
1A0B36APO Computer Architectures

Computer Architectures

Microprocessor evolution - from 4-bit ones to superscalar RISC

Ver.1.00

Czech Technical University in Prague, Faculty of Electrical Engineering

2A0B36APO Computer Architectures

Technology and complexity comparison
CPU Company Year Transis. Technology Reg/Bus Data/prog+IO Cache

I/D+L2 Float Frequency MIPS Price

4004 Intel 1971 2,300 10um - 3x4mm 4bit 1kB/4kB 750kHz 0.06 $200

8008 Intel 1972 3,500 10um 8bit 16kB 0.06

8080 Intel 1974 6,000 6um 8bit 64kB+256 2MHz 0.64 $150

MC6501 NMOS T. 1975 $20

8085 Intel 1976 6,500 3um 8bit 64kB+256 5MHz 0.37

Z-80 Zilog 1976 8bit 64kB+256 2.5MHz

MC6502 NMOS T. 1976 $25

8086 Intel 1978 29,000 3um 16/16bit 1MB+64kB 4.77MHz 0.33 $360

8088 Intel 1979 3um 16/8bit 1MB+64kB 4.77MHz 0.33

MC68000 Motorola 1979 68,000 16-32/16bit 16MB

80286 Intel 1982 134,000 1.5um 16/16bit 16MB/1GBvirt 256B/0B 6MHz 0.9 $380

MC68020 Motorola 1984 190,000 32/32bit 16MB Ano 16MHz

80386DX Intel 1985 275,000 1.5um 32/32bit 4GB/64TBvirt 16MHz $299

MC68030 Motorola 1987 273,000 4GB+MMU 256B/256B

80486 Intel 1989 1.2mil 1um 32/32bit 4GB/64TBvirt 8kB Ano 25MHz 20 $900

MC68040 Motorola 1989 1.2mil 4GB+MMU 4kB/4kB Ano

PowerPC 601 Mot+IBM 1992 2.8mil 32/64bit 256 32kB Ano 66MHz

PA-RISC HP 1992 50MHz

Pentium Intel 1993 3.1mil 0.8um - BiCMOS 32/64bit 4GB+MMU Ano 66MHz 112

Alpha DEC 1994 9.3mil 64bit 4GB/64TBvir 8/8+96kB 300MHz 1000

MC68060 Motorola 1994 2.5mil 4GB+MMU 8kB/8kB Ano 50MHz 100 $308

Pentium Pro Intel 1995 5.5mil Ano 200/60MHz 440 $1682

Pentium II Intel 1998 7.5mil 32/64bit Ano+MMX
400/100MH

z 832

PowerPC
G4MPC7400

Motorola 1999
0.15um -
cooper6LM
CMOS

64/128bit 4GB/252 32kB/32kB
+2MB Ano+AV 450MHz 825

3A0B36APO Computer Architectures

Accumulator based architectures

● register+accumulator → accumulator
● 4bit Intel 4004 (1971)

● 8bit Intel8080 (1974) – registers pairs used to address data
in 64kB address space

4A0B36APO Computer Architectures

Intel 8080

Instruction
Register

Accumulator
Temp. Register

FlagFlip Flops

Data Bus
Buffer/Latch

ALU

DecimalAdjust

Instruction
Decoder and
MachineCycl
Encoding

R
e

gi
st

e
r

S
e

le
ct

Multiplexer

Timing and Control
Data BusControl

Reset

InterruptControl
Sync Clocks

DBIN#WR INTE Sync Ph1 Ph2

8 Bit internal Data Bus

D0-D7 bidirectional
Data Bus

WRITE

HoldAckHold

WaitControl

ReadyWait

WTemp. Reg. ZTemp. Reg.

BReg. CReg.

DReg. EReg.

HReg. LReg.

