Estimation-of-Distribution Algorithms. Discrete Domain.

Petr Pošík

Introduction to EDAs	:
Genetic Algorithms and Epistasis	3
Genetic Algorithms	4
GA vs EDĀ	!
Content of the lectures	(
Motivation Example	
Example	
Selection, Modeling, Sampling	
UMDA Behaviour for OneMax problem	. 10
What about a different fitness?	. 1
UMDA behaviour on concatanated traps	. 12
What can be done about traps?	
Good news!	. 1
Discrete EDAs	1
Discrete EDAs: Overview	
District Ed.S. Overview	. 10
EDAs without interactions	1'
EDAs without interactions	. 18
Pairwise Interactions	19
From single bits to pairwise models	. 20
Example with pairwise dependencies: dependency tree	. 2
Example of dependency tree learning	. 2
Dependency tree: probabilities	. 2
EDAs with pairwise interactions	
Summary	. 2
	_
Multivariate Interactions	20
ECGA F. J. di	
ECGA: Evaluation metric	
BOA	
BOA: Learning the structure	. 3
Scalability Analysis	3
Test functions	
Test function (cont.)	
Scalability analysis	
OneMax	
Non-dec. Equal Pairs	
Decomp. Equal Pairs	
Non-dec. Sliding XOR	
Decomp. Sliding XOR	
Decomp. Trap	
Model structure during evolution	. 4
Conclusions	4:
Summary	. 43
SHOUGHTONS FOR CISCOTOR HILLAS	41.7

Introduction to EDAs 2 / 44

Genetic Algorithms

Algorithm 1: Genetic Algorithm

Conventional GA operators

are not adaptive, and

ı begin

Initialize the population.

while termination criteria are not met do

Select parents from the population. **Cross over** the parents, create offspring.

Mustate offensing

Mutate offspring.

Incorporate offspring into the population.

 $Select \rightarrow cross\ over \rightarrow mutate\ approach$

What does an intearction mean?

- we would like to create a new offspring by mutation
- we would like the offspring to have better, or at least the same, quality as the parent
- if we must modify x_i together with x_j to reach the desired goal (if it is not possible to improve the solution by modifying either x_i or x_j only), then x_i interacts with x_j .

The goal of recombination operators:

- Intensify the search in areas which contained "good" individuals in previous iterations.
- Must be able to take the interactions into account.
- Why not directly describe the distribution of "good" individuals???

P. Pošík © 2014

A0M33EOA: Evolutionary Optimization Algorithms – 4 / 44

cannot (or ususally do not) discover and use the

interactions among solution components.

GA vs EDA

Algorithm 1: Genetic Algorithm

1 begin

Initialize the population.

while termination criteria are not met do

Select parents from the population.

Cross over the parents, create offspring.

Mutate offspring.

Incorporate offspring into the population.

 $Select \rightarrow cross\ over \rightarrow mutate\ approach$

Algorithm 2: Estimation-of-Distribution Alg.

1 begin

Initialize the population.

while termination criteria are not met do

Select parents from the population.

Learn a model of their distribution.

Sample new individuals.

Incorporate offspring into the population.

 $Select \rightarrow model \rightarrow sample \ approach$

Explicit probabilistic model:

- principled way of working with dependencies
- adaptation ability (different behavior in different stages of evolution)

Names:

EDA Estimation-of-Distribution Algorithm

PMBGA Probabilistic Model-Building Genetic Algorithm

IDEA Iterated Density Estimation Algorithm

P. Pošík © 2014

A0M33EOA: Evolutionary Optimization Algorithms – 5 / 44

Content of the lectures

- 1. EDA for discrete domains (e.g. binary)
 - Motivation example
 - Without interactions
 - Pairwise interactions
 - Higher order interactions
- 2. EDA for real domain (vectors of real numbers)
 - Evolution strategies
 - Histograms
 - Gaussian distribution and its mixtures

P. Pošík © 2014

A0M33EOA: Evolutionary Optimization Algorithms – 6 / 44

Example

5-bit OneMax (CountOnes) problem:

- Optimum: 11111, fitness: 5

Algorithm: Univariate Marginal Distribution Algorithm (UMDA)

- Population size: 6
- Tournament selection: t = 2
- **Model:** vector of probabilities $p = (p_1, ..., p_D)$
 - \blacksquare each p_d is the probability of observing 1 at dth element
- Model learning:
 - compute *p* from selected individuals
- Model sampling:
 - **g**enerate 1 on dth position with probability p_d (independently of other positions)

P. Pošík © 2014

A0M33EOA: Evolutionary Optimization Algorithms – 8 / 44

P. Pošík © 2014

A0M33EOA: Evolutionary Optimization Algorithms – 9 / 44

UMDA Behaviour for OneMax problem

- 1s are better then 0s on average, selection increases the proportion of 1s
- Recombination preserves and combines 1s, the ratio of 1s increases over time
- If we have many 1s in population, we cannot miss the optimum

The number of evaluations needed for reliable convergence:

Algorithm	Nr. of evaluations
UMDA	$\mathcal{O}(D \ln D)$
Hill-Climber	$\mathcal{O}(D \ln D)$
GA with uniform xover	approx. $\mathcal{O}(D \ln D)$
GA with 1-point xover	a bit slower

UMDA behaves similarly to GA with uniform crossover!

P. Pošík © 2014

A0M33EOA: Evolutionary Optimization Algorithms – 10 / 44

What about a different fitness?

For OneMax function:

■ UMDA works well, all the bits probably eventually converge to the right value.

 $\label{lem:will} \mbox{Will UMDA be similarly successful for other fitness functions?}$

■ Well,no.:-(

Problem: Concatanated 5-bit traps

$$f = f_{\text{trap}}(x_1, x_2, x_3, x_4, x_5) + f_{\text{trap}}(x_6, x_7, x_8, x_9, x_{10}) + \dots$$

The *trap* function is defined as

$$f_{\text{trap}}(x) = \begin{cases} 5 & \text{if } u(x) = 5\\ 4 - u(x) & \text{otherwise} \end{cases}$$

where u(x) is the so called *unity* function and returns the number of 1s in x (it is actually the One Max function).

P. Pošík © 2014

A0M33EOA: Evolutionary Optimization Algorithms – 11 / 44

UMDA behaviour on concatanated traps

Traps:

- Optimum in 111111...1
- But $f_{\text{trap}}(0****) = 2$ while $f_{\text{trap}}(1****) = 1.375$
- 1-dimensional probabilities lead the GA to the wrong way!
- Exponentially increasing population size is needed, otherwise GA will not find optimum reliably.

P. Pošík © 2014

A0M33EOA: Evolutionary Optimization Algorithms – 12 / 44

What can be done about traps?

The f_{trap} function is *deceptive*:

- Statistics over 1**** and 0**** do not lead us to the right solution
- The same holds for statistics over 11*** and 00***, 111** and 0000*
- Harder than the *needle-in-the-haystack* problem:
 - regular haystack simply does not provide any information, where to search for the needle
 - lacksquare f_{trap} -haystack actively lies to you—it points you to the wrong part of the haystack
- But: $f_{trap}(00000) < f_{trap}(11111)$, 11111 will be better than 00000 on average
- 5bit statistics should work for 5bit traps in the same way as 1bit statistics work for OneMax problem!

Model learning:

- build model for each 5-tuple of bits
- **ompute** p(00000), p(00001), ..., p(11111),

Model sampling:

- Each 5-tuple of bits is generated independently
- Generate 00000 with probability p(00000), 00001 with probability p(00001), ...

