
CZECH TECHNICAL UNIVERSITY IN PRAGUE

Faculty of Electrical Engineering
Department of Cybernetics
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■ Epistasis, short example

■ Perturbation techniques for linkage identification

■ Optimization by model fitting

■ Learnable evolution model
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In BBO, we need to specify:

■ the representation of candidate solution

■ the objective function (gives the quality of a candidate solution)

■ can have almost any form (non-differentiable, discontinuous, multimodal, noisy,
. . . )

How to solve BBO problems?

■ Algorithm applicable in the BBO scenario can only provide a candidate solution and
have the objective function to evaluate it.

■ It cannot require (assume, take advantage of) any other knowledge about the
objective function. (It can estimate the needed knowledge. . . )

■ Hill-climbing, simulated annealing, taboo, GAs, . . .

GAs are popular:

■ they are easy to use,

■ applicable without prior knowledge, and

■ easy to parallelize.

GAs are great, but not perfect!!!
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Problem f1:

■ defined over 40-bit strings

■ the quality of the worst solution: f1(xworst) = 0.

■ the quality of the best solution: f1(xopt) = 40.

■ the best solution: xopt = (1111 . . . 1).
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■ the quality of the worst solution: f1(xworst) = 0.

■ the quality of the best solution: f1(xopt) = 40.

■ the best solution: xopt = (1111 . . . 1).
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Problem f1:

■ defined over 40-bit strings

■ the quality of the worst solution: f1(xworst) = 0.

■ the quality of the best solution: f1(xopt) = 40.

■ the best solution: xopt = (1111 . . . 1).
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The f1 problem contains no epistatic interactions among design variables.
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Problem f2:

■ defined over 40-bit strings

■ the quality of the worst solution: f2(xworst) = 0.

■ the quality of the best solution: f2(xopt) = 40.

■ the best solution: xopt = (1111 . . . 1).
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Problem f2:

■ defined over 40-bit strings

■ the quality of the worst solution: f2(xworst) = 0.

■ the quality of the best solution: f2(xopt) = 40.

■ the best solution: xopt = (1111 . . . 1).
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Problem f2:

■ defined over 40-bit strings

■ the quality of the worst solution: f2(xworst) = 0.

■ the quality of the best solution: f2(xopt) = 40.

■ the best solution: xopt = (1111 . . . 1).
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The f2 problem contains some interactions among variables, GA is not aware of them and
works with the individual bits as if they were truly independent of each other.
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Problem f2:

■ defined over 40-bit strings

■ the quality of the worst solution: f2(xworst) = 0.

■ the quality of the best solution: f2(xopt) = 40.

■ the best solution: xopt = (1111 . . . 1).
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The f2 problem contains some interactions among variables, GA is not aware of them and
works with the individual bits as if they were truly independent of each other.

None of the above mentioned problem characteristics is important to judge if the GA will
work well!!!
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Still solving f2:

■ defined over 40-bit strings

■ the quality of the worst solution: f2(xworst) = 0.

■ the quality of the best solution: f2(xopt) = 40.

■ the best solution: xopt = (1111 . . . 1).

Instead of the uniform crossover,

■ let us allow the crossover only after each 5th bit.
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The f2 problem contains some interactions among variables and GA knows about them.
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Epistasis:

■ Effects of one gene are dependent on (influenced, conditioned by) other genes.
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Epistasis:

■ Effects of one gene are dependent on (influenced, conditioned by) other genes.

Linkage:

■ Tendency of certain loci or alleles to be inherited together.
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Epistasis:

■ Effects of one gene are dependent on (influenced, conditioned by) other genes.

Linkage:

■ Tendency of certain loci or alleles to be inherited together.

Other names:

■ dependencies

■ interdependencies

■ interactions



Epistasis

Introduction to
Epistasis

• Black-box
Optimization and
Genetic Algorithms

• GA works well...

• GA fails...

• GA works again...

• Epistasis

• Discussion on
semestral projects

• Linkage
Identification
Techniques

Perturbation
Techniques of Linkage
Identification

Optimization by
Model Fitting

Summary
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Epistasis:

■ Effects of one gene are dependent on (influenced, conditioned by) other genes.

Linkage:

■ Tendency of certain loci or alleles to be inherited together.

Other names:

■ dependencies

■ interdependencies

■ interactions

When optimizing the following functions, which of the variables are linked together?

f = x1 + x2 + x3 (1)

f = 0.1x1 + 0.7x2 + 3x3 (2)

f = x1x2x3 (3)

f = x1 + x2
2 +
√

x3 (4)

f = sin(x1) + cos(x2) + ex3 (5)

f = sin(x1 + x2) + ex3 (6)
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Which of the semestral projects contain interactions? Why?

