
Java Programming Style Guidelines

Java Programming Style Guidelines

Version 5.11, October 2006
Geotechnical Software Services

Copyright © 1998 - 2006

This document is available at http://geosoft.no/development/javastyle.html

Table of Content

● 1 Introduction
❍ 1.1 Layout of theRecommendations
❍ 1.2 Recommendations Importance

● 2 General Recommendations
● 3 Naming Conventions

❍ 3.1 General Naming Conventions
❍ 3.2 Specific naming Conventions

● 4 Files
● 5 Statements

❍ 5.1 Package and Import Statements
❍ 5.2 Classes and Interfaces
❍ 5.3 Methods
❍ 5.4 Types
❍ 5.5 Variables
❍ 5.6 Loops
❍ 5.7 Conditionals
❍ 5.8 Miscellaneous

● 6 Layout and Comments
❍ 6.1 Layout
❍ 6.2 White space
❍ 6.3 Comments

● 7 References

1 Introduction

This document lists Java coding recommendations common in the Java development community.

The recommendations are based on established standards collected from a number of sources,
individual experience, local requirements/needs, as well as suggestions given in [1], [2], [3], [4] and
[5].

http://geosoft.no/development/javastyle.html (1 z 24) [20.10.2006 9:23:56]

Java Programming Style Guidelines

There are several reasons for introducing a new guideline rather than just referring to the ones
above. Main reason is that these guides are far too general in their scope and that more specific rules
(especially naming rules) need to be established. Also, the present guide has an annotated form that
makes it easier to use during project code reviews than most other existing guidelines. In addition,
programming recommendations generally tend to mix style issues with language technical issues in a
somewhat confusing manner. The present document does not contain any Java technical
recommendations at all, but focuses mainly on programming style.

While a given development environment (IDE) can improve the readability of code by access visibility,
color coding, automatic formatting and so on, the programmer should never rely on such features.
Source code should always be considered larger than the IDE it is developed within and should be
written in a way that maximize its readability independent of any IDE.

1.1 Layout of the Recommendations.

The recommendations are grouped by topic and each recommendation is numbered to make it easier
to refer to during reviews.

Layout for the recommendations is as follows:

n. Guideline short description

Example if applicable

Motivation, background and additional information.

The motivation section is important. Coding standards and guidelines tend to start "religious wars",
and it is important to state the background for the recommendation.

1.2 Recommendation Importance

In the guideline sections the terms must, should and can have special meaning. A must requirement
must be followed, a should is a strong recommendation, and a can is a general guideline.

2 General Recommendations

1. Any violation to the guide is allowed if it enhances readability.

The main goal of the recommendation is to improve readability and thereby the understanding and
the maintainability and general quality of the code. It is impossible to cover all the specific cases in a
general guide and the programmer should be flexible.

3 Naming Conventions

3.1 General Naming Conventions

2. Names representing packages should be in all lower case.

mypackage, com.company.application.ui

http://geosoft.no/development/javastyle.html (2 z 24) [20.10.2006 9:23:56]

Java Programming Style Guidelines

Package naming convention used by Sun for the Java core packages. The initial package name
representing the domain name must be in lower case.

3. Names representing types must be nouns and written in mixed case starting with upper
case.

Line, AudioSystem

Common practice in the Java development community and also the type naming convention used
by Sun for the Java core packages.

4. Variable names must be in mixed case starting with lower case.

line, audioSystem

Common practice in the Java development community and also the naming convention for variables
used by Sun for the Java core packages. Makes variables easy to distinguish from types, and
effectively resolves potential naming collision as in the declaration Line line;

5. Names representing constants (final variables) must be all uppercase using underscore to
separate words.

MAX_ITERATIONS, COLOR_RED

Common practice in the Java development community and also the naming convention used by Sun
for the Java core packages.

In general, the use of such constants should be minimized. In many cases implementing the value
as a method is a better choice:

 int getMaxIterations() // NOT: MAX_ITERATIONS = 25
 {
 return 25;
 }

This form is both easier to read, and it ensures a uniform interface towards class values.

6. Names representing methods must be verbs and written in mixed case starting with lower
case.

getName(), computeTotalWidth()

Common practice in the Java development community and also the naming convention used by Sun
for the Java core packages. This is identical to variable names, but methods in Java are already
distinguishable from variables by their specific form.

