2. Empirical analysis and comparisons of stochastic optimization algorithms

Petr Pošík

Dept. of Cybernetics ČVUT FEL

Substantial part of this material is based on slides provided with the book 'Stochastic Local Search: Foundations and Applications' by Holger H. Hoos and Thomas Stützle (Morgan Kaufmann, 2004)

See www.sls-book.net for further information.

Motivation	3
No-Free-Lunch Theorem	4
Monte Carlo vs. Las Vegas Algorithms.	5
Las Vegas algorithms	6
Runtime Behaviour for Decision Problems	7
Runtime Behaviour for Optimization Problems	
Some Tweaks	
Theoretical vs. Empirical Analysis of LVAs	. 10
Application Scenarios and Evaluation Criteria	
Empirical Algorithm Comparison	14
CPU Runtime vs Operation Counts.	. 15
Scenario 1: Limited time	
Student's t-test.	
Mann-Whitney-Wilcoxon rank-sum test	
Scenario 2: Prescribed target level	
Scenarios 1 and 2 combined	
Analysis based on runtime distribution	21
Runtime distributions	. 22
RTD defintion	
RTD cross-sections	
Empirical measurement of RTDs .	
RTD based algorithm comparisons	
Example of comparison	
Summary	29
Summary	. 30

Contents

- ✓ No-Free-Lunch Theorem
- ✔ What is so hard about the comparison of stochastic methods?
- ✓ Simple statistical comparisons
- Comparisons based on running length distributions

P. Pošík © 2012

A0M33EOA: Evolutionary Optimization Algorithms – 2 / 30

Motivation 3 / 30

No-Free-Lunch Theorem

"There is no such thing as a free lunch."

- ✔ Refers to the nineteenth century practice in American bars of offering a "free lunch" with drinks
- ✓ The meaning of the adage: It is impossible to get something for nothing.
- ✓ If something appears to be free, there is always a cost to the person or to society as a whole even though that cost may be hidden or distributed

No-Free-Lunch theorem in search and optimization [WM97]

- ✓ "Any two algorithms are equivalent when their performance is averaged across all possible problems."
- ✓ For a particular problem (or a particular class of problems), different search algorithms may obtain different results
- ✓ If an algorithm achieves superior results on some problems, it must pay with inferiority on other problems

It makes sense to study which algorithms are suitable for which kinds of problems!!!

 $[WM97] \quad D.\ H.\ Wolpert\ and\ W.\ G.\ Macready.\ No\ free\ lunch\ theorems\ for\ optimization.\ \textit{IEEE\ Trans.\ on\ Evolutionary\ Computation,\ 1(1):67-82,1997.}$

P. Pošík © 2012

A0M33EOA: Evolutionary Optimization Algorithms – 4 / 30

Monte Carlo vs. Las Vegas Algorithms

EOA belong to the class of *Monte Carlo* or *Las Vegas algorithms* (LVAs):

- ✓ Monte Carlo algorithm: It always stops and provides a solution, but the solution may not be correct. The solution quality is a random variable.
- ✓ Las Vegas algorithm: It always produces a correct solution, but needs a priori unknown time to find it. The running time is a random variable.
- LVA can be turned to MCA by bounding the allowed running time.
- MCA can be turned to LVA by restarting the algorithm from randomly chosen states.

P. Pošík © 2012

A0M33EOA: Evolutionary Optimization Algorithms – 5 / 30

Las Vegas algorithms

Las Vegas algorithms:

- \checkmark An algorithm A for a decision problem class Π is a Las Vegas algorithm iff it has the following properties:
 - **x** If *A* terminates for certain $\pi \in \Pi$ and returns a solution *s*, then *s* is guaranteed to be a correct solution of π .
 - **x** For any given instance $\pi \in \Pi$, the runtime of A applied to π , $RT_{A,\pi}$, is a random variable.
- \checkmark An algorithm A for an optimization problem class Π is an optimization Las Vegas algorithm iff it has the following properties:
 - **x** For any given instance $\pi \in \Pi$, the runtime of A applied to π needed to find a solution with certain quality q, $RT_{A,\pi}(q)$, is a random variable.
 - **x** For any given instance $\pi \in \Pi$, the solution quality achieved by *A* applied to π after certain time *t*, $SQ_{A,\pi}(t)$, is a random variable
- ✔ LVAs are typically incomplete or at most asymptotically complete.

