2. Empirical analysis and comparisons of stochastic optimization algorithms

Petr Pošík

Substantial part of this material is based on slides provided with the book 'Stochastic Local Search: Foundations and Applications' by Holger H. Hoos and Thomas Stützle (Morgan Kaufmann, 2004)

See www.sls-book.net for further information.

Motivation No-Free-Lunch Theorem	3
	4
Monte Carlo vs. Las Vegas Algorithms	5
Las Vegas algorithms	
Runtime Behaviour for Decision Problems	
Runtime Behaviour for Optimization Problems	
Some Tweaks	9
Theoretical vs. Empirical Analysis of LVAs	. 10
Application Scenarios and Evaluation Criteria	
Empirical Algorithm Comparison	14
CPU Runtime vs Operation Counts.	. 15
Scenario 1: Limited time	
Student's t-test.	. 17
Mann-Whitney-Wilcoxon rank-sum test.	. 18
Scenario 2: Prescribed target level	. 19
Scenarios 1 and 2 combined	
Analysis based on runtime distribution	21
Runtime distributions	. 22
RTD defintion	. 23
RTD cross-sections	
Empirical measurement of RTDs	. 26
RTD based algorithm comparisons	. 27
Example of comparison	
Summary	29
Summarry	30

Contents

- No-Free-Lunch Theorem
- What is so hard about the comparison of stochastic methods?
- Simple statistical comparisons
- Comparisons based on running length distributions

P. Pošík © 2014

A6M33SSL: Statistika a spolehlivost v lékařství – 2 / 30

Motivation 3 / 30

No-Free-Lunch Theorem

"There is no such thing as a free lunch."

- Refers to the nineteenth century practice in American bars of offering a "free lunch" with drinks.
- The meaning of the adage: *It is impossible to get something for nothing.*
- If something appears to be free, there is always a cost to the person or to society as a whole even though that cost may be hidden or distributed.

No-Free-Lunch theorem in search and optimization [WM97]

- Informally, for discrete spaces: "Any two algorithms are equivalent when their performance is averaged across all possible problems."
- For a particular problem (or a particular class of problems), different search algorithms may obtain different results.
- If an algorithm achieves superior results on some problems, it must pay with inferiority on other problems.

It makes sense to study which algorithms are suitable for which kinds of problems!!!

[WM97] D. H. Wolpert and W. G. Macready. No free lunch theorems for optimization. IEEE Trans. on Evolutionary Computation, 1(1):67–82, 1997.

P. Pošík © 2014

A6M33SSL: Statistika a spolehlivost v lékařství – 4 / 30

Monte Carlo vs. Las Vegas Algorithms

EOA belong to the class of *Monte Carlo* or *Las Vegas algorithms* (LVAs):

- Monte Carlo algorithm: It always stops and provides a solution, but the solution may not be correct. The solution quality is a random variable.
- Las Vegas algorithm: It always produces a correct solution, but needs a priori unknown time to find it. The running time is a random variable.
- LVA can be turned to MCA by bounding the allowed running time.
- MCA can be turned to LVA by restarting the algorithm from randomly chosen states.

P. Pošík © 2014

A6M33SSL: Statistika a spolehlivost v lékařství – 5 / 30

Las Vegas algorithms

Las Vegas algorithms:

- **a** An algorithm A for a decision problem class Π is a Las Vegas algorithm iff it has the following properties:
 - If *A* terminates for certain $\pi \in \Pi$ and returns a solution *s*, then *s* is guaranteed to be a correct solution of π .
 - For any given instance $\pi \in \Pi$, the runtime of A applied to π , $RT_{A,\pi}$, is a random variable.
- \blacksquare An algorithm *A* for an optimization problem class Π is an *optimization Las Vegas algorithm* iff it has the following properties:
 - For any given instance $\pi \in \Pi$, the runtime of A applied to π needed to find a solution with certain quality q, $RT_{A,\pi}(q)$, is a random variable.
 - For any given instance $\pi \in \Pi$, the solution quality achieved by A applied to π after certain time t, $SQ_{A,\pi}(t)$, is a random variable.
- LVAs are typically *incomplete* or at most *asymptotically complete*.

P. Pošík © 2014

A6M33SSL: Statistika a spolehlivost v lékařství – 6 / 30

Runtime Behaviour for Decision Problems

Definitions:

- \blacksquare *A* is an algorithm for a class Π of decision problems.
- $P_s(RT_{A,\pi} \le t)$ is a probability that A finds a solution for a problem instance $\pi \in \Pi$ in time less than or equal to t.