7. Abbreviations and acronyms should not be uppercase when used as name.

exportHtmlSource(); // NOT: exportHTMLSource();
openDvdPlayer(); // NOT: openDVDPlayer();

http://geosoft.no/development/javastyle.html (3 z 24) [20.10.2006 9:23:56]

Java Programming Style Guidelines

Using all uppercase for the base name will give conflicts with the naming conventions given above.
A variable of this type whould have to be named dVD, hTML etc. which obviously is not very
readable. Another problem is illustrated in the examples above; When the name is connected to
another, the readability is seriously reduced; The word following the acronym does not stand out as
it should.

8. Private class variables should have underscore suffix.

class Person
{
 private String name_;
 ...
}

Apart from its name and its type, the scope of a variable is its most important feature. Indicating
class scope by using underscore makes it easy to distinguish class variables from local scratch
variables. This is important because class variables are considered to have higher significance than
method variables, and should be treated with special care by the programmer.

A side effect of the underscore naming convention is that it nicely resolves the problem of finding
reasonable variable names for setter methods:

 void setName(String name)
 {
 name_ = name;
 }

An issue is whether the underscore should be added as a prefix or as a suffix. Both practices are
commonly used, but the latter is recommended because it seem to best preserve the readability of
the name.

It should be noted that scope identification in variables have been a controversial issue for quite
some time. It seems, though, that this practice now is gaining acceptance and that it is becoming
more and more common as a convention in the professional development community.

9. Generic variables should have the same name as their type.

void setTopic(Topic topic) // NOT: void setTopic(Topic value)
 // NOT: void setTopic(Topic aTopic)
 // NOT: void setTopic(Topic t)

void connect(Database database) // NOT: void connect(Database db)
 // NOT: void connect(Database oracleDB)

http://geosoft.no/development/javastyle.html (4 z 24) [20.10.2006 9:23:56]

Java Programming Style Guidelines

Reduce complexity by reducing the number of terms and names used. Also makes it easy to deduce
the type given a variable name only.

If for some reason this convention doesn't seem to fit it is a strong indication that the type name is
badly chosen.

Non-generic variables have a role. These variables can often be named by combining role and type:

 Point startingPoint, centerPoint;
 Name loginName;

10. All names should be written in English.

English is the preferred language for international development.

11. Variables with a large scope should have long names, variables with a small scope can
have short names [1].

Scratch variables used for temporary storage or indices are best kept short. A programmer reading
such variables should be able to assume that its value is not used outside a few lines of code.
Common scratch variables for integers are i, j, k, m, n and for characters c and d.

12. The name of the object is implicit, and should be avoided in a method name.

line.getLength(); // NOT: line.getLineLength();

The latter might seem natural in the class declaration, but proves superfluous in use, as shown in
the example.

3.2 Specific Naming Conventions

13. The terms get/set must be used where an attribute is accessed directly.

employee.getName();
employee.setName(name);

matrix.getElement(2, 4);
matrix.setElement(2, 4, value);

Common practice in the Java community and the convention used by Sun for the Java core
packages.

14. is prefix should be used for boolean variables and methods.

isSet, isVisible, isFinished, isFound, isOpen

http://geosoft.no/development/javastyle.html (5 z 24) [20.10.2006 9:23:56]

Java Programming Style Guidelines

This is the naming convention for boolean methods and variables used by Sun for the Java core
packages.

Using the is prefix solves a common problem of choosing bad boolean names like status or flag.
isStatus or isFlag simply doesn't fit, and the programmer is forced to chose more meaningful names.

Setter methods for boolean variables must have set prefix as in:

 void setFound(boolean isFound);

There are a few alternatives to the is prefix that fits better in some situations. These are has, can
and should prefixes:

 boolean hasLicense();
 boolean canEvaluate();
 boolean shouldAbort = false;

15. The term compute can be used in methods where something is computed.

valueSet.computeAverage();
matrix.computeInverse()

Give the reader the immediate clue that this is a potential time consuming operation, and if used
repeatedly, he might consider caching the result. Consistent use of the term enhances readability.

16. The term find can be used in methods where something is looked up.

vertex.findNearestVertex();
matrix.findSmallestElement();
node.findShortestPath(Node destinationNode);

Give the reader the immediate clue that this is a simple look up method with a minimum of
computations involved. Consistent use of the term enhances readability.

17. The term initialize can be used where an object or a concept is established.

printer.initializeFontSet();

The American initializeshould be preferred over the English initialise. Abbreviation init must be
avoided.