P. Pošík © 2012

A0M33EOA: Evolutionary Optimization Algorithms – 6 / 30

Runtime Behaviour for Decision Problems

Definitions:

- \checkmark A is an algorithm for a class Π of decision problems
- \mathbf{V} $P_s\left(RT_{A,\pi} \leq t\right)$ is a probability that A finds a solution for a problem instance $\pi \in \Pi$ in time less than or equal to t.

Complete algorithm A can provably solve any solvable decision problem instance $\pi \in \Pi$ *after a finite time,* i.e. A is complete if and only if

$$\forall \pi \in \Pi, \ \exists t_{\max} : P_s \left(RT_{A,\pi} \le t_{\max} \right) = 1. \tag{1}$$

Asymptotically complete algorithm A can solve any solvable problem instance $\pi \in \Pi$ with arbitrarily high probability *when allowed to run long enough*, i.e. A is asymptotically complete if and only if

$$\forall \pi \in \Pi: \lim_{t \to \infty} P_s \left(RT_{A,\pi} \le t \right) = 1. \tag{2}$$

Incomplete algorithm *A* cannot be guaranteed to find the solution even if allowed to run indefinitely long, i.e. if it is not asymptotically complete, i.e. *A* is incomplete if and only if

$$\exists \text{ solvable } \pi \in \Pi : \lim_{t \to \infty} P_s \left(RT_{A,\pi} \le t \right) < 1. \tag{3}$$

P. Pošík © 2012

A0M33EOA: Evolutionary Optimization Algorithms - 7 / 30

Runtime Behaviour for Optimization Problems

Simple generalization based on transforming the optimization problem to related decision problem by setting the solution quality bound to $q = r \cdot q^*(\pi)$:

- \checkmark A is an algorithm for a class Π of optimization problems
- \checkmark $q^*(\pi)$ is the quality of optimal solution to problem π
- $r \ge 1$

Algorithm *A* **is r-complete** if and only if

$$\forall \pi \in \Pi, \ \exists t_{\max} : P_s \left(RT_{A,\pi} \le t_{\max}, SQ_{A,\pi} \le r \cdot q^*(\pi) \right) = 1. \tag{4}$$

Algorithm A **is asymptotically r-complete** if and only if

$$\forall \pi \in \Pi: \lim_{t \to \infty} P_s \left(RT_{A,\pi} \le t, SQ_{A,\pi} \le r \cdot q^*(\pi) \right) = 1. \tag{5}$$

Algorithm *A* **is r-incomplete** if and only if

$$\exists \text{ solvable } \pi \in \Pi : \lim_{t \to \infty} P_s \left(RT_{A,\pi} \le t, SQ_{A,\pi} \le r \cdot q^*(\pi) \right) < 1. \tag{6}$$

P. Pošík © 2012

A0M33EOA: Evolutionary Optimization Algorithms – 8 / 30

Some Tweaks

- Incompleteness of many LVAs is typically caused by their inability to escape from attractive local minima regions of the search space.
 - 🗶 remedy: use diversification mechanisms such as random restart, random walk, tabu, . . .
 - 🗶 in many cases, these can render algorithms provably asymptotically complete, but effectiveness in practice can vary widely
- Completeness can be achived by restarting an incomplete method from a solution generated by a complete (exhaustive)
 algorithm.
 - **x** typically very ineffective due to large size of the search space

P. Pošík © 2012

A0M33EOA: Evolutionary Optimization Algorithms – 9 / 30

Theoretical vs. Empirical Analysis of LVAs

- ✔ Practically relevant Las Vegas algorithms are typically difficult to analyse theoretically. (Algorithms are often non-deterministic.)
- ✓ Cases in which theoretical results are available are often of limited practical relevance, because they
 - **x** rely on idealised assumptions that do not apply to practical situations,
 - \boldsymbol{x} apply to worst-case or highly idealised average-case behaviour only, or
 - \boldsymbol{x} capture only asymptotic behaviour and do not reflect actual behaviour with sufficient accuracy.