■ Japanese puzzle

■ Circles in the square

■ Image compression

■ MTSP

■ CD compilation

■ Shortest common supersequence

■ ATP rankings

■ Binary opt. problem
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Which of the semestral projects contain interactions? Why?

■ Japanese puzzle

■ Circles in the square

■ Image compression

■ MTSP

■ CD compilation

■ Shortest common supersequence

■ ATP rankings

■ Binary opt. problem

Notes:

■ Almost all real-world problems contain interactions among design variables.
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Notes:
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■ The “amount” and “type” of interactions depend on the representation and the
objective function.
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Which of the semestral projects contain interactions? Why?

■ Japanese puzzle

■ Circles in the square

■ Image compression

■ MTSP

■ CD compilation

■ Shortest common supersequence

■ ATP rankings

■ Binary opt. problem

Notes:

■ Almost all real-world problems contain interactions among design variables.

■ The “amount” and “type” of interactions depend on the representation and the
objective function.

■ Sometimes, by a clever choice of the representation and the objective function, we can
get rid of the interactions.
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Problems:

■ How to detect dependencies among variables?
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Problems:

■ How to detect dependencies among variables?

■ How to use them?
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Problems:

■ How to detect dependencies among variables?

■ How to use them?

Techniques used for linkage identification:

1. Indirect detection along genetic search (messy GAs)

2. Direct detection of fitness changes by perturbation

3. Model-based approach: classification

4. Model-based approach: distribution estimation (EDAs)
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LINC

■ Developed by Munetomo [MG98], based on gene expression messy GA [Kar95]

Linearity and nonlinearity

■ consider a bitstring x = (x1, x2, . . . , xD)

■ perturb loci i, j, and both i and j

x = (x1, . . . , xi , . . . , xj, . . . , xD)
xi = (x1, . . . , xi , . . . , xj, . . . , xD) ∆ fi = f (xi)− f (x)
xj = (x1, . . . , xi , . . . , xj, . . . , xD) ∆ f j = f (xj)− f (x)
xij = (x1, . . . , xi , . . . , xj, . . . , xD) ∆ fij = f (xij)− f (x)

If ∆ fij = ∆ fi + ∆ f j,

■ fitness is linear, interaction did not show up,

■ xi and xj needn’t be part of the same BB.

If ∆ fij 6= ∆ fi + ∆ f j,

■ fitness is nonlinear, interaction exists,

■ xi and xj are members of the same BB,

■ add i to j’s linkage set and j to i’s linkage set.

[Kar95] H. Kargupta. Search, polynomial complexity, and the fast messy genetic algorithm. Technical Report IlliGAL Report No. 95008, Illinois Genetic Algorithm
Laboratory, Urbana Champaign, Illinois, 1995.
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3-bit Trap Function:

u(x) 0 1 2 3
f (x) 0.6 0.3 0 1

■ Let us consider string x = (010) and bits 1 and 2:

x = (010)
x1 = (110) ∆ f1 = f (110)− f (010) = 0− 0.3 = −0.3
x2 = (000) ∆ f2 = f (000)− f (010) = 0.6− 0.3 = 0.3
x12 = (100) ∆ f12 = f (100)− f (010) = 0.3− 0.3 = 0

∆ f12 = ∆ f1 + ∆ f2 −→ i and j needn’t be part of the same BB

■ The same string x = (010) and bits 1 and 3:

x = (010)
x1 = (110) ∆ f1 = f (110)− f (010) = 0− 0.3 = −0.3
x3 = (011) ∆ f3 = f (011)− f (010) = 0− 0.3 = −0.3
x13 = (111) ∆ f13 = f (111)− f (010) = 1− 0.3 = 0.7

∆ f13 6= ∆ f1 + ∆ f3 −→ i and j are part of the same BB

Analysis of the string 010 suggests linkage between 1st and 3rd bit only.
Additional string (e.g. 011) would suggest that all three bits are linked together.
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LIMD:

■ Developed by Munetomo [MG99a, MG99b]

■ Not all nonlinearities detected by LINC are bad for GAs (or hill-climber)

■ Consider 4 bitstrings (as in case of LINC): x, xi , xj, and xij

■ Reorder them so that x = arg min( f (x), f (xi), f (xj), f (xij))

■ Monotonicity constraints:

■ f (x) < f (xi) < f (xij)

■ f (x) < f (xj) < f (xij)

■ If monotonicity is violated, add i to j’s linkage set and j to i’s linkage set.