P. Pošík © 2014

A0M33EOA: Evolutionary Optimization Algorithms – 13 / 44

P. Pošík © 2014

A0M33EOA: Evolutionary Optimization Algorithms – 14 / 44

Discrete EDAs 15 / 44

Discrete EDAs: Overview

- 1. Overview:
 - (a) Univariate models (without interactions)
 - (b) Bivariate models (pairwise dependencies)
 - (c) Multivariate models (higher order interactions)
- 2. Conclusions

P. Pošík © 2014

A0M33EOA: Evolutionary Optimization Algorithms – 16 / 44

EDAs without interactions

- 1. **Population-based incremental learning (PBIL)** Baluja, 1994
- 2. Univariate marginal distribution algorithm (UMDA) Mühlenbein and Paaß, 1996
- 3. **Compact genetic algorithm (cGA)** Harik, Lobo, Goldberg, 1998

Similarities:

all of them use a vector of probabilities

Differences:

- PBIL and cGA do not use population (only the vector p);
 UMDA does
- PBIL and cGA use different rules for the adaptation of *p*

Advantages:

- Simplicity
- Speed
- Simple simulation of large populations

Limitations:

■ Solves reliably only order-1 decomposable problems

P. Pošík © 2014

A0M33EOA: Evolutionary Optimization Algorithms – 18 / 44

EDAs with Pairwise Interactions

19 / 44

From single bits to pairwise models

How to describe two positions together?

Using the joint probability distribution:

Number of free parameters: 3

 $\begin{array}{c|c} \underline{p(A,B)} \\ \hline & & B \\ \hline & 0 & 1 \\ \hline A & 0 & p(0,0) & p(0,1) \\ & 1 & p(1,0) & p(1,1) \\ \end{array}$

Using statistical dependence:

Number of free parameters: 3

 $p(A,B) = p(B|A) \cdot p(A)$:

$$p(B = 1|A = 0)$$

 $p(B = 1|A = 1)$
 $p(A = 1)$

Question: what is the number of parameters in case of the following models?

P. Pošík © 2014

A0M33EOA: Evolutionary Optimization Algorithms - 20 / 44

Example with pairwise dependencies: dependency tree

- Nodes: binary variables (loci of chromozome)
- Edges: dependencies among variables
- Features:
 - Each node depends at most on 1 other node
 - Graph does not contain cycles
 - Graph is connected

Learning the structure of dependency tree:

1. Score the edges using mutual information:

$$I(X,Y) = \sum_{x,y} p(x,y) \cdot \log \frac{p(x,y)}{p(x)p(y)}$$

- 2. Use any algorithm to determine the maximum spanning tree of the graph, e.g. Prim (1957)
 - (a) Start building the tree from any node
 - (b) Add such a node that is connected to the tree by the edge with maximum score

P. Pošík © 2014

A0M33EOA: Evolutionary Optimization Algorithms – 21 / 44

P. Pošík © 2014

A0M33EOA: Evolutionary Optimization Algorithms – 22 / 44

Dependency tree: probabilities

Probability	Number of params
$p(X_1 = 1)$	1
$p(X_4 = 1 X_1)$	2
$p(X_5 = 1 X_4)$	2
$p(X_2 = 1 X_4)$	2
$p(X_3=1 X_2)$	2
Whole model	9

P. Pošík © 2014

A0M33EOA: Evolutionary Optimization Algorithms – 23 / 44

EDAs with pairwise interactions

- 1. MIMIC (sequences)
 - Mutual Information Maximization for Input Clustering
 - de Bonet et al., 1996

- 2. **COMIT** (trees)
 - Combining Optimizers with Mutual Information Trees
 - Baluja and Davies, 1997

3. BMDA (forrest)

- Bivariate Marginal Distribution Algorithm
- Pelikan and Mühlenbein, 1998

P. Pošík © 2014

A0M33EOA: Evolutionary Optimization Algorithms – 24 / 44

Summary

- Advantages:
 - Still simple
 - Still fast
 - Can learn *something* about the structure
- Limitations:
 - Reliably solves only order-2 decomposable problems

P. Pošík © 2014

A0M33EOA: Evolutionary Optimization Algorithms – 25 / 44

EDAs with Multivariate Interactions

26 / 44

ECGA

Extended Compact GA, Harik, 1999

Marginal Product Model (MPM)

- Variables are treated in groups
- Variables in different groups are considered statistically independent
- Each group is modeled by its joint probability distribution
- The algorithm adaptively searches for the groups during evolution

Problem	Ideal group configuration
OneMax	[1] [2] [3] [4] [5] [6] [7] [8] [9] [10]
5bitTraps	[1