18. JFC (Java Swing) variables should be suffixed by the element type.

widthScale, nameTextField, leftScrollbar, mainPanel, fileToggle, minLabel,
printerDialog

Enhances readability since the name gives the user an immediate clue of the type of the variable
and thereby the available resources of the object.

19. Plural form should be used on names representing a collection of objects.

http://geosoft.no/development/javastyle.html (6 z 24) [20.10.2006 9:23:56]

Java Programming Style Guidelines

Collection<Point> points;
int[] values;

Enhances readability since the name gives the user an immediate clue of the type of the variable
and the operations that can be performed on its elements.

20. n prefix should be used for variables representing a number of objects.

nPoints, nLines

The notation is taken from mathematics where it is an established convention for indicating a
number of objects.

Note that Sun use num prefix in the core Java packages for such variables. This is probably meant
as an abbreviation of number of, but as it looks more like number it makes the variable name
strange and misleading. If "number of" is the preferred phrase, numberOf prefix can be used instead
of just n. num prefix must not be used.

21. No suffix should be used for variables representing an entity number.

tableNo, employeeNo

The notation is taken from mathematics where it is an established convention for indicating an entity
number.

An elegant alternative is to prefix such variables with an i: iTable, iEmployee. This effectively
makes them named iterators.

22. Iterator variables should be called i, j, k etc.

for (Iterator i = points.iterator(); i.hasNext();) {
 :
}

for (int i = 0; i < nTables; i++) {
 :
}

The notation is taken from mathematics where it is an established convention for indicating iterators.

Variables named j, k etc. should be used for nested loops only.

23. Complement names must be used for complement entities [1].

get/set, add/remove, create/destroy, start/stop, insert/delete,
increment/decrement, old/new, begin/end, first/last, up/down, min/max,
next/previous, old/new, open/close, show/hide, suspend/resume, etc.

Reduce complexity by symmetry.

24. Abbreviations in names should be avoided.

http://geosoft.no/development/javastyle.html (7 z 24) [20.10.2006 9:23:56]

Java Programming Style Guidelines

computeAverage(); // NOT: compAvg();
ActionEvent event; // NOT: ActionEvent e;
catch (Exception exception) { // NOT: catch (Exception e) {

There are two types of words to consider. First are the common words listed in a language
dictionary. These must never be abbreviated. Never write:

cmd instead of command
comp instead of compute
cp instead of copy
e instead of exception
init instead of initialize
pt instead of point
etc.

Then there are domain specific phrases that are more naturally known through their acronym or
abbreviations. These phrases should be kept abbreviated. Never write:

HypertextMarkupLanguage instead of html
CentralProcessingUnit instead of cpu
PriceEarningRatio instead of pe
etc.

25. Negated boolean variable names must be avoided.

bool isError; // NOT: isNoError
bool isFound; // NOT: isNotFound

The problem arise when the logical not operator is used and double negative arises. It is not
immediately apparent what !isNotError means.

26. Associated constants (final variables) should be prefixed by a common type name.

final int COLOR_RED = 1;
final int COLOR_GREEN = 2;
final int COLOR_BLUE = 3;

This indicates that the constants belong together, and what concept the constants represents.

An alternative to this approach is to put the constants inside an interface effectively prefixing their
names with the name of the interface:

 interface Color
 {
 final int RED = 1;
 final int GREEN = 2;
 final int BLUE = 3;
 }

27. Exception classes should be suffixed with Exception.

http://geosoft.no/development/javastyle.html (8 z 24) [20.10.2006 9:23:56]

Java Programming Style Guidelines

class AccessException extends Exception
{
 :
}

Exception classes are really not part of the main design of the program, and naming them like this
makes them stand out relative to the other classes. This standard is followed by Sun in the basic
Java library.

28. Default interface implementations can be prefixed by Default.

class DefaultTableCellRenderer
 implements TableCellRenderer
{
 :
}

It is not uncommon to create a simplistic class implementation of an interface providing default
behaviour to the interface methods. The convention of prefixing these classes by Default has been
adopted by Sun for the Java library.

29. Singleton classes should return their sole instance through method getInstance.

class UnitManager
{
 private final static UnitManager instance_ = new UnitManager();

 private UnitManager()
 {
 ...
 }

 public static UnitManager getInstance() // NOT: get() or instance() or
unitManager() etc.
 {
 return instance_;
 }
}

Common practice in the Java community though not consistently followed by Sun in the JDK. The
above layout is the preferred pattern.

