# Estimation-of-Distribution Algorithms. Discrete Domain. 

Petr Pošík<br>Dept. of Cybernetics<br>CTU FEE

## Introduction to EDAs

## GA vs EDA

Content of the lectures
Motivation Example
Discrete EDAs
EDAs without
interactions
Pairwise Interactions
Multivariate Interactions
Scalability Analysis
Conclusions

## Introduction to EDAs

## Genetic Algorithms and Epistasis

From the lecture on epistasis: $x^{\text {best }}=111 \ldots 11, f\left(x^{\text {best }}\right)=40$

GA works:
$\checkmark$ no dependencies


Popsize160


GA fails:
$\checkmark$ deps. exist
$\checkmark$ GA not able to work with them


GA works again:
$\checkmark$ deps. exist
$\checkmark$ GA knows about them


## Genetic Algorithms

```
Algorithm 1: Genetic Algorithm
begin
2 Initialize the population.
3 while termination criteria are not met do
\(4 \quad\) Select parents from the population.
Cross over the parents, create offspring.
Mutate offspring.
Incorporate offspring into the population.
Select \(\rightarrow\) cross over \(\rightarrow\) mutate approach
```


## Conventional GA operators

$\checkmark$ are not adaptive, and
$\checkmark$ cannot (or ususally do not) discover and use the interactions among solution components.

## Genetic Algorithms

```
Algorithm 1: Genetic Algorithm
begin
    Initialize the population.
    while termination criteria are not met do
            Select parents from the population.
            Cross over the parents, create offspring.
            Mutate offspring.
            Incorporate offspring into the population.
```

Select $\rightarrow$ cross over $\rightarrow$ mutate approach

What does an intearction mean?
$\checkmark$ we would like to create a new offspring by mutation
$\checkmark$ we would like the offspring to have better, or at least the same, quality as the parent
$\checkmark$ if we must modify $x_{i}$ together with $x_{j}$ to reach the desired goal
(if it is not possible to improve the solution by modifying either $x_{i}$ or $x_{j}$ only),
then $x_{i}$ interacts with $x_{j}$.

## Genetic Algorithms

```
Algorithm 1: Genetic Algorithm
begin
    Initialize the population.
    while termination criteria are not met do
            Select parents from the population.
            Cross over the parents, create offspring.
            Mutate offspring.
            Incorporate offspring into the population.
```

Select $\rightarrow$ cross over $\rightarrow$ mutate approach

What does an intearction mean?
$\checkmark$ we would like to create a new offspring by mutation
$\checkmark$ we would like the offspring to have better, or at least the same, quality as the parent
$\checkmark$ if we must modify $x_{i}$ together with $x_{j}$ to reach the desired goal
(if it is not possible to improve the solution by modifying either $x_{i}$ or $x_{j}$ only),
then $x_{i}$ interacts with $x_{j}$.
The goal of recombination operators:
$\checkmark$ Intensify the search in areas which contained "good" individuals in previous iterations.

## Genetic Algorithms

```
Algorithm 1: Genetic Algorithm
begin
    Initialize the population.
    while termination criteria are not met do
            Select parents from the population.
            Cross over the parents, create offspring.
            Mutate offspring.
            Incorporate offspring into the population.
```

Select $\rightarrow$ cross over $\rightarrow$ mutate approach

What does an intearction mean?
$\checkmark$ we would like to create a new offspring by mutation
$\checkmark$ we would like the offspring to have better, or at least the same, quality as the parent
$\boldsymbol{\checkmark}$ if we must modify $x_{i}$ together with $x_{j}$ to reach the desired goal
(if it is not possible to improve the solution by modifying either $x_{i}$ or $x_{j}$ only),
then $x_{i}$ interacts with $x_{j}$.
The goal of recombination operators:
$\checkmark$ Intensify the search in areas which contained "good" individuals in previous iterations.
$\checkmark$ Must be able to take the interactions into account.

## Genetic Algorithms

```
Algorithm 1: Genetic Algorithm
begin
    Initialize the population.
    while termination criteria are not met do
            Select parents from the population.
            Cross over the parents, create offspring.
            Mutate offspring.
            Incorporate offspring into the population.
```

Select $\rightarrow$ cross over $\rightarrow$ mutate approach
What does an intearction mean?
$\checkmark$ we would like to create a new offspring by mutation
$\checkmark$ we would like the offspring to have better, or at least the same, quality as the parent
$\boldsymbol{\checkmark}$ if we must modify $x_{i}$ together with $x_{j}$ to reach the desired goal
(if it is not possible to improve the solution by modifying either $x_{i}$ or $x_{j}$ only),
then $x_{i}$ interacts with $x_{j}$.
The goal of recombination operators:
$\checkmark$ Intensify the search in areas which contained "good" individuals in previous iterations.
$\checkmark$ Must be able to take the interactions into account.
$\checkmark$ Why not directly describe the distribution of "good" individuals???