Learning the structure

- $1. \ \ Evaluation\ metric: Minimum\ Description\ Length\ (MDL)$
- 2. Search procedure: greedy
 - (a) Start with each variable belonging to its own group
 - (b) Perform such a join of two groups which improves the score best $% \left\{ 1,2,\ldots,n\right\}$
 - (c) Finish if no join improves the score

P. Pošík © 2014

A0M33EOA: Evolutionary Optimization Algorithms – 27 / 44

ECGA: Evaluation metric

Minimum description length:

Minimize the number of bits needed to store the model and the data encoded using the model

$$DL(Model, Data) = DL_{Model} + DL_{Data}$$

Model description length:

Each group *g* has |g| dimensions, i.e. $2^{|g|} - 1$ frequencies, each of them can take on values up to *N*

$$DL_{Model} = \log N \sum_{g \in G} (2^{|g|} - 1)$$

Data description length using the model:

Defined using the entropy of marginal distributions (X_g is |g|-dimensional random vector, x_g is its realization):

$$DL_{Data} = N \sum_{g \in G} h(X_g) = -N \sum_{g \in G} \sum_{x_g} p(X_g = x_g) \log p(X_g = x_g)$$

P. Pošík © 2014

A0M33EOA: Evolutionary Optimization Algorithms - 28 / 44

BOA

Bayesian Optimization Algorithm: Pelikán, Goldberg, Cantù-Paz, 1999

Bayesian network (BN)

- Conditional dependencies (instead groups)
- Sequence, tree, forrest special cases of BN
- For trap function:

- The same model used independently in
 - Estimation of Bayesian Network Alg. (EBNA), Etxeberria et al., 1999
 - Learning Factorized Density Alg. (LFDA), Mühlenbein et al., 1999

P. Pošík © 2014

A0M33EOA: Evolutionary Optimization Algorithms – 29 / 44

BOA: Learning the structure

- 1. Evaluation metric:
 - Bayesian-Dirichlet metric, or
 - Bayesian information criterion (BIC)
- 2. Search procedure: greedy
 - (a) Start with graph with no edges (univariate marginal product model)
 - (b) Perform one of the following operations, choose the one which improves the score best
 - Add an edge
 - Delete an edge
 - Reverse an edge
 - (c) Finish if no operation improves the score

BOA solves order-k decomposable problems in less then $\mathcal{O}(D^2)$ evaluations!

$$n_{evals} = \mathcal{O}(D^{1.55})$$
 to $\mathcal{O}(D^2)$

P. Pošík © 2014

A0M33EOA: Evolutionary Optimization Algorithms – 30 / 44

31 / 44

Scalability Analysis

Test functions

One Max:

$$f_{Dx1bitOneMax}(\mathbf{x}) = \sum_{d=1}^{D} x_d$$

Trap:

$$f_{DbitTrap}(x) = \begin{cases} D & \text{if } u(x) = D \\ D - 1 - u(x) & \text{otherwise} \end{cases}$$

Equal Pairs:

$$f_{DbitEqualPairs}(\mathbf{x}) = 1 + \sum_{d=2}^{D} f_{EqualPair}(x_{d-1}, x_d)$$

$$f_{\text{EqualPair}}(x_1, x_2) = \begin{cases} 1 & \text{if } x_1 = x_2 \\ 0 & \text{if } x_1 \neq x_2 \end{cases}$$

Sliding XOR:

$$\begin{split} f_{DbitSlidingXOR}(\textbf{\textit{x}}) &= 1 + f_{AllEqual}(\textbf{\textit{x}}) + \\ &+ \sum_{d=3}^{D} f_{XOR}(x_{d-2}, x_{d-1}, x_{d}) \end{split}$$

$$f_{\text{AllEqual}}(x) = \begin{cases} 1 & \text{if } x = (000...0) \\ 1 & \text{if } x = (111...1) \\ 0 & \text{otherwise} \end{cases}$$

$$f_{\text{XOR}}(x_1, x_2, x_3) = \begin{cases} 1 & \text{if } x_1 \oplus x_2 = x_3 \\ 0 & \text{otherwise} \end{cases}$$

Concatenated short basis functions:

$$f_{NxKbitBasisFunction} = \sum_{k=1}^{K} f_{BasisFunction}(x_{K(k-1)+1}, \dots, x_{Kk})$$

P. Pošík © 2014

A0M33EOA: Evolutionary Optimization Algorithms – 32 / 44

Test function (cont.)