Therefore, analyse the behaviour of LVAs using empirical methodology, ideally based on the scientific method:

- ✓ make observations
- ✓ formulate hypothesis/hypotheses (model)
- ✓ While not satisfied with model (and deadline not exceeded):
 - 1. design computational experiment to test model
 - 2. conduct computational experiment
 - 3. analyse experimental results
 - 4. revise model based on results

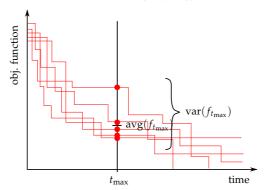
P. Pošík © 2012

A0M33EOA: Evolutionary Optimization Algorithms – 10 / 30

Application Scenarios and Evaluation Criteria

Type 1: Hard time limit t_{max} for finding solution; solutions found later are useless (real-time environments with strict deadlines, e.g., dynamic task scheduling or on-line robot control).

- \Rightarrow Evaluation criterion:
- ✓ dec. prob.: solution probability at time t_{max} , P_s ($RT \le t_{\text{max}}$)
- opt. prob.: expected quality of the solution found at time t_{max} , $E(SQ(t_{\text{max}}))$



✔ Possible problem: What does "The expected solution quality of algorithm A is 2 times better than for algorithm B" actually mean?

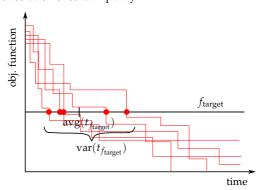
P. Pošík © 2012

A0M33EOA: Evolutionary Optimization Algorithms – 11 / 30

Application Scenarios and Evaluation Criteria (cont.)

Type 2: No time limits given, algorithm can be run until a solution is found (off-line computations, non-realtime environments, e.g., configuration of production facility).

- \Rightarrow Evaluation criterion:
- ✓ dec. prob.: expected runtime to solve a problem
- ✓ opt. prob.: expected runtime to reach solution of certain quality



✓ Is there any problem with "The expected runtime of algorithm *A* is 2 times larger than for algorithm *B*"?

P. Pošík © 2012

A0M33EOA: Evolutionary Optimization Algorithms – 12 / 30

Application Scenarios and Evaluation Criteria (cont.)

Type 3: Utility of solutions depends in more complex ways on the time required to find them; characterised by a utility function U:

- ✓ dec. prob.: $U: R^+ \mapsto \langle 0, 1 \rangle$, where U(t) = utility of solution found at time t
- opt. prob.: $U: R^+ \times R^+ \mapsto \langle 0, 1 \rangle$, where U(t, q) = utility of solution with quality q found at time t

Example: The direct benefit of a solution is invariant over time, but the cost of computing time diminishes the final payoff according to $U(t) = \max\{u_0 - c \cdot t, 0\}$ (constant discounting).

- ⇒ Evaluation criterion: utility-weighted solution probability
- ✓ dec. prob.: $U(t) \cdot P_s$ ($RT \le t$), or
- \checkmark opt. prob.: $U(t,q) \cdot P_s$ ($RT \le t, SQ \le q$)

requires detailed knowledge of $P_s(...)$ for arbitrary t (and arbitrary q).

P. Pošík © 2012

A0M33EOA: Evolutionary Optimization Algorithms – 13 / 30

Empirical Algorithm Comparison

14 / 30

CPU Runtime vs Operation Counts

Remark: Is it better to measure the time in seconds or e.g. in function evaluations?