30. Classes that creates instances on behalf of others (factories) can do so through method
new[ClassName]

class PointFactory
{
 public Point newPoint(...)
 {
 ...
 }
}

http://geosoft.no/development/javastyle.html (9 z 24) [20.10.2006 9:23:56]

Java Programming Style Guidelines

Indicates that the instance is created by new inside the factory method and that the construct is a
controlled replacement of new Point().

31. Functions (methods returning an object) should be named after what they return and
procedures (void methods) after what they do.

Increase readability. Makes it clear what the unit should do and especially all the things it is not
supposed to do. This again makes it easier to keep the code clean of side effects.

4 Files

32. Java source files should have the extension .java.

Point.java

Enforced by the Java tools.

33. Classes should be declared in individual files with the file name matching the class name.
Secondary private classes can be declared as inner classes and reside in the file of the class
they belong to.

Enforced by the Java tools.

34. File content must be kept within 80 columns.

80 columns is the common dimension for editors, terminal emulators, printers and debuggers, and
files that are shared between several developers should keep within these constraints. It improves
readability when unintentional line breaks are avoided when passing a file between programmers.

35. Special characters like TAB and page break must be avoided.

These characters are bound to cause problem for editors, printers, terminal emulators or debuggers
when used in a multi-programmer, multi-platform environment.

36. The incompleteness of split lines must be made obvious [1].

totalSum = a + b + c +
 d + e;

method(param1, param2,
 param3);

setText ("Long line split" +
 "into two parts.");

for (int tableNo = 0; tableNo < nTables;
 tableNo += tableStep) {
 ...
}

http://geosoft.no/development/javastyle.html (10 z 24) [20.10.2006 9:23:56]

Java Programming Style Guidelines

Split lines occurs when a statement exceed the 80 column limit given above. It is difficult to give rigid
rules for how lines should be split, but the examples above should give a general hint.

In general:

● Break after a comma.
● Break after an operator.
● Align the new line with the beginning of the expression on the previous line.

5 Statements

5.1 Package and Import Statements

37. The package statement must be the first statement of the file. All files should belong to a
specific package.

The package statement location is enforced by the Java language. Letting all files belong to an
actual (rather than the Java default) package enforces Java language object oriented programming
techniques.

38. The import statements must follow the package statement. import statements should
be sorted with the most fundamental packages first, and grouped with associated packages
together and one blank line between groups.

import java.io.IOException;
import java.net.URL;

import java.rmi.RmiServer;
import java.rmi.server.Server;

import javax.swing.JPanel;
import javax.swing.event.ActionEvent;

import org.linux.apache.server.SoapServer;

The import statement location is enforced by the Java language. The sorting makes it simple to
browse the list when there are many imports, and it makes it easy to determine the dependiencies of
the present package The grouping reduce complexity by collapsing related information into a
common unit.

39. Imported classes should always be listed explicitly.

import java.util.List; // NOT: import java.util.*;
import java.util.ArrayList;
import java.util.HashSet;

Importing classes explicitly gives an excellent documentation value for the class at hand and makes
the class easier to comprehend and maintain.

Appropriate tools should be used in order to always keep the import list minimal and up to date.

http://geosoft.no/development/javastyle.html (11 z 24) [20.10.2006 9:23:56]

Java Programming Style Guidelines

5.2 Classes and Interfaces

40. Class and Interface declarations should be organized in the following manner:

1. Class/Interface documentation.
2. class or interface statement.
3. Class (static) variables in the order public, protected, package (no access

modifier), private.
4. Instance variables in the order public, protected, package (no access modifier),

private.
5. Constructors.
6. Methods (no specific order).

Reduce complexity by making the location of each class element predictable.

5.3 Methods

41. Method modifiers should be given in the following order:
<access> static abstract synchronized <unusual> final native
The <access> modifier (if present) must be the first modifier.

public static double square(double a); // NOT: static public double
square(double a);

<access> is one of public, protected or private while <unusual> includes volatile and transient. The
most important lesson here is to keep the access modifier as the first modifier. Of the possible
modifiers, this is by far the most important, and it must stand out in the method declaration. For the
other modifiers, the order is less important, but it make sense to have a fixed convention.