## GA vs EDA



Algorithm 2: Estimation-of-Distribution Alg.
begin
2 Initialize the population.
while termination criteria are not met do
Select parents from the population.
Learn a model of their distribution.
Sample new individuals.
Incorporate offspring into the population.
Select $\rightarrow$ model $\rightarrow$ sample approach

## GA vs EDA



Algorithm 2: Estimation-of-Distribution Alg.
begin
Initialize the population. while termination criteria are not met do

Select parents from the population. Learn a model of their distribution.
Sample new individuals.
Incorporate offspring into the population.
Select $\rightarrow$ model $\rightarrow$ sample approach

## GA vs EDA

```
Algorithm 1: Genetic Algorithm
begin
    Initialize the population.
    while termination criteria are not met do
        Select parents from the population.
        Cross over the parents, create offspring.
        Mutate offspring.
        Incorporate offspring into the population.
Select }->\mathrm{ cross over }->\mathrm{ mutate approach
Algorithm 2: Estimation-of-Distribution Alg.
2
1 begin
2 Initialize the population.
    while termination criteria are not met do
    Select parents from the population.
    Learn a model of their distribution.
Sample new individuals.
Incorporate offspring into the population.
    Select }->\mathrm{ model }->\mathrm{ sample approach
```


## Explicit probabilistic model:

```
\(\checkmark\) principled way of working with dependencies
\(\checkmark\) adaptation ability (different behavior in different stages of evolution)
```


## Names:

```
EDA Estimation-of-Distribution Algorithm
PMBGA Probabilistic Model-Building Genetic Algorithm
IDEA Iterated Density Estimation Algorithm
```

3
4
5
6
7

## Content of the lectures

Introduction to EDAs

## Genetic Algorithms

 GA vs EDA
## EDAs without

interactions
Pairwise Interactions
Multivariate Interactions
Scalability Analysis
Conclusions

1. EDA for discrete domains (e.g. binary)
$\checkmark$ Motivation example
$\checkmark$ Without interactions
$\checkmark$ Pairwise interactions
$\checkmark$ Higher order interactions
2. EDA for real domain (vectors of real numbers)
$\checkmark$ Evolution strategies
$\checkmark$ Histograms
$\checkmark$ Gaussian distribution and its mixtures

## Introduction to EDAs

## Motivation Example

## Example

Selection, Modeling, Sampling
UMDA Behaviour for OneMax problem What about a different fitness?
UMDA behaviour on concatanated traps
What can be done about traps?
Good news!
Discrete EDAs
EDAs without interactions

Pairwise Interactions
Multivariate Interactions
Scalability Analysis
Conclusions

## Motivation Example

## Example

Introduction to EDAs

## Motivation Example

## Example

Selection, Modeling, Sampling UMDA Behaviour for OneMax problem What about a different fitness?
UMDA behaviour on concatanated traps What can be done about traps?
Good news!
Discrete EDAs
EDAs without interactions

## 5-bit OneMax (CountOnes) problem:

$\checkmark f_{\text {Dx1bitOneMax }}(\mathbf{x})=\sum_{d=1}^{D} x_{d}$
$\checkmark$ Optimum: 11111, fitness: 5
Algorithm: Univariate Marginal Distribution Algorithm (UMDA)
$\checkmark$ Population size: 6
$\checkmark$ Tournament selection: $t=2$
$\checkmark$ Model: vector of probabilities $p=\left(p_{1}, \ldots, p_{D}\right)$
$\boldsymbol{x}$ each $p_{d}$ is the probability of observing 1 at $d$ th element
$\checkmark$ Model learning:
$x$ compute $p$ from selected individuals
$\checkmark$ Model sampling:
$\boldsymbol{x}$ generate 1 on $d$ th position with probability $p_{d}$ (independently of other positions)

## Selection, Modeling, Sampling

Old population:
\(\left.\begin{array}{|ll|}\hline 11001 \& (3) <br>
00010 \& (1) <br>
11101 \& (4) <br>
10111 \& (4) <br>
00001 \& (1) <br>
10010 \& (2) <br>

\hline\end{array}\right]\)| 11101 | $(4)$ | vs. | 10111 | $(4)$ |
| :--- | :--- | :--- | :--- | :--- |
| 10111 | $(4)$ | vs. | 11101 | $(4)$ |
| 11101 | $(4)$ | vs. | 00001 | $(1)$ |
| 10010 | $(2)$ | vs. | 00010 | $(1)$ |
| 00010 | $(1)$ | vs. | 00010 | $(1)$ |
| 00010 | $(1)$ | vs. | 11001 | $(3)$ |



## UMDA Behaviour for OneMax problem

Introduction to EDAs
Motivation Example Example
Selection, Modeling, Sampling

## UMDA Behaviour for

OneMax problem
What about a different fitness?
UMDA behaviour on concatanated traps
What can be done about traps?
Good news!
Discrete EDAs
EDAs without interactions

Pairwise Interactions
Multivariate Interactions
Scalability Analysis Conclusions

$\checkmark 1$ s are better then 0s on average, selection increases the proportion of 1s
$\checkmark$ Recombination preserves and combines 1 s , the ratio of 1 s increases over time
$\checkmark$ If we have many 1 s in population, we cannot miss the optimum

The number of evaluations needed for reliable convergence:

| Algorithm | Nr. of evaluations |
| :--- | :--- |
| UMDA | $\mathcal{O}(D \ln D)$ |
| Hill-Climber | $\mathcal{O}(D \ln D)$ |
| GA with uniform xover | approx. $\mathcal{O}(D \ln D)$ |
| GA with 1-point xover | a bit slower |

UMDA behaves similarly to GA with uniform crossover!