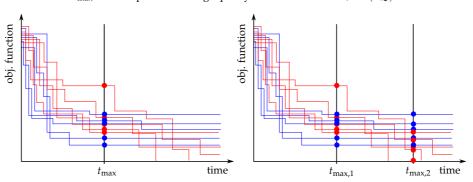
- ${m arepsilon}$ Results of experiments should be comparable
- ✓ Wall-clock time depends on the machine configuration, computer language, and on the operating system used to run the experiments
- ✓ Since the objective function is often the most time-consuming operation in the optimization cycle, many authors use the *number* of objective function evaluations as the primary measure of "time"

P. Pošík © 2012

A0M33EOA: Evolutionary Optimization Algorithms – 15 / 30

Scenario 1: Limited time

 \checkmark Let them run for certain time t_{max} and compare the average quality of returned solution, ave(SQ)



- \checkmark for $t_{\text{max,1}}$, blue algorithm is better than red
- \checkmark for $t_{\text{max,2}}$, blue algorithm is worse than red
- ✓ WARNING! The figure can change when t_{max} changes!!!
- ✓ Can our claims be false? What is the probability that our claims are wrong?

P. Pošík © 2012

A0M33EOA: Evolutionary Optimization Algorithms – $16 \ / \ 30$

Student's t-test

Independent two-sample t-test

- ✓ Statistical method used to test if the means of 2 normally distributed populations are equal.
- ✔ The larger the difference between means, the higher the probability the means are different.
- ✓ The lower the variance inside the populations, the higher the probability the means are different.
- ✓ For details, see e.g. [?, sec. 11.1.2]
- ✓ Implemented in most mathematical and statistical software, e.g. in MATLAB
- ✓ Can be easily implemented in any language

Assumptions:

- $\ensuremath{\boldsymbol{\nu}}$ Both populations should have normal distribution.
- ✔ Almost never fulfilled with the populations of solution qualities

Remedy: a non-parametric test!

[WM97] D. H. Wolpert and W. G. Macready. No free lunch theorems for optimization. IEEE Trans. on Evolutionary Computation, 1(1):67–82, 1997.

P. Pošík © 2012

A0M33EOA: Evolutionary Optimization Algorithms – 17 / 30

Mann-Whitney-Wilcoxon rank-sum test

Non-parametric test assessing whether two independent samples of observations have equally large values

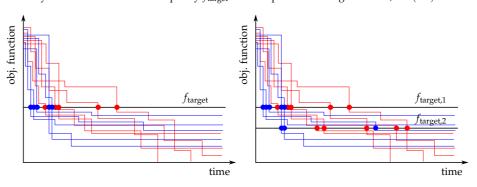
- ✔ Virtually identical to:
 - **✗** combine both samples (for each observation, remember its original group)
 - **x** sort the values
 - x replace the values by ranks
 - **x** use the ranks with ordinary parametric two-sample t-test
- ✓ The measurements must be at least ordinal
 - **x** we must be able to sort them
 - x this allows us to merge results from runs which reached the target level with the results of runs which did not

P. Pošík © 2012

A0M33EOA: Evolutionary Optimization Algorithms – 18 / 30

Scenario 2: Prescribed target level

 \checkmark Let them run until they find a solution of certain quality f_{target} and compare the average runtime, ave(RT)



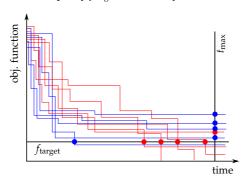
- \checkmark for $f_{\text{target,1}}$, blue algorithm is better than red
- ✓ for f_{target,2}, blue algorithm still seems to better than red (if it finds the solution, it finds it faster), but 2 blue runs did not reach the target level yet, i.e. (we are much less sure that blue is better)
- \checkmark WARNING! The figure can change when f_{target} changes!!!
- ✓ The same statistical tests as for scenario 1 can be used