5.4 Types

42. Type conversions must always be done explicitly. Never rely on implicit type conversion.

floatValue = (int) intValue; // NOT: floatValue = intValue;

By this, the programmer indicates that he is aware of the different types involved and that the mix is
intentional.

43. Array specifiers must be attached to the type not the variable.

int[] a = new int[20]; // NOT: int a[] = new int[20]

The arrayness is a feature of the base type, not the variable. It is not known why Sun allows both
forms.

5.5 Variables

44. Variables should be initialized where they are declared and they should be declared in the
smallest scope possible.

http://geosoft.no/development/javastyle.html (12 z 24) [20.10.2006 9:23:56]

Java Programming Style Guidelines

This ensures that variables are valid at any time. Sometimes it is impossible to initialize a variable to
a valid value where it is declared. In these cases it should be left uninitialized rather than initialized
to some phony value.

45. Variables must never have dual meaning.

Enhances readability by ensuring all concepts are represented uniquely. Reduce chance of error by
side effects.

46. Class variables should never be declared public.

The concept of Java information hiding and encapsulation is violated by public variables. Use
private variables and access functions instead. One exception to this rule is when the class is
essentially a data structure, with no behavior (equivalent to a C++ struct). In this case it is
appropriate to make the class' instance variables public [2].

47. Arrays should be declared with their brackets next to the type.

double[] vertex; // NOT: double vertex[];
int[] count; // NOT: int count[];

public static void main(String[] arguments)

public double[] computeVertex()

The reason for is twofold. First, the array-ness is a feature of the class, not the variable. Second,
when returning an array from a method, it is not possible to have the brackets with other than the
type (as shown in the last example).

48. Variables should be kept alive for as short a time as possible.

Keeping the operations on a variable within a small scope, it is easier to control the effects and side
effects of the variable.

5.6 Loops

49. Only loop control statements must be included in the for() construction.

sum = 0; // NOT: for (i = 0, sum = 0; i < 100; i++)
for (i = 0; i < 100; i++) sum += value[i];
 sum += value[i];

Increase maintainability and readability. Make a clear distinction of what controls and what is
contained in the loop.

50. Loop variables should be initialized immediately before the loop.

isDone = false; // NOT: bool isDone = false;
while (!isDone) { // :
 : // while (!isDone) {
} // :
 // }

http://geosoft.no/development/javastyle.html (13 z 24) [20.10.2006 9:23:56]

Java Programming Style Guidelines

51. The use of do-while loops can be avoided.

do-while loops are less readable than ordinary while loops and for loops since the conditional is at
the bottom of the loop. The reader must scan the entire loop in order to understand the scope of the
loop.

In addition, do-while loops are not needed. Any do-while loop can easily be rewritten into a while
loop or a for loop. Reducing the number of constructs used enhance readbility.

52. The use of break and continue in loops should be avoided.

These statements should only be used if they prove to give higher readability than their structured
counterparts.

5.7 Conditionals

53. Complex conditional expressions must be avoided. Introduce temporary boolean
variables instead [1].

bool isFinished = (elementNo < 0) || (elementNo > maxElement);
bool isRepeatedEntry = elementNo == lastElement;
if (isFinished || isRepeatedEntry) {
 :
}

// NOT:
if ((elementNo < 0) || (elementNo > maxElement)||
 elementNo == lastElement) {
 :
}

By assigning boolean variables to expressions, the program gets automatic documentation. The
construction will be easier to read, debug and maintain.

54. The nominal case should be put in the if-part and the exception in the else-part of an if
statement [1].

boolean isOk = readFile(fileName);
if (isOk) {
 :
}
else {
 :
}

Makes sure that the exceptions does not obscure the normal path of execution. This is important for
both the readability and performance.

55. The conditional should be put on a separate line.

http://geosoft.no/development/javastyle.html (14 z 24) [20.10.2006 9:23:56]

Java Programming Style Guidelines

if (isDone) // NOT: if (isDone) doCleanup();
 doCleanup();

This is for debugging purposes. When writing on a single line, it is not apparent whether the test is
really true or not.

56. Executable statements in conditionals must be avoided.

InputStream stream = File.open(fileName, "w");
if (stream != null) {
 :
}

// NOT:
if (File.open(fileName, "w") != null)) {
 :
}

Conditionals with executable statements are simply very difficult to read. This is especially true for
programmers new to Java.