## What about a different fitness?

Introduction to EDAs

## Motivation Example

Example
Selection, Modeling, Sampling
UMDA Behaviour for OneMax problem

## What about a different

fitness?
UMDA behaviour on concatanated traps What can be done about traps?
Good news!
Discrete EDAs
EDAs without interactions

## For OneMax function:

$\checkmark$ UMDA works well, all the bits probably eventually converge to the right value.
Will UMDA be similarly successful for other fitness functions?
$\checkmark$ Well, .no. :-(

## Problem: Concatanated 5-bit traps

$$
\begin{aligned}
f & =f_{\text {trap }}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)+ \\
& +f_{\text {trap }}\left(x_{6}, x_{7}, x_{8}, x_{9}, x_{10}\right)+ \\
& +\ldots
\end{aligned}
$$

The trap function is defined as

$$
f_{\text {trap }}(\mathbf{x})= \begin{cases}5 & \text { if } u(\mathbf{x})=5 \\ 4-u(\mathbf{x}) & \text { otherwise }\end{cases}
$$

where $u(\mathbf{x})$ is the so called unity function and returns the number of 1 s in $\mathbf{x}$ (it is
 actually the One Max function).

## UMDA behaviour on concatanated traps

Introduction to EDAs

## Motivation Example

## Example

Selection, Modeling, Sampling
UMDA Behaviour for OneMax problem What about a different fitness?
UMDA behaviour on concatanated traps What can be done about traps?
Good news!
Discrete EDAs
EDAs without interactions

## Traps:

$\checkmark$ Optimum in 111111... 1
$\checkmark$ But $f_{\text {trap }}(0 * * * *)=2$ while $f_{\text {trap }}(1 * * * *)=1.375$
$\checkmark$ 1-dimensional probabilities lead the GA to the wrong way!
$\checkmark$ Exponentially increasing population size is needed, otherwise GA will not find optimum reliably.


## What can be done about traps?

Introduction to EDAs

## Motivation Example

## Example

Selection, Modeling, Sampling
UMDA Behaviour for OneMax problem What about a different fitness?
UMDA behaviour on concatanated traps

## What can be done about

 traps?Discrete EDAs
EDAs without interactions

The $f_{\text {trap }}$ function is deceptive:
$\checkmark$ Statistics over $1 * * * *$ and $0 * * * *$ do not lead us to the right solution
$\checkmark$ The same holds for statistics over $11 * * *$ and $00 * * *, 111 * *$ and $000 * *, 1111 *$ and 0000*

## What can be done about traps?

Introduction to EDAs
Motivation Example

## Example

Selection, Modeling, Sampling
UMDA Behaviour for OneMax problem What about a different fitness? UMDA behaviour on concatanated traps

The $f_{\text {trap }}$ function is deceptive:
$\checkmark$ Statistics over $1 * * * *$ and $0 * * * *$ do not lead us to the right solution
$\checkmark$ The same holds for statistics over $11 * * *$ and $00 * * *, 111 * *$ and $000 * *, 1111 *$ and 0000*
$\checkmark$ Harder than the needle-in-the-haystack problem:
x regular haystack simply does not provide any information, where to search for the needle
x $\quad f_{\text {trap-haystack }}$ actively lies to you-it points you to the wrong part of the haystack

## What can be done about traps?

Introduction to EDAs

## Motivation Example

## Example

Selection, Modeling, Sampling
UMDA Behaviour for OneMax problem What about a different fitness?
UMDA behaviour on concatanated traps

The $f_{\text {trap }}$ function is deceptive:
$\checkmark$ Statistics over $1 * * * *$ and $0 * * * *$ do not lead us to the right solution
$\checkmark$ The same holds for statistics over $11 * * *$ and $00 * * *, 111 * *$ and $000 * *, 1111 *$ and 0000*
$\checkmark$ Harder than the needle-in-the-haystack problem:
x regular haystack simply does not provide any information, where to search for the needle
x $f_{\text {trap-haystack }}$ actively lies to you-it points you to the wrong part of the haystack
$\checkmark$ But: $f_{\text {trap }}(00000)<f_{\text {trap }}(11111), 11111$ will be better than 00000 on average
$\checkmark 5 b i t$ statistics should work for 5bit traps in the same way as 1 bit statistics work for OneMax problem!

## What can be done about traps?

Introduction to EDAs

## Motivation Example

## Example

Selection, Modeling, Sampling UMDA Behaviour for OneMax problem What about a different fitness?
UMDA behaviour on concatanated traps

The $f_{\text {trap }}$ function is deceptive:
$\checkmark$ Statistics over $1 * * * *$ and $0 * * * *$ do not lead us to the right solution
$\checkmark$ The same holds for statistics over $11 * * *$ and $00 * * *, 111 * *$ and $000 * *, 1111 *$ and 0000*
$\checkmark$ Harder than the needle-in-the-haystack problem:
$\boldsymbol{x}$ regular haystack simply does not provide any information, where to search for the needle
x $f_{\text {trap-haystack }}$ actively lies to you-it points you to the wrong part of the haystack
$\checkmark$ But: $f_{\text {trap }}(00000)<f_{\text {trap }}(11111), 11111$ will be better than 00000 on average
$\checkmark$ 5bit statistics should work for 5bit traps in the same way as 1 bit statistics work for OneMax problem!

Model learning:
$\checkmark$ build model for each 5-tuple of bits
$\checkmark$ compute $p(00000), p(00001), \ldots, p(11111)$,

## What can be done about traps?

Introduction to EDAs

## Motivation Example

## Example

Selection, Modeling, Sampling UMDA Behaviour for OneMax problem What about a different fitness?
UMDA behaviour on concatanated traps

The $f_{\text {trap }}$ function is deceptive:
$\checkmark$ Statistics over $1 * * * *$ and $0 * * * *$ do not lead us to the right solution
$\checkmark$ The same holds for statistics over $11 * * *$ and $00 * * *, 111 * *$ and $000 * *, 1111 *$ and 0000*
$\checkmark$ Harder than the needle-in-the-haystack problem:
x regular haystack simply does not provide any information, where to search for the needle
x $f_{\text {trap-haystack }}$ actively lies to you-it points you to the wrong part of the haystack
$\checkmark$ But: $f_{\text {trap }}(00000)<f_{\text {trap }}(11111), 11111$ will be better than 00000 on average
$\checkmark$ 5bit statistics should work for 5bit traps in the same way as 1 bit statistics work for OneMax problem!