P. Pošík © 2012

A0M33EOA: Evolutionary Optimization Algorithms – 19 / 30

Scenarios 1 and 2 combined

u Let them run until they find a solution of certain quality f_{target} or until they use all the allowed time t_{max}



- ✓ RT is measured in seconds or function evaluations, SQ is measured in something different; now, how can we test if one algorithm is better than the other?
- ightharpoonup The situation when the algorithm reaches $f_{
 m target}$ is better than when it reaches $t_{
 m max}$. We can still sort the values.
- ✓ We can use the Mann-Whitney U-test
- ✓ WARNING! Again, if we change f_{target} and/or t_{max} , the figure can change!!!

P. Pošík © 2012

A0M33EOA: Evolutionary Optimization Algorithms – 20 / 30

Analysis based on runtime distribution

21 / 30

Runtime distributions

 $LVAs\ of ten\ designed\ and\ evaluated\ without\ apriori\ knowledge\ of\ the\ application\ scenario:$

- \checkmark Assume the most general scenario type 3 with a utility function (which is often, however, unknown as well).

Study distributions of $random\ variables$ characterising runtime and solution quality of an algorithm for the given problem instance.

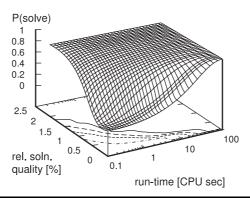
P. Pošík © 2012

A0M33EOA: Evolutionary Optimization Algorithms – 22 / 30

RTD defintion

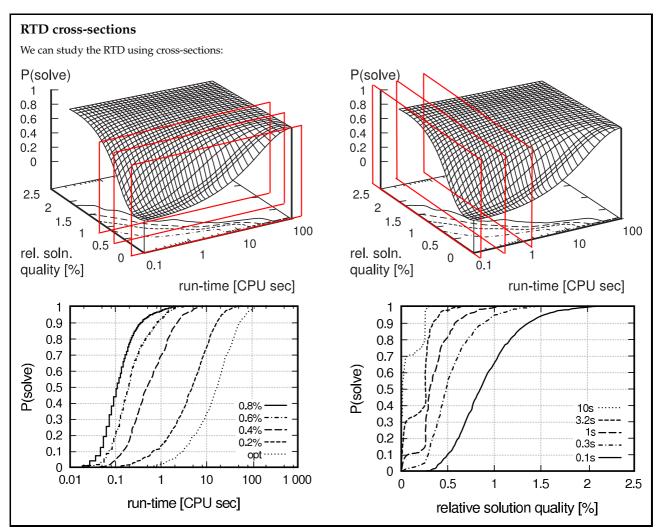
Given a Las Vegas alg. *A* for optimization problem π :

- v The success probability P_s ($RT_{A,π} ≤ t, SQ_{A,π} ≤ q$) is the probability that A finds a solution for a solvable instance π ∈ Π of quality ≤ q in time ≤ t.
- \checkmark The run-time distribution (RTD) of *A* on π is the probability distribution of the bivariate random variable ($RT_{A,\pi}$, $SQ_{A,\pi}$).



P. Pošík © 2012

A0M33EOA: Evolutionary Optimization Algorithms – 23 / 30

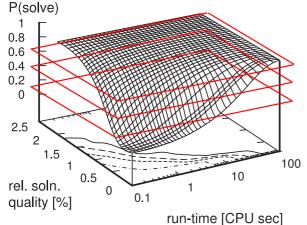


P. Pošík © 2012

A0M33EOA: Evolutionary Optimization Algorithms – 24 / 30

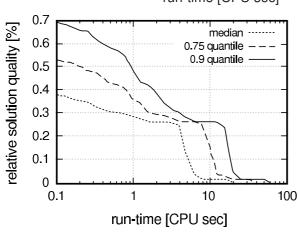
RTD cross-sections (cont.)