Stack Pointer

Program Counter

Incrementer/
DecrementerAddress Latch

Address Buffer

A0-A15Address Bus

Accumulator
Latch

Hold Control

INT

http://en.wikipedia.org/wiki/Intel_8080

http://en.wikipedia.org/wiki/Intel_8080

5A0B36APO Computer Architectures

Fast memory ⇒ reduce register count and add address modes

● Motorola 6800, NMOS T. 6502 (1975) - accumulator,
index, SP a PC only – use zero page as fast data

● Texas TMS990 – workspace pointer only, even PC, SP,
other registers in main memory, similar to transputers

6A0B36APO Computer Architectures

Memory is bottleneck now ⇒ complex instruction set modelled
according to C language constructs, CISC

● Motorola 68000 (1979) – 16/32bit
● two operand instructions

● register+=register, memory+=register, register+=memory,
even one instruction memory=memory

● based on microcode to process so rich instruction set

● Z-8000 16bit, Z-80000 32bit (1986) CISC
● 6 phases pipelined execution, without microcode, 18000

transistors only

7A0B36APO Computer Architectures

Data throughput and instruction fetching slow still ⇒ cache
memory

● The problem has been solved quite well
● Common cache or Harvard arrangement I & D
● More levels (speed limited for bigger size – decoder,

capacitance of common signals)
● But requires to solve data coherence when DMA access or

SMP is used
● synchronization instructions for peripherals access and

synchronization eieio (PowerPC), mcr p15 (ARM), …

● hardware support required for caches and SMP

– protocol MSI , MESI (Pentium), MOSI
– MOESI AMD64 (Modified, Owned, Exclusive, Shared,

and Invalid)

8A0B36APO Computer Architectures

Data coherence and multiple cached access

MOESI protocol
● Modified – cache line contains actual and modified data, none of other CPUs works

with data, old/previous data are hold in main memory
● Owned – line holds actual data, line can be shared with other CPUs CPU but only in

S state, main memory is not required to be up to date
● Exclusive – only this CPU and main memory contains cahe line data
● Shared – cache line is shared with other CPUs, one of them can be in O state, then

data can differ to content in main memory
● Invalid – cache line does not hold any valid data

 M O E S I

 M N N N N Y

 O N N N Y Y

 E N N N N Y

 S N Y N Y Y

 I Y Y Y Y Y http://en.wikipedia.org/wiki/MOESI_protocol

http://en.wikipedia.org/wiki/MOESI_protocol

9A0B36APO Computer Architectures

Other techniques to reduce memory access frequency ⇒
register windows, link/return address register

● SPARC - 8 global registers, 8 from previous window
(parameters), 16 in actual window, up to 100 and more
registers to stack windows. 8 registers in actual window is
used to pass parameters into subroutine

● PowerPC, MIPS, ARM – speedup to call leaf-node
functions with use of return address (link register) to store
address of the instruction to be executed after return from
subroutine

10A0B36APO Computer Architectures

PowerPC architecture

MSR

Supervisor-Level SPRs

Machine State Register

USER MODEL VEA

Development Support SPRs

Memory Management Registers

Condition
Register

FPSCR

CR
0 31

0 31

0 31

GPR0
GPR1

GPR31

User-Level SPRs

Integer Exception Reg. (XER0)

Link Register (LR)

Count Register (CTR)

0 31

0 63

0 31

Tim. B. Lower - Read (TBL)

Tim. B. Upper - Read (TBU)

Time Base Facility (for rRading)

USER MODEL UISA SUPERVISOR MODEL OEA

FPR0

FPR1

FPR31

Floating-Point
Status and
Control Register

11A0B36APO Computer Architectures

SPARC – register windows

● CPU includes from 40 to 520 general purpose 32-bit registers

● 8 of them are global registers, remaining registers are divided in groups of
16 into at least 2 (max 32) register windows

● Each instruction has access to 8 global registers and 24 registers
accessible through actually selected register windows position

● 24 windowed registers are divided into 8 input (in), 8 local (local) and 8
registers from the following window which are visible through current
window as an output (out) registers (registers to prepare call arguments)

● Active window is given by value of 5-bit pointer – Current Window Pointer
(CWP).