5.8 Miscellaneous

57. The use of magic numbers in the code should be avoided. Numbers other than 0 and
1can be considered declared as named constants instead.

private static final int TEAM_SIZE = 11;
:
Player[] players = new Player[TEAM_SIZE]; // NOT: Player[] players = new
Player[11];

If the number does not have an obvious meaning by itself, the readability is enhanced by introducing
a named constant instead.

58. Floating point constants should always be written with decimal point and at least one
decimal.

double total = 0.0; // NOT: double total = 0;
double speed = 3.0e8; // NOT: double speed = 3e8;

double sum;
:
sum = (a + b) * 10.0;

This emphasize the different nature of integer and floating point numbers. Mathematically the two
model completely different and non-compatible concepts.

Also, as in the last example above, it emphasize the type of the assigned variable (sum) at a point in
the code where this might not be evident.

59. Floating point constants should always be written with a digit before the decimal point.

double total = 0.5; // NOT: double total = .5;

http://geosoft.no/development/javastyle.html (15 z 24) [20.10.2006 9:23:56]

Java Programming Style Guidelines

The number and expression system in Java is borrowed from mathematics and one should adhere
to mathematical conventions for syntax wherever possible. Also, 0.5 is a lot more readable than .5;
There is no way it can be mixed with the integer 5.

60. Static variables or methods must always be refered to through the class name and never
through an instance variable.

Thread.sleep(1000); // NOT: thread.sleep(1000);

This emphasize that the element references is static and independent of any particular instance. For
the same reason the class name should also be included when a variable or method is accessed
from within the same class.

6 Layout and Comments

6.1 Layout

61. Basic indentation should be 2.

for (i = 0; i < nElements; i++)
 a[i] = 0;

Indentation is used to emphasize the logical structure of the code. Indentation of 1 is to small to
acheive this. Indentation larger than 4 makes deeply nested code difficult to read and increase the
chance that the lines must be split. Choosing between indentation of 2, 3 and 4; 2 and 4 are the
more common, and 2 chosen to reduce the chance of splitting code lines. Note that the Sun
recommendation on this point is 4.

62. Block layout should be as illustrated in example 1 below (recommended) or example 2,
and must not be as shown in example 3. Class, Interface and method blocks should use the
block layout of example 2.

while (!done) {
 doSomething();
 done = moreToDo();
}

while (!done)
{
 doSomething();
 done = moreToDo();
}

while (!done)
 {
 doSomething();
 done = moreToDo();
 }

Example 3 introduce an extra indentation level which doesn't emphasize the logical structure of the
code as clearly as example 1 and 2.

63. The class and interface declarations should have the following form:

class Rectangle extends Shape
 implements Cloneable, Serializable
{
 ...
}

This follows from the general block rule above. Note that it is common in the Java developer
community to have the opening bracket at the end of the line of the class keyword. This is not
recommended.

http://geosoft.no/development/javastyle.html (16 z 24) [20.10.2006 9:23:56]

Java Programming Style Guidelines

64. Method definitions should have the following form:

public void someMethod()
 throws SomeException
{
 ...
}

See comment on class statements above.

65. The if-else class of statements should have the following form:

if (condition) {
 statements;
}

if (condition) {
 statements;
}
else {
 statements;
}

if (condition) {
 statements;
}
else if (condition) {
 statements;
}
else {
 statements;
}

This follows partly from the general block rule above. However, it might be discussed if an else
clause should be on the same line as the closing bracket of the previous if or else clause:

 if (condition) {
 statements;
 } else {
 statements;
 }

This is equivalent to the Sun recommendation. The chosen approach is considered better in the way
that each part of the if-else statement is written on separate lines of the file. This should make it
easier to manipulate the statement, for instance when moving else clauses around.

66. The for statement should have the following form:

for (initialization; condition; update) {
 statements;
}

This follows from the general block rule above.

http://geosoft.no/development/javastyle.html (17 z 24) [20.10.2006 9:23:56]

Java Programming Style Guidelines

67. An empty for statement should have the following form:

for (initialization; condition; update)
 ;

This emphasize the fact that the for statement is empty and it makes it obvious for the reader that
this is intentional.

68. The while statement should have the following form:

while (condition) {
 statements;
}

This follows from the general block rule above.

69. The do-while statement should have the following form:

do {
 statements;
} while (condition);

This follows from the general block rule above.