Model learning:
$\checkmark$ build model for each 5-tuple of bits
$\checkmark$ compute $p(00000), p(00001), \ldots, p(11111)$,
Model sampling:
$\checkmark$ Each 5-tuple of bits is generated independently
$\checkmark$ Generate 00000 with probability $p(00000), 00001$ with probability $p(00001), \ldots$

## Good news!

Good statistics work great!


| Algorithm | Nr. of evaluations |
| :--- | :--- |
| UMDA with 5bit BB | $\mathcal{O}(D \ln D)($ WOW!) |
| Hill-Climber | $\mathcal{O}\left(D^{k} \ln D\right), k=5$ |
| GA with uniform xover | approx. $\mathcal{O}\left(2^{D}\right)$ |
| GA with 1-point xover | similar to unif. xover |

## What shall we do next?

If we were able to
$\checkmark$ find good statistics with a small overhead, and
$\checkmark$ use them in the UMDA framework, we would be able to solve order- $k$ separable problems using $\mathcal{O}\left(D^{2}\right)$ evaluations.
$\checkmark \ldots$ and there are many problems of this type.
The problem solution is closely related to the so-called linkage learning, i.e. discovering and using statistical dependencies among variables.

## Discrete EDAs

## Discrete EDAs: Overview

Introduction to EDAs Motivation Example

Discrete EDAs Discrete EDAs: Overview
EDAs without interactions

1. Overview:
(a) Univariate models (without interactions)
(b) Bivariate models (pairwise dependencies)
(c) Multivariate models (higher order interactions)
2. Conclusions

# EDAs without interactions 

## EDAs without interactions

1. Population-based incremental learning (PBIL)

Baluja, 1994
2. Univariate marginal distribution algorithm (UMDA) Mühlenbein and Paaß, 1996
3. Compact genetic algorithm (cGA)

Harik, Lobo, Goldberg, 1998

Similarities:
$\checkmark$ all of them use a vector of probabilities

Differences:
$\checkmark$ PBIL and cGA do not use population (only the vector $p$ ); UMDA does
$\checkmark$ PBIL and cGA use different rules for the adaptation of $p$

Advantages:
$\checkmark$ Simplicity
$\checkmark$ Speed
$\checkmark$ Simple simulation of large populations

Limitations:
$\checkmark$ Solves reliably only order-1 decomposable problems

Introduction to EDAs
Motivation Example Discrete EDAs
EDAs without interactions

From single bits to pairwise models
Example with pairwise dependencies: dependency tree Example of dependency tree learning
Dependency tree: probabilities EDAs with pairwise interactions Summary

Multivariate Interactions Scalability Analysis Conclusions

EDAs with Pairwise Interactions

## From single bits to pairwise models

Introduction to EDAs
Motivation Example

## Discrete EDAs

EDAs without $\underline{\text { interactions }}$

## Pairwise Interactions

 From single bits to pairwise modelsExample with pairwise dependencies: dependency tree Example of dependency tree learning
Dependency tree: probabilities EDAs with pairwise interactions
Summary
Multivariate Interactions
Scalability Analysis
Conclusions

How to describe two positions together?
$\checkmark$ Using the joint probability distribution:


Number of free parameters:

$$
p(A, B)
$$

|  |  | B |  |
| :---: | :---: | :---: | :---: |
|  |  | 0 | 1 |
| A | 0 | $p(0,0)$ | $p(0,1)$ |
|  | 1 | $p(1,0)$ | $p(1,1)$ |

$\checkmark$ Using statistical dependence:

$$
\begin{array}{ll}
\text { Number of free parameters: } & p(A, B)=p(B \mid A) \cdot p(A): \\
& p(B=1 \mid A=0) \\
& p(B=1 \mid A=1) \\
& p(A=1)
\end{array}
$$

Question: what is the number of parameters in case of the following models?


## From single bits to pairwise models

Introduction to EDAs
Motivation Example

## Discrete EDAs

EDAs without $\underline{\text { interactions }}$

## Pairwise Interactions

 From single bits to pairwise modelsExample with pairwise dependencies: dependency tree Example of dependency tree learning
Dependency tree: probabilities EDAs with pairwise interactions
Summary
Multivariate Interactions
Scalability Analysis
Conclusions

How to describe two positions together?
$\checkmark$ Using the joint probability distribution:


Number of free parameters: 3

$$
p(A, B)
$$

|  |  | B |  |
| :---: | :---: | :---: | :---: |
|  |  | 0 | 1 |
| A | 0 | $p(0,0)$ | $p(0,1)$ |
|  | 1 | $p(1,0)$ | $p(1,1)$ |

$\checkmark$ Using statistical dependence:

$$
\begin{array}{ll}
\text { Number of free parameters: } & p(A, B)=p(B \mid A) \cdot p(A): \\
& p(B=1 \mid A=0) \\
& p(B=1 \mid A=1) \\
& p(A=1)
\end{array}
$$

Question: what is the number of parameters in case of the following models?