● CWP is decremented when subroutine is entered which selects following
window as an active/current one

● Increment of CWP return to the previous register window

● Window Invalid Mask (WIM) is a bit-map which allows to mark any of
windows as invalid and request exception (overflow or underflow) when
window is activated/selected by CWP

12A0B36APO Computer Architectures

SPARC - registers
Return from actual window ... %i7

The frame pointer %fp ... %i6

 %i5

 %i4

 %i3

 %i2

 %i1

 %i0

%l7

%l6

%l5

%l4

%l3

%l2

%l1

%l0

CALL out return address … %o7

The stack pointer %sp ... %o6

%o5

%o4

%o3

%o2

%o1

%o0

R31

R30

R29

R28

R27

R26

R25

R24

R23

R22

R21

R20

R19

R18

R17

R16

R15

R14

R13

R12

R11

R10

R9

R8

I

(in)

L
(local)

O
(out)

%g7

%g6

%g5

%g4

%g3

%g2

used by system %g1

zero %g0

R7

R6

R5

R4

R3

R2

R1

R0

G (global)

13A0B36APO Computer Architectures

SPARC – register windows operation

CWP=0 (current window pointer)

w1 outs

w2
outs

w3 outs

w4
locals

w4
outs

w5
outs

w6
outs

w7 outs w0 w0 outs
locals

w0 ins

w1 ins

w1 locals

w3
locals

w3
insw5

W5 locals

w5 ins

w4 ins

w6 w6
local

w2 w2
local

w2 ins

w7 w7
locals

w7
ins

RESTORE SAVE

w6 ins

(Overlap)

OTHERWIN=2

CANRESTORE=1

CANSAVE=3

14A0B36APO Computer Architectures

Pipelined execution, no microcode, but still problems with
jump instructions

● Early jump instruction decode
● Use delay slots to keep pipeline busy, MIPS, DSP
● Static and dynamic conditional branch prediction, branch

target address cache, speculative instruction execution

15A0B36APO Computer Architectures

Loongson3A

Processor Interface

BTB

BHT

ITLB

ICache

P
re-D

eco der

F
ix Q

ueu
e

Reorder Queue

Floating
Point
Register
File

ALU1

ALU2

FPU1

FPU2

F
lo

at
Q

ueue

Tag C
om

pare

C
P

0 Q
ue ue

D
C

A
C

H
E

DTLB

ROQ BRQ

Integer
Register
File

AGU

Write back Bus

Commit Bus

Map Bus

missq

Refill Bus

imemread dmemwrite

D
ecoder

R
egister M

apper

P
C

P
C

+
16

dmemread, duncache ucqueue wtbkqueue

AXI Interface

EJTAG TAP Ctr. Test Controller

JTAG Interface Test Interface

Godson-2 IP Architecture

D
ecode B

us

Branch Bus

clock, reset, int, …

16A0B36APO Computer Architectures

Yet faster instructions execution ⇒ RISC architectures

● Reduce data flow dependency between instructions,
three operand instructions, speculative instructions
execution, register renaming, eliminate
interdependencies on conditional flag register (DEC
Alpha, multiple flag registers PowerPC, flags update
suppress ARM), load-store architecture, computation only
register+=register and or register=register+register and
separate load-store instructions.

● Fixed instruction encoding ⇒ programs are usually
longer but much faster instructions decoding, optimized
for pipelined execution

17A0B36APO Computer Architectures

Attempts to enhance code density ⇒ shorter alliases, variable
instruction length even for RISC, VLIW

● ARM, 16bit aliases for most common 32bit instructions
(Thumb mode)

● M-Core, 32bit CPU but only 16-bit instruction encoding
● ColdFire - RISC implementation based on 68000

instruction set, but only 16, 32, 48-bit length instructions
are accepted

18A0B36APO Computer Architectures

ARM architecture - registers

Abort Mode r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r15 (pc)

cpsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

spsr

Current Visible Registers

Banked out Registers

User FIQ IRQ SVC Undef

r13 (sp)

r14 (lr)

19A0B36APO Computer Architectures

ARM architecture – ALU and operands encoding

Register, optionally with shift operation

 Shift value can be either be:

 5 bit unsigned integer

 Specified in bottom byte of another
register.

 Used for multiplication by constant

Immediate value

 8 bit number, with a range of 0-255.