70. The switch statement should have the following form:

switch (condition) {
 case ABC :
 statements;
 // Fallthrough

 case DEF :
 statements;
 break;

 case XYZ :
 statements;
 break;

 default :
 statements;
 break;
}

This differs slightly from the Sun recommendation both in indentation and spacing. In particular,
each case keyword is indented relative to the switch statement as a whole. This makes the entire
switch statement stand out. Note also the extra space before the : character. The explicit
Fallthrough comment should be included whenever there is a case statement without a break
statement. Leaving the break out is a common error, and it must be made clear that it is intentional
when it is not there.

71. A try-catch statement should have the following form:

http://geosoft.no/development/javastyle.html (18 z 24) [20.10.2006 9:23:56]

Java Programming Style Guidelines

try {
 statements;
}
catch (Exception exception) {
 statements;
}

try {
 statements;
}
catch (Exception exception) {
 statements;
}
finally {
 statements;
}

This follows partly from the general block rule above. This form differs from the Sun
recommendation in the same way as the if-else statement described above.

72. Single statement if-else, for or while statements can be written without brackets.

if (condition)
 statement;

while (condition)
 statement;

for (initialization; condition; update)
 statement;

It is a common recommendation (Sun Java recommendation included) that brackets should always
be used in all these cases. However, brackets are in general a language construct that groups
several statements. Brackets are per definition superfluous on a single statement. A common
argument against this syntax is that the code will break if an additional statement is added without
also adding the brackets. In general however, code should never be written to accommodate for
changes that might arise.

6.2 White Space

73.
- Operators should be surrounded by a space character.
- Java reserved words should be followed by a white space.
- Commas should be followed by a white space.
- Colons should be surrounded by white space.
- Semicolons in for statements should be followed by a space character.

http://geosoft.no/development/javastyle.html (19 z 24) [20.10.2006 9:23:56]

Java Programming Style Guidelines

a = (b + c) * d; // NOT: a=(b+c)*d

while (true) { // NOT: while(true){
 ...

doSomething(a, b, c, d); // NOT: doSomething(a,b,c,d);

case 100 : // NOT: case 100:

for (i = 0; i < 10; i++) { // NOT: for(i=0;i<10;i++){
 ...

Makes the individual components of the statements stand out and enhances readability. It is difficult
to give a complete list of the suggested use of whitespace in Java code. The examples above
however should give a general idea of the intentions.

74. Method names can be followed by a white space when it is followed by another name.

doSomething (currentFile);

Makes the individual names stand out. Enhances readability. When no name follows, the space can
be omitted (doSomething()) since there is no doubt about the name in this case.

An alternative to this approach is to require a space after the opening parenthesis. Those that
adhere to this standard usually also leave a space before the closing parentheses: doSomething(
currentFile);. This do make the individual names stand out as is the intention, but the space
before the closing parenthesis is rather artificial, and without this space the statement looks rather
asymmetrical (doSomething(currentFile);).

75. Logical units within a block should be separated by one blank line.

// Create a new identity matrix
Matrix4x4 matrix = new Matrix4x4();

// Precompute angles for efficiency
double cosAngle = Math.cos(angle);
double sinAngle = Math.sin(angle);

// Specify matrix as a rotation transformation
matrix.setElement(1, 1, cosAngle);
matrix.setElement(1, 2, sinAngle);
matrix.setElement(2, 1, -sinAngle);
matrix.setElement(2, 2, cosAngle);

// Apply rotation
transformation.multiply(matrix);

Enhances readability by introducing white space between logical units. Each block is often
introduced by a comment as indicated in the example above.

76. Methods should be separated by three blank lines.

By making the space larger than space within a method, the methods will stand out within the class.

http://geosoft.no/development/javastyle.html (20 z 24) [20.10.2006 9:23:56]

Java Programming Style Guidelines

77. Variables in declarations can be left aligned.

TextFile file;
int nPoints;
double x, y;

Enhances readability. The variables are easier to spot from the types by alignment.

78. Statements should be aligned wherever this enhances readability.

if (a == lowValue) compueSomething();
else if (a == mediumValue) computeSomethingElse();
else if (a == highValue) computeSomethingElseYet();

value = (potential * oilDensity) / constant1 +
 (depth * waterDensity) / constant2 +
 (zCoordinateValue * gasDensity) / constant3;

minPosition = computeDistance(min, x, y, z);
averagePosition = computeDistance(average, x, y, z);

switch (phase) {
 case PHASE_OIL : text = "Oil"; break;
 case PHASE_WATER : text = "Water"; break;
 case PHASE_GAS : text = "Gas"; break;
}

There are a number of places in the code where white space can be included to enhance readability
even if this violates common guidelines. Many of these cases have to do with code alignment.
General guidelines on code alignment are difficult to give, but the examples above should give some
general hints. In short, any construction that enhances readability should be allowed.