Complete algorithm A can provably solve any solvable decision problem instance $\pi \in \Pi$ after a finite time, i.e. A is complete if and only if

$$\forall \pi \in \Pi, \ \exists t_{\max} : P_s \left(RT_{A,\pi} \le t_{\max} \right) = 1. \tag{1}$$

Asymptotically complete algorithm A can solve any solvable problem instance $\pi \in \Pi$ with arbitrarily high probability *when allowed to run long enough*, i.e. A is asymptotically complete if and only if

$$\forall \pi \in \Pi: \lim_{t \to \infty} P_s \left(RT_{A,\pi} \le t \right) = 1. \tag{2}$$

Incomplete algorithm *A* cannot be guaranteed to find the solution even if allowed to run indefinitely long, i.e. if it is not asymptotically complete, i.e. *A* is incomplete if and only if

$$\exists \text{ solvable } \pi \in \Pi : \lim_{t \to \infty} P_s\left(RT_{A,\pi} \le t\right) < 1. \tag{3}$$

P. Pošík © 2014

A6M33SSL: Statistika a spolehlivost v lékařství – 7 / 30

Runtime Behaviour for Optimization Problems

Simple generalization based on transforming the optimization problem to related decision problem by setting the solution quality bound to $q = r \cdot q^*(\pi)$:

- lacksquare *A* is an algorithm for a class Π of optimization problems.
- $P_s(RT_{A,\pi} \le t, SQ_{A,\pi} \le q)$ is the probability that A finds a solution of quality better than or equal to q for a solvable problem instance $\pi \in \Pi$ in time less than or equal to t.
- $q^*(\pi)$ is the quality of optimal solution to problem π .
- $r \ge 1, q > 0.$

Algorithm *A* **is r-complete** if and only if

$$\forall \pi \in \Pi, \ \exists t_{\max} : P_s(RT_{A,\pi} \le t_{\max}, SQ_{A,\pi} \le r \cdot q^*(\pi)) = 1. \tag{4}$$

Algorithm A is asymptotically r-complete if and only if

$$\forall \pi \in \Pi: \lim_{t \to \infty} P_s \left(RT_{A,\pi} \le t, SQ_{A,\pi} \le r \cdot q^*(\pi) \right) = 1. \tag{5}$$

Algorithm A is r-incomplete if and only if

$$\exists \text{ solvable } \pi \in \Pi : \lim_{t \to \infty} P_s \left(RT_{A,\pi} \le t, SQ_{A,\pi} \le r \cdot q^*(\pi) \right) < 1. \tag{6}$$

P. Pošík © 2014

A6M33SSL: Statistika a spolehlivost v lékařství – 8 / 30

Some Tweaks

- Incompleteness of many LVAs is typically caused by their inability to escape from attractive local minima regions of the search space.
 - Remedy: use diversification mechanisms such as random restart, random walk, tabu, ...
 - In many cases, these can render algorithms provably asymptotically complete, but effectiveness in practice can vary widely.
- Completeness can be achived by restarting an incomplete method from a solution generated by a complete (exhaustive)
 algorithm.
 - Typically very ineffective due to large size of the search space.

P. Pošík © 2014

A6M33SSL: Statistika a spolehlivost v lékařství – 9 / 30

Theoretical vs. Empirical Analysis of LVAs

- Practically relevant Las Vegas algorithms are typically difficult to analyse theoretically. (Algorithms are often non-deterministic.)
- Cases in which theoretical results are available are often of limited practical relevance, because they
 - rely on idealised assumptions that do not apply to practical situations,
 - apply to worst-case or highly idealised average-case behaviour only, or
 - capture only asymptotic behaviour and do not reflect actual behaviour with sufficient accuracy.

 $Therefore, {\it analyse the behaviour of LVAs using empirical methodology}, ideally based on the {\it scientific method:}$

- make observations
- formulate hypothesis/hypotheses (model)
- While not satisfied with model (and deadline not exceeded):
 - 1. design computational experiment to test model
 - 2. conduct computational experiment
 - 3. analyse experimental results
 - 4. revise model based on results

P. Pošík © 2014

A6M33SSL: Statistika a spolehlivost v lékařství – 10 / 30

Application Scenarios and Evaluation Criteria

Type 1: Hard time limit t_{max} for finding solution; solutions found later are useless (real-time environments with strict deadlines, e.g., dynamic task scheduling or on-line robot control).

 \Rightarrow Evaluation criterion:

- dec. prob.: solution probability at time t_{max} , P_s ($RT \le t_{\text{max}}$)
- opt. prob.: expected quality of the solution found at time t_{max} , $E(SQ(t_{\text{max}}))$

■ Possible problem: What does "The expected solution quality of algorithm *A* is 2 times better than for algorithm *B*" actually mean?