[MG99a] Masaharu Munetomo and David E. Goldberg. Identifying linkage groups by nonlinearity/non-monotonicity detection. In
Proceedings of the 1999 Genetic and Evolutionary Computation Conference, pages 433–440, 1999.

[MG99b] Masaharu Munetomo and David E. Goldberg. Linkage identification by non-monotonicity detection for overlapping functions.
Evolutionary Computation, 7:377–398, December 1999.
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For each pair of variables, we know if the two variables are linked. So what?
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For each pair of variables, we know if the two variables are linked. So what?

■ Construct linkage groups (decompose the problem)

■ Use modified crossover: always transfer the bits in the linkage group together

■ Use modified mutation: allow mutations of the whole linkage group
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For each pair of variables, we know if the two variables are linked. So what?

■ Construct linkage groups (decompose the problem)

■ Use modified crossover: always transfer the bits in the linkage group together

■ Use modified mutation: allow mutations of the whole linkage group

What if the problem cannot be decomposed sufficiently?

■ No clearly separated groups of bits

■ Solution: tightness detection
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P. Pošı́k c© 2014 A0M33EOA: Evolutionary Optimization Algorithms – 15 / 22

For each pair of variables, we know if the two variables are linked. So what?

■ Construct linkage groups (decompose the problem)

■ Use modified crossover: always transfer the bits in the linkage group together

■ Use modified mutation: allow mutations of the whole linkage group

What if the problem cannot be decomposed sufficiently?

■ No clearly separated groups of bits

■ Solution: tightness detection

Algorithm:

1. Given: linkage groups from LIMD (or LINC) procedure

2. Tightness definition:

tightness(i, j) =
n(i ∧ j)

n(i ∨ j)
∈ 〈0, 1〉,

where
n(i ∧ j) is the number of linkage groups that contain both i and j, and
n(i ∨ j) is the number of linkage groups that contain i or j.

3. If tightness(i, j) < δ, remove locus j from linkage set of locus i and vice versa.
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What kind of “models” should we use?

■ The perturbation techniques

■ extract global information from the population, and

■ use modified recombination operators that use the learned information,
i.e. they used modified sampling process.
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What kind of “models” should we use?

■ The perturbation techniques

■ extract global information from the population, and

■ use modified recombination operators that use the learned information,
i.e. they used modified sampling process.

■ Classification techniques can be used to

■ build a model distinguishing the “good” individuals from the “bad” individuals,
and

■ sample offspring from the “good” areas (more often than from the “bad” ones).
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What kind of “models” should we use?

■ The perturbation techniques

■ extract global information from the population, and

■ use modified recombination operators that use the learned information,
i.e. they used modified sampling process.

■ Classification techniques can be used to

■ build a model distinguishing the “good” individuals from the “bad” individuals,
and

■ sample offspring from the “good” areas (more often than from the “bad” ones).

■ Probability distribution models can be used to

■ build a model describing the distribution of “good” individuals, and

■ sample offspring from that model.
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Algorithm 1: General Evolutionary Scheme

1 begin

2 M(0) ← InitializeModel()

3 X(0) ← Sample(M(0))

4 f (0) ← Evaluate(X(0))

5 g← 1
6 while not TerminationCondition() do

7 {S ,D} ← Select(X(g−1), f (g−1))

8 M(g) ← Update(g,M(g−1), X(g−1), f (g−1), S , D )

9 XOffs ← Sample(M(g))

10 fOffs ← Evaluate (XOffs)

11 {X(g), f (g)} ← Replace(X(g−1), XOffs, f (g−1), fOffs)

12 g← g + 1
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Many models are descriptive in the sense that
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P. Pošı́k c© 2014 A0M33EOA: Evolutionary Optimization Algorithms – 19 / 22

Many models are descriptive in the sense that

■ given a point, they are able to

■ classify it to the “good” or “bad” class, or
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Many models are descriptive in the sense that

■ given a point, they are able to

■ classify it to the “good” or “bad” class, or

■ evaluate its probability of being a “good” individual,
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Many models are descriptive in the sense that

■ given a point, they are able to

■ classify it to the “good” or “bad” class, or

■ evaluate its probability of being a “good” individual,

■ but they are not able to generate a “good” point directly.
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Many models are descriptive in the sense that

■ given a point, they are able to

■ classify it to the “good” or “bad” class, or

■ evaluate its probability of being a “good” individual,

■ but they are not able to generate a “good” point directly.