## From single bits to pairwise models

Introduction to EDAs
Motivation Example

## Discrete EDAs

EDAs without $\underline{\text { interactions }}$

## Pairwise Interactions

 From single bits to pairwise modelsExample with pairwise dependencies: dependency tree Example of dependency tree learning
Dependency tree: probabilities EDAs with pairwise interactions
Summary
Multivariate Interactions
Scalability Analysis
Conclusions

How to describe two positions together?
$\checkmark$ Using the joint probability distribution:


Number of free parameters: 3

$$
p(A, B)
$$

|  |  | B |  |
| :---: | :---: | :---: | :---: |
|  |  | 0 | 1 |
| A | 0 | $p(0,0)$ | $p(0,1)$ |
|  | 1 | $p(1,0)$ | $p(1,1)$ |

$\checkmark$ Using statistical dependence:

$$
\begin{array}{cl} 
& p(A, B)=p(B \mid A) \cdot p(A): \\
\text { Number of free parameters: } 3 & p(B=1 \mid A=0) \\
& p(B=1 \mid A=1) \\
& p(A=1)
\end{array}
$$

Question: what is the number of parameters in case of the following models?


## Example with pairwise dependencies: dependency tree

Introduction to EDAs
$\checkmark$ Nodes: binary variables (loci of chromozome)
$\checkmark$ Edges: dependencies among variables
$\checkmark$ Features:
$x$ Each node depends at most on 1 other node
$x$ Graph does not contain cycles
$x$ Graph is connected
Learning the structure of dependency tree:

1. Score the edges using mutual information:

$$
I(X, Y)=\sum_{x, y} p(x, y) \cdot \log \frac{p(x, y)}{p(x) p(y)}
$$

2. Use any algorithm to determine the maximum spanning tree of the graph, e.g. Prim (1957)
(a) Start building the tree from any node
(b) Add such a node that is connected to the tree by the edge with maximum score

## Example of dependency tree learning



Example of dependency tree learning


Example of dependency tree learning


Example of dependency tree learning


Example of dependency tree learning


Example of dependency tree learning


## Dependency tree: probabilities

Introduction to EDAs

## Motivation Example

## Discrete EDAs

EDAs without interactions Pairwise Interactions From single bits to pairwise models Example with pairwise dependencies: dependency tree Example of dependency tree learning

## Dependency tree:

 probabilitiesEDAs with pairwise
interactions
Summary
Multivariate Interactions
Scalability Analysis

## Conclusions



| Probability | Number of params |
| :--- | :--- |
| $p\left(X_{1}=1\right)$ |  |
| $p\left(X_{4}=1 \mid X_{1}\right)$ |  |
| $p\left(X_{5}=1 \mid X_{4}\right)$ |  |
| $p\left(X_{2}=1 \mid X_{4}\right)$ |  |
| $p\left(X_{3}=1 \mid X_{2}\right)$ |  |
| Whole model |  |

## Dependency tree: probabilities

Introduction to EDAs

## Motivation Example

## Discrete EDAs

EDAs without interactions Pairwise Interactions From single bits to pairwise models Example with pairwise dependencies: dependency tree Example of dependency tree learning

## Dependency tree:

 probabilitiesEDAs with pairwise
interactions
Summary
Multivariate Interactions
Scalability Analysis

## Conclusions



| Probability | Number of params |
| :--- | :---: |
| $p\left(X_{1}=1\right)$ | 1 |
| $p\left(X_{4}=1 \mid X_{1}\right)$ |  |
| $p\left(X_{5}=1 \mid X_{4}\right)$ |  |
| $p\left(X_{2}=1 \mid X_{4}\right)$ |  |
| $p\left(X_{3}=1 \mid X_{2}\right)$ |  |
| Whole model |  |

## Dependency tree: probabilities

Introduction to EDAs

## Motivation Example

## Discrete EDAs

EDAs without interactions Pairwise Interactions From single bits to pairwise models Example with pairwise dependencies: dependency tree Example of dependency tree learning

## Dependency tree:

 probabilitiesEDAs with pairwise
interactions
Summary
Multivariate Interactions
Scalability Analysis

## Conclusions



| Probability | Number of params |
| :--- | :---: |
| $p\left(X_{1}=1\right)$ | 1 |
| $p\left(X_{4}=1 \mid X_{1}\right)$ | 2 |
| $p\left(X_{5}=1 \mid X_{4}\right)$ |  |
| $p\left(X_{2}=1 \mid X_{4}\right)$ |  |
| $p\left(X_{3}=1 \mid X_{2}\right)$ |  |
| Whole model |  |

## Dependency tree: probabilities

Introduction to EDAs

## Motivation Example

## Discrete EDAs

EDAs without interactions Pairwise Interactions From single bits to pairwise models Example with pairwise dependencies: dependency tree Example of dependency tree learning

## Dependency tree:

 probabilitiesEDAs with pairwise
interactions
Summary
Multivariate Interactions
Scalability Analysis

## Conclusions



| Probability | Number of params |
| :--- | :---: |
| $p\left(X_{1}=1\right)$ | 1 |
| $p\left(X_{4}=1 \mid X_{1}\right)$ | 2 |
| $p\left(X_{5}=1 \mid X_{4}\right)$ | 2 |
| $p\left(X_{2}=1 \mid X_{4}\right)$ |  |
| $p\left(X_{3}=1 \mid X_{2}\right)$ |  |
| Whole model |  |

## Dependency tree: probabilities

Introduction to EDAs

## Motivation Example

## Discrete EDAs

EDAs without interactions Pairwise Interactions From single bits to pairwise models Example with pairwise dependencies: dependency tree Example of dependency tree learning

## Dependency tree:

 probabilitiesEDAs with pairwise
interactions
Summary
Multivariate Interactions
Scalability Analysis