P. Pošík © 2014

A6M33SSL: Statistika a spolehlivost v lékařství – 11 / 30

Application Scenarios and Evaluation Criteria (cont.)

Type 2: No time limits given, algorithm can be run until a solution is found (off-line computations, non-realtime environments, e.g., configuration of production facility).

 \Rightarrow Evaluation criterion:

- dec. prob.: expected runtime to solve a problem
- opt. prob.: expected runtime to reach solution of certain quality

■ Is there any problem with "The expected runtime of algorithm *A* is 2 times larger than for algorithm *B*"?

P. Pošík © 2014

A6M33SSL: Statistika a spolehlivost v lékařství – 12 / 30

Application Scenarios and Evaluation Criteria (cont.)

Type 3: Utility of solutions depends in more complex ways on the time required to find them; characterised by a utility function U:

- dec. prob.: $U: R^+ \mapsto \langle 0, 1 \rangle$, where U(t) = utility of solution found at time t
- opt. prob.: $U: R^+ \times R^+ \mapsto \langle 0, 1 \rangle$, where U(t, q) = utility of solution with quality q found at time t

Example: The direct benefit of a solution is invariant over time, but the cost of computing time diminishes the final payoff according to $U(t) = \max\{u_0 - c \cdot t, 0\}$ (constant discounting).

- \Rightarrow Evaluation criterion: utility-weighted solution probability
- dec. prob.: $U(t) \cdot P_s (RT \le t)$, or
- opt. prob.: $U(t,q) \cdot P_s (RT \le t, SQ \le q)$

requires detailed knowledge of $P_s(...)$ for arbitrary t (and arbitrary q).

P. Pošík © 2014

A6M33SSL: Statistika a spolehlivost v lékařství – 13 / 30

Empirical Algorithm Comparison

14 / 30

CPU Runtime vs Operation Counts

Remark: Is it better to measure the time in seconds or e.g. in function evaluations?

- Results of experiments should be comparable.
- Wall-clock time depends on the machine configuration, computer language, and on the operating system used to run the experiments.
- Since the objective function is often the most time-consuming operation in the optimization cycle, many authors use the *number of objective function evaluations* as the primary measure of "time".

P. Pošík © 2014

A6M33SSL: Statistika a spolehlivost v lékařství – 15 / 30

Scenario 1: Limited time

Let them run for certain time t_{max} and compare the average quality of returned solution, ave(SQ)

- For $t_{\text{max},1}$, blue algorithm is better than red.
- For $t_{\text{max},2}$, blue algorithm is worse than red.
- WARNING! The figure can change when t_{max} changes!!!
- Can our claims be false? What is the probability that our claims are wrong?

P. Pošík © 2014

A6M33SSL: Statistika a spolehlivost v lékařství – 16 / 30

Student's t-test

Independent two-sample t-test:

- Statistical method used to test if the means of 2 normally distributed populations are equal.
- The larger the difference between means, the higher the probability the means are different.
- The lower the variance inside the populations, the higher the probability the means are different.
- For details, see e.g. [Luk09, sec. 11.1.2].
- Implemented in most mathematical and statistical software, e.g. in MATLAB.
- Can be easily implemented in any language.

Assumptions:

- Both populations should have normal distribution.
- Almost never fulfilled with the populations of solution qualities.

Remedy: a non-parametric test!

 $[Luk09] \quad Sean\ Luke.\ \textit{Essentials of Metaheuristics}.\ 2009.\ available\ at\ http://cs.gmu.edu/\sim sean/book/metaheuristics/...$

P. Pošík © 2014

A6M33SSL: Statistika a spolehlivost v lékařství – 17 / 30

Mann-Whitney-Wilcoxon rank-sum test

Non-parametric test assessing whether two independent samples of observations have equally large values.

- Virtually identical to:
 - combine both samples (for each observation, remember its original group),
 - sort the values,
 - replace the values by ranks,
 - use the ranks with ordinary parametric two-sample t-test.
- The measurements must be at least ordinal:
 - We must be able to sort them.
 - This allows us to merge results from runs which reached the target level with the results of runs which did not.

P. Pošík © 2014

A6M33SSL: Statistika a spolehlivost v lékařství – 18 / 30

Scenario 2: Prescribed target level

■ Let them run until they find a solution of certain quality f_{target} and compare the average runtime, ave(RT)

- For $f_{\text{target,1}}$, blue algorithm is better than red.
- For $f_{\text{target,2}}$, blue algorithm still seems to better than red (if it finds the solution, it finds it faster), but 2 blue runs did not reach the target level yet, i.e. (we are much less sure that blue is better).
- WARNING! The figure can change when f_{target} changes!!!
- The same statistical tests as for scenario 1 can be used.