6.3 Comments

79. Tricky code should not be commented but rewritten [1].

In general, the use of comments should be minimized by making the code self-documenting by
appropriate name choices and an explicit logical structure.

80. All comments should be written in English.

In an international environment English is the preferred language.

81. Javadoc comments should have the following form:

http://geosoft.no/development/javastyle.html (21 z 24) [20.10.2006 9:23:57]

Java Programming Style Guidelines

/**
 * Return lateral location of the specified position.
 * If the position is unset, NaN is returned.
 *
 * @param x X coordinate of position.
 * @param y Y coordinate of position.
 * @param zone Zone of position.
 * @return Lateral location.
 * @throws IllegalArgumentException If zone is <= 0.
 */
public double computeLocation(double x, double y, int zone)
 throws IllegalArgumentException
{
 ...
}

A readable form is important because this type of documentation is typically read more often inside
the code than it is as processed text.

Note in particular:

● The opening /** on a separate line
● Subsequent * is aligned with the first one
● Space after each *
● Empty line between description and parameter section.
● Alignment of parameter descriptions.
● Punctuation behind each parameter description.
● No blank line bewteen the documentation block and the method/class.

Javadoc of class members can be specified on a single line as follows:

 /** Number of connections to this database */
 private int nConnections_;

82. There should be a space after the comment identifier.

// This is a comment NOT: //This is a comment

/** NOT: /**
 * This is a javadoc *This is a javadoc
 * comment *comment
 */ */

Improves readability by making the text stand out.

83. Use // for all non-JavaDoc comments, including multi-line comments.

// Comment spanning
// more than one line.

http://geosoft.no/development/javastyle.html (22 z 24) [20.10.2006 9:23:57]

Java Programming Style Guidelines

Since multilevel Java commenting is not supported, using // comments ensure that it is always
possible to comment out entire sections of a file using /* */ for debugging purposes etc.

84. Comments should be indented relative to their position in the code [1].

while (true) { // NOT: while (true) {
 // Do something // Do something
 something(); something();
} }

This is to avoid that the comments break the logical structure of the program.

85. The declaration of anonymous collection variables should be followed by a comment
stating the common type of the elements of the collection.

private Vector points_; // of Point
private Set shapes_; // of Shape

Without the extra comment it can be hard to figure out what the collection consist of, and thereby
how to treat the elements of the collection. In methods taking collection variables as input, the
common type of the elements should be given in the associated JavaDoc comment.

Whenever possible one should of course qualify the collection with the type to make the comment
superflous:

 private Vector<Point> points_;
 private Set<Shape> shapes_;

86. All public classes and public and protected functions within public classes should be
documented using the Java documentation (javadoc) conventions.

This makes it easy to keep up-to-date online code documentation.

7 References

[1] Code Complete, Steve McConnel - Microsoft Press

[2] Java Code Conventions
http://java.sun.com/docs/codeconv/html/CodeConvTOC.doc.html

[3] Netscape's Software Coding Standards for Java
http://developer.netscape.com/docs/technote/java/codestyle.html

[4] C / C++ / Java Coding Standards from NASA
http://v2ma09.gsfc.nasa.gov/coding_standards.html

[5] Coding Standards for Java from AmbySoft
http://www.ambysoft.com/javaCodingStandards.html

http://geosoft.no/development/javastyle.html (23 z 24) [20.10.2006 9:23:57]

http://java.sun.com/docs/codeconv/html/CodeConvTOC.doc.html
http://developer.netscape.com/docs/technote/java/codestyle.html
http://v2ma09.gsfc.nasa.gov/coding_standards.html
http://www.ambysoft.com/javaCodingStandards.html

Java Programming Style Guidelines

© 1998 - 2006 Geotechnical Software Services. All rights reserved.
This page is maintained by webwizard@geosoft.no

http://geosoft.no/development/javastyle.html (24 z 24) [20.10.2006 9:23:57]

mailto:webwizard@geosoft.no

	geosoft.no
	Java Programming Style Guidelines