## Conclusions



| Probability | Number of params |
| :--- | :---: |
| $p\left(X_{1}=1\right)$ | 1 |
| $p\left(X_{4}=1 \mid X_{1}\right)$ | 2 |
| $p\left(X_{5}=1 \mid X_{4}\right)$ | 2 |
| $p\left(X_{2}=1 \mid X_{4}\right)$ | 2 |
| $p\left(X_{3}=1 \mid X_{2}\right)$ | 2 |
| Whole model |  |

## Dependency tree: probabilities

Introduction to EDAs

## Motivation Example

## Discrete EDAs

EDAs without interactions Pairwise Interactions From single bits to pairwise models Example with pairwise dependencies: dependency tree Example of dependency tree learning

## Dependency tree:

 probabilitiesEDAs with pairwise
interactions
Summary
Multivariate Interactions
Scalability Analysis

## Conclusions



| Probability | Number of params |
| :--- | :---: |
| $p\left(X_{1}=1\right)$ | 1 |
| $p\left(X_{4}=1 \mid X_{1}\right)$ | 2 |
| $p\left(X_{5}=1 \mid X_{4}\right)$ | 2 |
| $p\left(X_{2}=1 \mid X_{4}\right)$ | 2 |
| $p\left(X_{3}=1 \mid X_{2}\right)$ | 2 |
| Whole model | 9 |

## EDAs with pairwise interactions

Introduction to EDAs

## Motivation Example

## Discrete EDAs

EDAs without interactions Pairwise Interactions From single bits to pairwise models
Example with pairwise dependencies: dependency tree Example of dependency tree learning
Dependency tree: probabilities

Multivariate Interactions
Scalability Analysis
Conclusions

1. MIMIC (sequences)
$\checkmark$ Mutual Information Maximization for Input Clustering
$\boldsymbol{\sim}$ de Bonet et al., 1996

2. COMIT (trees)
$\checkmark$ Combining Optimizers with Mutual Information Trees
$\checkmark$ Baluja and Davies, 1997
3. BMDA (forrest)
$\checkmark$ Bivariate Marginal Distribution Algorithm
$\checkmark$ Pelikan and Mühlenbein, 1998



## Summary

Introduction to EDAs
Motivation Example

## Discrete EDAs

EDAs without interactions

Pairwise Interactions
From single bits to pairwise models Example with pairwise dependencies: dependency tree Example of dependency tree learning
Dependency tree: probabilities EDAs with pairwise interactions

## Summary

Multivariate Interactions Scalability Analysis Conclusions
$\checkmark$ Advantages:
$x$ Still simple
$x$ Still fast
x Can learn something about the structure
$\checkmark$ Limitations:
x Reliably solves only order-2 decomposable problems

# EDAs with Multivariate Interactions 

## ECGA

Extended Compact GA, Harik, 1999
Marginal Product Model (MPM)
$\checkmark$ Variables are treated in groups
$\checkmark$ Variables in different groups are considered statistically independent
$\checkmark$ Each group is modeled by its joint probability distribution
$\checkmark$ The algorithm adaptively searches for the groups during evolution

| Problem | Ideal group configuration |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| OneMax | $[1][2][3][4][5][6][7][8][9][10]$ |  |  |  |  |
| 5bitTraps | $[1$ | 2 | 3 | 4 | $5][6$ |
| 1 | 7 | 8 | 9 | 10 |  |

## ECGA

Extended Compact GA, Harik, 1999
Marginal Product Model (MPM)
$\checkmark$ Variables are treated in groups
$\checkmark$ Variables in different groups are considered statistically independent
$\checkmark$ Each group is modeled by its joint probability distribution
$\checkmark$ The algorithm adaptively searches for the groups during evolution

| Problem | Ideal group configuration |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :---: |
| OneMax | $[1][2][3][4][5][6][7][8][9][10]$ |  |  |  |  |  |
| 5bitTraps | $[1$ | 2 | 3 | 4 | $5][6$ |  |

Learning the structure

1. Evaluation metric: Minimum Description Length (MDL)
2. Search procedure: greedy
(a) Start with each variable belonging to its own group
(b) Perform such a join of two groups which improves the score best
(c) Finish if no join improves the score

## ECGA: Evaluation metric

## ECGA: Evaluation

metric

## Minimum description length:

Minimize the number of bits needed to store the model and the data encoded using the model

$$
D L(\text { Model, Data })=D L_{\text {Model }}+D L_{\text {Data }}
$$

## Model description length:

Each group $g$ has $|g|$ dimensions, i.e. $2^{|g|}-1$ frequencies, each of them can take on values up to $N$

$$
D L_{\text {Model }}=\log N \sum_{g \in G}\left(2^{|g|}-1\right)
$$

## Data description length using the model:

Defined using the entropy of marginal distributions ( $X_{g}$ is $|g|$-dimensional random vector, $x_{g}$ is its realization):

$$
D L_{\text {Data }}=N \sum_{g \in G} h\left(X_{g}\right)=-N \sum_{g \in G} \sum_{x_{g}} p\left(X_{g}=x_{g}\right) \log p\left(X_{g}=x_{g}\right)
$$

## BOA

## Bayesian Optimization Algorithm: Pelikán, Goldberg, Cantù-Paz, 1999

Bayesian network (BN)
$\checkmark$ Conditional dependencies (instead groups)
$\checkmark$ Sequence, tree, forrest - special cases of BN
$\checkmark$ For trap function:

$\checkmark$ The same model used independently in
x Estimation of Bayesian Network Alg. (EBNA), Etxeberria et al., 1999
x Learning Factorized Density Alg. (LFDA), Mühlenbein et al., 1999