P. Pošík © 2014

A6M33SSL: Statistika a spolehlivost v lékařství – 19 / 30

Scenarios 1 and 2 combined

■ Let them run until they find a solution of certain quality f_{target} or until they use all the allowed time t_{max} .

- RT is measured in seconds or function evaluations, SQ is measured in something different; now, how can we test if one algorithm is better than the other?
- \blacksquare The situation when the algorithm reaches f_{target} is better than when it reaches t_{max} . We can still sort the values.
- We can use the Mann-Whitney U-test.
- WARNING! Again, if we change f_{target} and/or t_{max} , the figure can change!!!

P. Pošík © 2014

A6M33SSL: Statistika a spolehlivost v lékařství – 20 / 30

Analysis based on runtime distribution

21 / 30

Runtime distributions

LVAs are often designed and evaluated without apriori knowledge of the application scenario:

- Assume the most general scenario type 3 with a utility function (which is often, however, unknown as well).
- Evaluate based on solution probabilities P_s ($RT \le t$, $SQ \le q$) for arbitrary runtimes t and solution qualities q.

Study distributions of *random variables* characterising runtime and solution quality of an algorithm for the given problem instance.

P. Pošík © 2014

A6M33SSL: Statistika a spolehlivost v lékařství – 22 / 30

RTD defintion

Given a Las Vegas alg. *A* for optimization problem π :

- The *success probability* P_s ($RT_{A,\pi} \le t$, $SQ_{A,\pi} \le q$) is the probability that A finds a solution for a solvable instance $\pi \in \Pi$ of quality $\le q$ in time $\le t$.
- The *run-time distribution* (RTD) of *A* on π is the probability distribution of the bivariate random variable ($RT_{A,\pi}$, $SQ_{A,\pi}$).
- The runtime distribution function $rtd: R^+ \times R^+ \to [0,1]$, defined as $rtd(t,q) = P_s \ (RT_{A,\pi} \le t, SQ_{A,\pi} \le q)$, completely characterises the RTD of A on π .

P. Pošík © 2014

A6M33SSL: Statistika a spolehlivost v lékařství – 23 / 30

P. Pošík © 2014

A6M33SSL: Statistika a spolehlivost v lékařství – 24 / 30

RTD cross-sections (cont.)

We can study the RTD using cross-sections:

Horizontal cross-sections reveal the dependence of SQ on RT:

■ The lines represent various quantiles; e.g. for 75%-quantile we can expect that 75% of runs will return a better combination of *SQ* and *RT*.

P. Pošík © 2014

A6M33SSL: Statistika a spolehlivost v lékařství – 25 / 30

Empirical measurement of RTDs

Empirical estimation of P_s ($RT \le t$, $SQ \le q$):

- Perform *N* independent runs of *A* on problem π .
- For n^{th} run, $n \in 1, ..., N$, store the so-called *solution quality trace*, i.e. $t_{n,i}$ and $q_{n,i}$ each time the quality is improved.
- $\bar{P}_s(t,q) = \frac{n_S(t,q)}{N}$, where $n_S(t,q)$ is the number of runs which provided at least one solution with $t_i \le t$ and $q_i \le q$.

Empirical RTDs are approximations of an algorithm's true RTD:

 \blacksquare The larger the N, the better the approximation.

P. Pošík © 2014

A6M33SSL: Statistika a spolehlivost v lékařství – 26 / 30

RTD based algorithm comparisons

E.g. type 2 application scenario: set $f_{\rm target}$ and compare RTDs of the algorithms

 \dots and add another f_{target} level \dots

This way we can aggregate RTDs of an algorithm *A* not only

- lacksquare over various f_{target} levels, but also
- over different problems $\pi \in \Pi$ (!!!), of course with certain loss of information.

P. Pošík © 2014

A6M33SSL: Statistika a spolehlivost v lékařství – 27 / 30

P. Pošík © 2014

A6M33SSL: Statistika a spolehlivost v lékařství – 28 / 30

Summary 29 / 30

Summary

- No-free-lunch: all algorithms behave equally on average.
- Comparison of optimization algorithms
 - makes sense only on a well-defined class of problems,
 - is not easy since the chosen measures of algorithm quality are often random variables,
 - is often inconclusive unless the application scenario (utility function) is known.
- The most common scenario is
 - fix available runtime t_{max} ,
 - perform several runs and measure the solution quality at the end of each,
 - compare the algorithms based on median (or average) solution quality returned, and
 - asses statistical significance of the difference using Mann-Whitney U test.
- All measures for comparison can be derived from rtd(t, q).

P. Pošík © 2014

A6M33SSL: Statistika a spolehlivost v lékařství – 30 / 30