- 1. $f_{40x1bitOneMax}$
 - order-1 decomposable function, no interactions
- 2. $f_{1x40bitEqualPairs}$
 - non-decomposable function
 - weak interactions: optimal setting of each bit depends on the value of the preceding bit
- f_{8x5bitEqualPairs}
 - order-5 decomposable function
- 4. $f_{1x40bitSlidingXOR}$
 - non-decomposable function
 - stronger interactions: optimal setting of each bit depends on the value of the 2 preceding bits
- 5. $f_{8x5bitSlidingXOR}$
 - order-5 decomposable function
- 6. $f_{8x5bitTrap}$
 - order-5 decomposable function
 - interactions in each 5-bit block are very strong, the basis function is deceptive

P. Pošík © 2014

A0M33EOA: Evolutionary Optimization Algorithms - 33 / 44

Scalability analysis

Facts:

- using small population size, population-based optimizers can solve only easy problems
- increasing the population size, the optimizers can solve increasingly harder problems
- ... but using a too big population is wasting of resources.

Scalability analysis:

- determines the optimal (smallest) population size, with which the algorithm solves the given problem reliably
 - reliably: algorithm finds the optimum in 24 out of 25 runs)
 - for each problem complexity, the optimal population size is determined e.g. using the bisection method
- studies the influence of the problem complexity (dimensionality) on the optimal population size and on the number of needed evaluations

P. Pošík © 2014

A0M33EOA: Evolutionary Optimization Algorithms – 34 / 44

P. Pošík © 2014

A0M33EOA: Evolutionary Optimization Algorithms – 35 / 44

P. Pošík © 2014

A0M33EOA: Evolutionary Optimization Algorithms – 36 / 44

P. Pošík © 2014

A0M33EOA: Evolutionary Optimization Algorithms – 37 / 44

P. Pošík © 2014

A0M33EOA: Evolutionary Optimization Algorithms – $38\ /\ 44$

P. Pošík © 2014

A0M33EOA: Evolutionary Optimization Algorithms – 39 / 44

P. Pošík © 2014

A0M33EOA: Evolutionary Optimization Algorithms – 40 / 44

Model structure during evolution

During the evolution, the model structure is increasingly precise and at the end of the evolution, the model structure describes the problem structure exactly.

NO! That's not true!

Why?

- In the beginning, the distribution patterns are not very discernible, models similar to uniform distributions are used.
- In the end, the population converges and contains many copies of the same individual (or a few individuals). No interactions among variables can be learned. Model structure is wrong (all bits independent), but the model describes the position of optimum very precisely.
- The model with the best matching structure is found somewhere in the middle of the evolution.
- Even though the right structure is never found during the evolution, the problem can be solved successfully.

P. Pošík © 2014

A0M33EOA: Evolutionary Optimization Algorithms - 41 / 44

Conclusions 42 / 44

Summary

Models:

- Bayesian networks are general models of joint probability
- High-dimensional models are hard to train
- High-dimensional models are very flexible

Advantages:

Reliably solves problems decomposable to subproblems of bounded order

Limitations:

■ Does not solve problems decomposable to logarithmic subproblems (hierarchical problems)

P. Pošík © 2014

A0M33EOA: Evolutionary Optimization Algorithms – 43 / 44

Suggestions for discrete EDAs

For simple problems:

- PBIL, UMDA, cGA
- they behave similarly to simple GAs

For harder problems:

- MIMIC, COMIT, BMDA
- they are able to account for bivariate dependencies

For hard problems:

- BOA, ECGA, EBNA, LFDA
- they can take into account more general dependencies, problems with hierarchichal structures

For even harder problems:

■ hBOA (hierarchical BOA)

P. Pošík © 2014

A0M33EOA: Evolutionary Optimization Algorithms – 44 / 44