■ Generative models can be used as data generators.

How to turn a descriptive model into generative?
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Many models are descriptive in the sense that

■ given a point, they are able to

■ classify it to the “good” or “bad” class, or

■ evaluate its probability of being a “good” individual,

■ but they are not able to generate a “good” point directly.

■ Generative models can be used as data generators.

How to turn a descriptive model into generative?

■ Use (weighted) rejection sampling (see [Luk09, algorithms 115 and 117])
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Many models are descriptive in the sense that

■ given a point, they are able to

■ classify it to the “good” or “bad” class, or

■ evaluate its probability of being a “good” individual,

■ but they are not able to generate a “good” point directly.

■ Generative models can be used as data generators.

How to turn a descriptive model into generative?

■ Use (weighted) rejection sampling (see [Luk09, algorithms 115 and 117])

Problems with rejection sampling?
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Many models are descriptive in the sense that

■ given a point, they are able to

■ classify it to the “good” or “bad” class, or

■ evaluate its probability of being a “good” individual,

■ but they are not able to generate a “good” point directly.

■ Generative models can be used as data generators.

How to turn a descriptive model into generative?

■ Use (weighted) rejection sampling (see [Luk09, algorithms 115 and 117])

Problems with rejection sampling?

■ In later stages of evolution, the acceptance region becomes very small.

■ It becomes increasingly difficult to hit that region.

[Luk09] Sean Luke. Essentials of Metaheuristics. 2009. available at http://cs.gmu.edu/∼sean/book/metaheuristics/.
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LEM: Evolutionary process guided by machine learning

■ created by Ryszard Michalski [Mic00]

■ originally, alternates between 2 phases:

■ machine learning mode

■ Darwinian evolution mode

■ uses AQ decision rules as the classification model
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LEM: Evolutionary process guided by machine learning

■ created by Ryszard Michalski [Mic00]

■ originally, alternates between 2 phases:

■ machine learning mode

■ Darwinian evolution mode

■ uses AQ decision rules as the classification model

LEM3: the most recent implementation of the LEM approach

■ implemented by Janusz Wojtusiak [WM06, Woj07]

■ alternates between more phases including local search, randomization, and
representation adjustment

■ good results reported, especially in the initial phases of the search

[Mic00] Ryszard S. Michalski. Learnable evolution model: Evolutionary processes guided by machine learning. Machine Learning, 38:9–40,
2000.

[WM06] Janusz Wojtusiak and Ryszard S. Michalski. The LEM3 system for non-darwinian evolutionary computation and its application to
complex function optimization. Reports of the Machine Learning and Inference Laboratory MLI 04-1, George Mason University,
Fairfax, VA, February 2006.

[Woj07] Janusz Wojtusiak. Handling Constrained Optimization Problems and Using Constructive Induction to Improve Representation Spaces in
Learnable Evolution Model. Reports of the machine learning and inference laboratory, Fairfax, VA, November 2007.
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■ GAs are not very good for problems containing epistatic interactions among design
variables
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■ GAs are not very good for problems containing epistatic interactions among design
variables

■ because the assume all variables independent of each other
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■ GAs are not very good for problems containing epistatic interactions among design
variables

■ because the assume all variables independent of each other

■ There are methods that identify interactions and create the right linkage

■ Perturbation techniques are the most straightforward

■ Optimization by model fitting is a general approach



Summary

Introduction to
Epistasis

Perturbation
Techniques of Linkage
Identification

Optimization by
Model Fitting

Summary

• Summary
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■ GAs are not very good for problems containing epistatic interactions among design
variables

■ because the assume all variables independent of each other

■ There are methods that identify interactions and create the right linkage

■ Perturbation techniques are the most straightforward

■ Optimization by model fitting is a general approach

■ Using classification models is not so common

■ LEM is a prominent example

■ another example for the real-valued spaces using elliptic classifiers will be given
later in the course
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■ GAs are not very good for problems containing epistatic interactions among design
variables

■ because the assume all variables independent of each other

■ There are methods that identify interactions and create the right linkage

■ Perturbation techniques are the most straightforward

■ Optimization by model fitting is a general approach

■ Using classification models is not so common

■ LEM is a prominent example

■ another example for the real-valued spaces using elliptic classifiers will be given
later in the course

■ Using probabilistic models of the distribution of promising individuals is very
popular:

■ The class of estimation-of-distribution (EDA) algorithms

■ EDAs are covered in the next 2 lectures
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