 Rotated right through even number of
positions

 Allows increased range of 32-bit constants
to be loaded directly into registers

Result

Operand
1

Barrel
Shifter

Operand
2

ALU

20A0B36APO Computer Architectures

ARM architecture – program status word

 Condition code flags

 N = Negative result from ALU

 Z = Zero result from ALU

 C = ALU operation Carried out

 V = ALU operation oVerflowed

 Sticky Overflow flag - Q flag

 Architecture 5TE/J only

 Indicates if saturation has occurred

 J bit

 Architecture 5TEJ only

 J = 1: Processor in Jazelle state

 Interrupt Disable bits.

 I = 1: Disables the IRQ.

 F = 1: Disables the FIQ.

 T Bit

 Architecture xT only

 T = 0: Processor in ARM state

 T = 1: Processor in Thumb state

 Mode bits

 Specify the processor mode

2731

N Z C V Q

28 67

I F T mode

1623

815

5 4 024

f s x c

 U n d e f i n e dJ

21A0B36APO Computer Architectures

ARM architecture – CPU execution modes

● User : unprivileged mode under which most tasks run
● FIQ : entered when a high priority (fast) interrupt is raised
● IRQ : entered when a low priority (normal) interrupt is

raised
● Supervisor : entered on reset and when a Software

Interrupt instruction is executed
● Abort : used to handle memory access violations
● Undef : used to handle undefined instructions
● System : privileged mode using the same registers as

user mode

22A0B36APO Computer Architectures

Conclusion – Allmost

● There is no magic solution for all discussed
problems

● It is necessary to combine discussed
techniques and optimize the mix according
to intended CPU area of use (the highest
computational power/power efficient)

23A0B36APO Computer Architectures

ARM 64-bit – AArch64

● Calling uses LR, no register banking, ELR for exceptions
● PC is separate register (not included in general purpose

registers file)
● 31 64-bi registers R0 to R30 (R30 = X30 ≅ LR)

● Symbol Wn (W0) used for 32-bit access, Xn (X0) for 64-bit

● Reg. code 31 same role ast MIPS 0, WZR/XZR in code

● Reg. code 31 special meaning as WSP, SP for some opcodes

● Immediate operand 12-bit with optional LS 12 for
arithmetics operations and repetitive bit masks generator
for logic ones

● 32-bit operations ignores bits 32–63 for source and zeros
these in the destination register

24A0B36APO Computer Architectures

AArch64 – Branches and conditional operations

● Omitted conditional execution in all instructions as well as
Thumb IT mechanism

● Conditional register retain, CBNZ, CBZ, TBNZ, TBZ added
● Only couple of conditional instructions

● add and sub with carry, select (move C?A:B)

● set 0 and 1 (or -1) according to the condition evaluation

● conditional compare instruction

● 32-bit and 64-bit multiply and divide (3 registers), multiply
with addition 64×64+64  64 (four registers), high bits 64
to 127 from 64×64 multiplication

25A0B36APO Computer Architectures

AArch64 – Memory access

● 48+1 bit address, sign extended to 64 bits
● Immediate offset can be multiplied by access size optionally
● If register is used in index role, it can be multiplied by

access size and can be limited to 32 bits
● PC relative ±4GB can be encoded in 2 instructions
● Only pair of two independent registers LDP and STP

(ommited LDM, STM), added LDNP, STNP
● Unaligned access support
● LDX/STX(RBHP) for 1,2,4,8 and 16 bytes exclusive access

26A0B36APO Computer Architectures

AArch64 – Address modes

● Simple register (exclusive)

[base{,#0}]

● Offset

[base{,#imm}] – Immediate Offset

[base,Xm{,LSL #imm}] – Register Offset

[base,Wm,(S|U)XTW {#imm}] – Extended Register Offset

● Pre-indexed

[base,#imm]!

● Post-indexed

[base],#imm

● PC-relative (literal) load

label

Bits Sign Scaling WBctr LD/ST type

0 - - - LDX, STX, acquire, release

9 signed scaled option reg. pair

10 signed unscaled option single reg.

12 unsig. scaled no single reg.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