We can study the RTD using cross-sections:



Horizontal cross-sections reveal the dependence of *SQ* on *RT*:

✓ The lines represent various quantiles; e.g. for 75%-quantile we can expect that 75% of runs will return a better combination of *SQ* and *RT*.



P. Pošík © 2012

A0M33EOA: Evolutionary Optimization Algorithms – 25 / 30

Empirical measurement of RTDs

Empirical estimation of P_s ($RT \le t$, $SQ \le q$):

- ✓ Perform N independent runs of A on problem π
- **✓** For n^{th} run, $n \in 1, ..., N$, store the so-called *solution quality trace*, i.e. $t_{n,i}$ and $q_{n,i}$ each time the quality is improved
- $P_s(t,q) = \frac{n_S(t,q)}{N}$, where $n_S(t,q)$ is the number of runs which provided at least one solution with $t_i \le t$ and $q_i \le q$ Empirical RTDs are approximations of an algorithm's true RTD:
- \checkmark The larger the N, the better the approximation

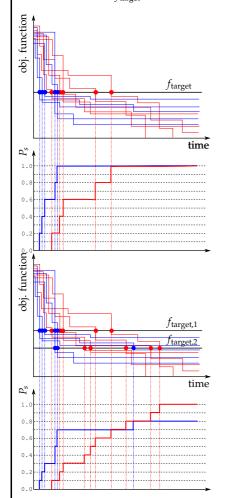
P. Pošík © 2012

A0M33EOA: Evolutionary Optimization Algorithms – 26 / 30

RTD based algorithm comparisons

E.g. type 2 application scenario: set $f_{\rm target}$ and compare RTDs of the algorithms

 \ldots and add another f_{target} level \ldots

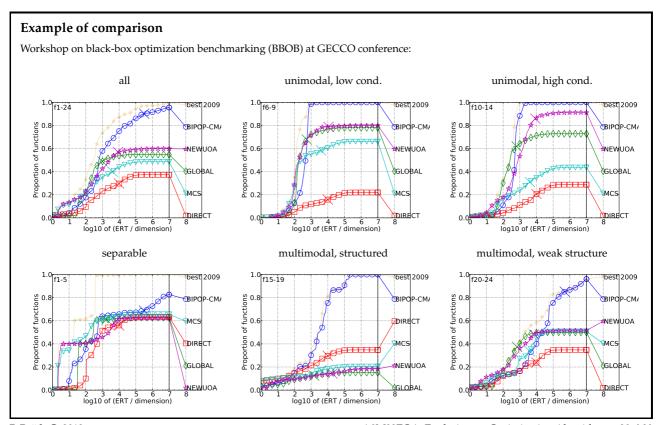


This way we can aggregate RTDs of an algorithm A not only

- \checkmark over various f_{target} levels, but also
- \checkmark over different problems $\pi \in \Pi$ (!!!), of course with certain loss of information

P. Pošík © 2012

A0M33EOA: Evolutionary Optimization Algorithms – 27 / 30



P. Pošík © 2012

A0M33EOA: Evolutionary Optimization Algorithms – $28 \ / \ 30$

Summary 29 / 30

Summary

- ✔ No-free-lunch: all algorithms behave equally on average.
- ✔ Comparison of optimization algorithms
 - **x** makes sense only on a well-defined class of problems,
 - \boldsymbol{x} is not easy since the chosen measures of algorithm quality are often random variables,
 - **x** is often inconclusive unless the application scenario (utility function) is known.
- ✓ The most common scenario is
 - **x** fix available runtime t_{max} ,
 - **x** perform several runs and measure the solution quality at the end of each,
 - x compare the algorithms based on median (or average) solution quality returned, and
 - **x** asses statistical significance of the difference using Mann-Whitney U test.
- ✓ All measures for comparison can be derived from rtd(t,q).

P. Pošík © 2012

A0M33EOA: Evolutionary Optimization Algorithms – 30 / 30