## BOA: Learning the structure

Introduction to EDAs Motivation Example

## Discrete EDAs

1. Evaluation metric:
$\checkmark$ Bayesian-Dirichlet metric, or
$\checkmark$ Bayesian information criterion (BIC)
2. Search procedure: greedy
(a) Start with graph with no edges (univariate marginal product model)
(b) Perform one of the following operations, choose the one which improves the score best
$\checkmark$ Add an edge
$\checkmark$ Delete an edge
$\checkmark$ Reverse an edge
(c) Finish if no operation improves the score

BOA solves order- $k$ decomposable problems in less then $\mathcal{O}\left(D^{2}\right)$ evaluations!

$$
n_{\text {evals }}=\mathcal{O}\left(D^{1.55}\right) \text { to } \mathcal{O}\left(D^{2}\right)
$$

## Introduction to EDAs

Motivation Example Discrete EDAs
EDAs without interactions

Pairwise Interactions
Multivariate Interactions
Scalability Analysis
Test functions
Test function (cont.) Scalability analysis OneMax
Non-dec. Equal Pairs Decomp. Equal Pairs Non-dec. Sliding XOR Decomp. Sliding XOR Decomp. Trap
Model structure during evolution

Conclusions

## Scalability Analysis

## Test functions

One Max:

$$
f_{D \times 1 \mathrm{bitOneMax}}(\mathbf{x})=\sum_{d=1}^{D} x_{d}
$$

Equal Pairs:

$$
f_{\text {DbitEqualPairs }}(\mathbf{x})=1+\sum_{d=2}^{D} f_{\text {EqualPair }}\left(x_{d-1}, x_{d}\right)
$$

$$
f_{\text {EqualPair }}\left(x_{1}, x_{2}\right)= \begin{cases}1 & \text { if } x_{1}=x_{2} \\ 0 & \text { if } x_{1} \neq x_{2}\end{cases}
$$

## Sliding XOR:

$$
\begin{aligned}
f_{\text {DbitSlidingXOR }}(\mathbf{x}) & =1+f_{\text {AllEqual }}(\mathbf{x})+ \\
& +\sum_{d=3}^{D} f_{\mathrm{XOR}}\left(x_{d-2}, x_{d-1}, x_{d}\right)
\end{aligned}
$$

## Trap:

$$
f_{D \text { bitTrap }}(\mathbf{x})= \begin{cases}D & \text { if } u(\mathbf{x})=D \\ D-1-u(\mathbf{x}) & \text { otherwise }\end{cases}
$$

$$
\begin{aligned}
f_{\text {Allequal }}(\mathbf{x}) & = \begin{cases}1 & \text { if } \mathbf{x}=(000 \ldots 0) \\
1 & \text { if } \mathbf{x}=(111 \ldots 1) \\
0 & \text { otherwise }\end{cases} \\
f_{\mathrm{XOR}}\left(x_{1}, x_{2}, x_{3}\right) & = \begin{cases}1 & \text { if } x_{1} \oplus x_{2}=x_{3} \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

## Concatenated short basis functions:

$$
f_{N \times K b i t B a s i s F u n c t i o n ~}=\sum_{k=1}^{K} f_{\text {BasisFunction }}\left(x_{K(k-1)+1}, \ldots, x_{K k}\right)
$$

## Test function (cont.)

1. $f_{40 x 1 b i t O n e M a x}$
$\checkmark$ order-1 decomposable function, no interactions
2. $f_{1 \times 40 \text { bitEqualPairs }}$
$\checkmark$ non-decomposable function
$\checkmark$ weak interactions: optimal setting of each bit depends on the value of the preceding bit
3. $f_{8 \times 5 \text { bitEqualPairs }}$
$\boldsymbol{\checkmark}$ order-5 decomposable function
4. $f_{1 \times 40 \mathrm{bitS} \text { SidingXOR }}$
$\checkmark$ non-decomposable function
$\checkmark$ stronger interactions: optimal setting of each bit depends on the value of the 2 preceding bits
5. $f_{8 \times 5 \text { bitSliding XOR }}$
$\boldsymbol{\checkmark}$ order-5 decomposable function
6. $f_{8 \times 5 \text { bitTrap }}$
$\checkmark$ order-5 decomposable function
$\boldsymbol{\checkmark}$ interactions in each 5-bit block are very strong, the basis function is deceptive

## Scalability analysis

Introduction to EDAs

## Motivation Example

## Discrete EDAs

EDAs without interactions

## Facts:

$\boldsymbol{\checkmark}$ using small population size, population-based optimizers can solve only easy problems
$\boldsymbol{\checkmark}$ increasing the population size, the optimizers can solve increasingly harder problems
$\checkmark$... but using a too big population is wasting of resources.

