NY, USA, 2007. ACM Press.

[GBRO06]  Jorn Grahl, Peter A. N. Bosman, and Franz Rothlauf. The correlation-triggered adaptive variance scaling IDEA. In Proceedings of the 8th annual conference on Genetic and Evolutionary Computation
Conference ~ GECCO 2006, pages 397-404, New York, NY, USA, 2006. ACM Press.
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Anticipated Mean Shift

Anticipated mean shift (AMS) [BGT08]:
O AMSis defined as: asMft = a(t) — p(t —1) O When centered around optimum, gt = 0 and the

O AMS s an estimate of the direction of improvement original approach is unchanged.

O Selection must choose parent from both the old and the

O 100a% of offspri in fraction of AMS:
004% of offspring are moved by certain fraction of AMS shifted regions to adjust & suitably.

r=x+06 ﬂshift
MLE

x-32+5y°

AMS: pehift = (1,0)T

x-32+5y°

[BGT08] Peter Bosman, Jorn Grahl, and Dirk Thierens. Enhancing the performance of maximum-likelihood Gaussian EDAs using anticipated mean shift. In Giinter Rudolph et al., editor, Parallel Problem Solving
from Nature — PPSN X, volume 5199 of LNCS, pages 133-143. Springer, 2008.
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Weighted ML Estimates
Account for the values of p.d.f. of the selected parents X [TT09]:

O assign weights inversely proportional the the values of p.d.f.

Weighted (ML) estimates of parameters

3 P
— 1 N
Bw = - Z w;x;, where &, € Xgq
2k J 1i=1
Ly = % % w;(@; — pme) (@n — )"
s J 17 2=l
where
>0 x 1 Wi — 1
"op(x)
-1k B Vl = Zwi
Vz = Zwlz
ol i
3 .

[TT09] Fabien Teytaud and Olivier Teytaud. Why one must use reweighting in estimation of distribution algorithms. In GECCO 09: Proceedings of the 11th Annual conference on Genetic and evolutionary
computation, pages 453-460, New York, NY, USA, 2009. ACM.
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CMA-ES

Evolutionary strategy with cov. matrix adaptation [HOO01]
O (p/u,A)-ES (recombinative, mean-centric)
0 model is adapted, not built from scratch each generation
O accumulates the successful steps over many generations
Compare:
O Simple Gaussian EDA estimates the distribution of selected individuals (left fig.)
0 CMA-ES estimates the distribution of successful mutation steps (right fig.)

-1 ‘ ‘ ‘ ‘ ‘ -1 ‘ ‘ ‘ ‘ ‘
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—ol i ot ]
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’ x*, * x
-3 X ’Rx: 1 -3 1
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-3.57 X x. 1 =3.5¢ 1
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4 — —— 4 ——
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[HOO01]  Nikolaus Hansen and Andreas Ostermeier. Completely derandomized self-adaptation in evolution strategies. Evolutionary Computation, 9(2):159-195, 2001.

P. Posik (© 2011 AOMBS33EOA: Evolutionary Optimization Algorithms —30 / 34

14



Optimization via Classification
Build a quadratic classifier separating the selected and the discarded individuals [PF07]
1 1 1
0 0
-1 -1
-2 -2
-3 -3
-4 -4
-2 -1 0 1 2 3 -2 -1 0 2 3
O Classifier built by modified perceptron algorithm or by 10
semidefinite programming - - CMA-ES
. . - - -Perceptron
O Works well for pure quadratic functions ——SDP
If the selected and discarded individuals are not ” 10° 1
separable by an ellipsoid, the training procedure fails to g
create a good model I
2 10° 1
. . 33}
0 Work in progress; not solved yet 8 .
E .
< .
10° + N i
10™° ’ ‘ ‘ ’ ’
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Number of Evaluations
[PF07]  Petr Posik and Vojtéch Franc. Estimation of fitness landscape contours in EAs. In GECCO "07: Proceedings of the 9th annual conference on Genetic and evoll Y comp , pages 562-569, New York, NY,
USA, 2007. ACM Press.
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Remarks on SotA

0 Many techniques to fight premature convergence
O Although based on different principles, some of them converge to similar algorithms (weighted MLE, CMA-ES, NES)

O Only a few sound principles; the most of them are heuristic approaches

P. Posik (© 2011 AOMB33EOA: Evolutionary Optimization Algorithms —32 / 34
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Summary 33/ 34

Real-valued EDAs

0 much less developed than EDAs for binary representation
O the difficulties are caused mainly by
O much more severe effects of the curse of dimensionality
O many different types of interactions among variables
O Gaussian distribution used most often, but pure maximum-likelihood estimates are BAD! Some other remedies are needed.

O Despite of that, EDA (and EAs generally) are able to gain better results then conventional optimization techniques (line search,
Nelder-Mead search, ...)
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