## Scalability analysis

Introduction to EDAs Motivation Example Discrete EDAs EDAs without interactions

Pairwise Interactions
Multivariate Interactions
Scalability Analysis
Test functions Test function (cont.) Scalability analysis OneMax
Non-dec. Equal Pairs Decomp. Equal Pairs Non-dec. Sliding XOR Decomp. Sliding XOR Decomp. Trap Model structure during evolution

Conclusions

## Facts:

$\boldsymbol{\checkmark}$ using small population size, population-based optimizers can solve only easy problems
$\boldsymbol{\checkmark}$ increasing the population size, the optimizers can solve increasingly harder problems
$\checkmark$... but using a too big population is wasting of resources.
Scalability analysis:
$\checkmark$ determines the optimal (smallest) population size, with which the algorithm solves the given problem reliably
$x$ reliably: algorithm finds the optimum in 24 out of 25 runs)
$\boldsymbol{x}$ for each problem complexity, the optimal population size is determined e.g. using the bisection method
$\boldsymbol{\checkmark}$ studies the influence of the problem complexity (dimensionality) on the optimal population size and on the number of needed evaluations

## Scalability on the One Max function

Introduction to EDAs

## Motivation Example

## Discrete EDAs

EDAs without interactions
Pairwise Interactions
Multivariate Interactions
Scalability Analysis

## Test functions

 Test function (cont.) Scalability analysis
## OneMax

Non-dec. Equal Pairs Decomp. Equal Pairs Non-dec. Sliding XOR Decomp. Sliding XOR Decomp. Trap Model structure during evolution

Conclusions


## Scalability on the non-decomposable Equal Pairs function

Introduction to EDAs

## Motivation Example

## Discrete EDAs

EDAs without interactions
Pairwise Interactions
Multivariate Interactions
Scalability Analysis

## Test functions

 Test function (cont.) Scalability analysis OneMax
## Non-dec. Equal Pairs

Decomp. Equal Pairs Non-dec. Sliding XOR Decomp. Sliding XOR Decomp. Trap Model structure during evolution


## Scalability on the decomposable Equal Pairs function

Introduction to EDAs Motivation Example Discrete EDAs
EDAs without interactions
Pairwise Interactions Multivariate Interactions Scalability Analysis Test functions Test function (cont.) Scalability analysis OneMax
Non-dec. Equal Pairs Decomp. Equal Pairs Non-dec. Sliding XOR Decomp. Sliding XOR Decomp. Trap Model structure during evolution


## Scalability on the non-decomposable Sliding XOR function

Introduction to EDAs

## Motivation Example

## Discrete EDAs

EDAs without interactions
Pairwise Interactions
Multivariate Interactions
Scalability Analysis

## Test functions

 Test function (cont.) Scalability analysis OneMaxNon-dec. Equal Pairs Decomp. Equal Pairs Non-dec. Sliding XOR Decomp. Sliding XOR Decomp. Trap Model structure during evolution


## Scalability on the decomposable Sliding XOR function

Introduction to EDAs

## Motivation Example

## Discrete EDAs

EDAs without interactions
Pairwise Interactions
Multivariate Interactions
Scalability Analysis

## Test functions

 Test function (cont.) Scalability analysis OneMaxNon-dec. Equal Pairs Decomp. Equal Pairs Non-dec. Sliding XOR Decomp. Sliding XOR Decomp. Trap Model structure during evolution


## Scalability on the decomposable Trap function

Introduction to EDAs

## Motivation Example

## Discrete EDAs

EDAs without interactions
Pairwise Interactions
Multivariate Interactions
Scalability Analysis

## Test functions

 Test function (cont.) Scalability analysis OneMaxNon-dec. Equal Pairs Decomp. Equal Pairs Non-dec. Sliding XOR Decomp. Sliding XOR Decomp. Trap
Model structure during evolution

Conclusions


## Model structure during evolution

Introduction to EDAs Motivation Example

## Discrete EDAs

EDAs without interactions
Pairwise Interactions
Multivariate Interactions
Scalability Analysis

## Test functions

 Test function (cont.) Scalability analysis OneMaxNon-dec. Equal Pairs Decomp. Equal Pairs Non-dec. Sliding XOR Decomp. Sliding XOR Decomp. Trap

During the evolution, the model structure is increasingly precise and at the end of the evolution, the model structure describes the problem structure exactly.

## Model structure during evolution

Introduction to EDAs Motivation Example Discrete EDAs EDAs without interactions

Pairwise Interactions
Multivariate Interactions
Scalability Analysis

## Test functions

 Test function (cont.) Scalability analysis OneMaxNon-dec. Equal Pairs Decomp. Equal Pairs Non-dec. Sliding XOR Decomp. Sliding XOR Decomp. Trap Model structure during evolution

Conclusions

During the evolution, the model structure is increasingly precise and at the end of the evolution, the model structure describes the problem structure exactly.

## NO! That's not true!

Why?
$\checkmark$ In the beginning, the distribution patterns are not very discernible, models similar to uniform distributions are used.
$\checkmark$ In the end, the population converges and contains many copies of the same individual (or a few individuals). No interactions among variables can be learned. Model structure is wrong (all bits independent), but the model describes the position of optimum very precisely.
$\checkmark$ The model with the best matching structure is found somewhere in the middle of the evolution.
$\checkmark$ Even though the right structure is never found during the evolution, the problem can be solved successfully.

## Conclusions

## Summary

## Models:

$\checkmark$ Bayesian networks are general models of joint probability
$\checkmark$ High-dimensional models are hard to train
$\checkmark$ High-dimensional models are very flexible

## Advantages:

$\checkmark$ Reliably solves problems decomposable to subproblems of bounded order

## Limitations:

$\checkmark$ Does not solve problems decomposable to logarithmic subproblems (hierarchical problems)

## Suggestions for discrete EDAs

## For simple problems:

$\checkmark$ PBIL, UMDA, cGA
$\checkmark$ they behave similarly to simple GAs
For harder problems:
$\checkmark$ MIMIC, COMIT, BMDA
$\checkmark$ they are able to account for bivariate dependencies
For hard problems:
$\checkmark$ BOA, ECGA, EBNA, LFDA
$\checkmark$ they can take into account more general dependencies, problems with hierarchichal structures
For even harder problems:
$\checkmark$ hBOA (hierarchical BOA)

