External events processing and protection

Pavel Pida, Michal Stepanovsky, Miroslav Snorek

Czech Technical University in Prague, Faculty of Electrical Engineering

AEOB36APO Computer Architectures 1

Basic building blocks (repeating)

» Central Processing Unit (CPU)
 Memory — for data and code ordered into hierarchy

 Registers (fast CPU local memory), cache (L1, L2,
etc), main memory, external memory (disk)

* Interconnection — buses, networking
* [SA, PCI, PClexpress

AEOB36APO Computer Architectures

What is purpose to have these building blocks

|
By

Global Warming Predictions

2070-2100 Prediction

vs. 1960-1990 . ’ L 7
z PR
e o 3

Enterprise

licati Large scalé®
25";20'5?“'2:;’, bank mathematical and
Entertamrnent, systems, inventory, g?odbeeillncgi r(;]c;rggu ation
games, video online shops

forecast and analysis,

Communications, as a nuclear fusion, etc.)

main target (phone,

mobile) oras awayto anq many others areas of use ...
achieve data exchange

for other tasks and

applications

AEOB36APO Computer Architectures

Computer as controller in field applications

1. complex process

(fast computation.)
2. cheap serially

produced units *
3. very flexible input _ output
(programmable) yarigbles — ptzigfs‘g'?ggst') — variables
4. hierarchic
control available control state
5. precise evaluation Vvariables information
- Computer
(display) (control system) <+
6. complex algorithms
(only memory and *
time constraints) program

or higher level control
and knowhow

AEOB36APO Computer Architectures

Data flow in computer system

Input — v Vystup
—y Input N e (m—>
devices Memory % devices
//(Central
: Control Execution . processing unit
unit units . (CPU)

Different demands properties of data processing

« Batch processing (a task controls data access as it is processing
these data)

» Interactive (events driven — by user or when external requests or
event arrives)

« Real-time control — computation results delivered late are of no or
inferior value

AEOB36APO Computer Architectures

Input-output (I/O) subsystem

* |nput only peripherals
« Common ones: keyboard, mouse, video camera

« Logic inputs, physical quantities — usually converted to analog
electrical signal and then by A/D converter to numerical value
accessible on input port and other sensors

« Qutput only peripherals
* Video output (2D, 3D + acceleration), audio output

« Outputs with physical effect, 3D printer (rapid prototyping),
technological process control (D/A converters, PWM) and
many other kinds of actuators

 Bidirectional
 Hard disk, communication interfaces

* Most of above listed “unidirectional” peripherals requires read
and write access for their setup, monitoring and parameters
control

AEOB36APO Computer Architectures 6

Methods of transferring data between peripheral and CPU

* Programmed input/output (P1O) with polling

 CPU loops in cycle and waits for status information signaling
available input data or space in output buffer

 Interrupt driven programmed input/output (P10)

» Program/operating system configures peripheral but does not
wait for data. Data arrival is signaled by interrupt
(asynchronous event/exception). The data are read in interrupt
service routine.

« Qutput is initiated by CPU write of data to a register if space is
available. Ready for next data it signaled by interrupt.

* Direct memory access — DMA

 CPU setups source and destination, transfer is realized by
specialized unit.

* Intelligent peripherals/controllers, bus master DMA

AEOB36APO Computer Architectures 7

Programmed input/output (PIO) with polling

DoSomethingWithData:
Waitd4Device:
in(dx, al);
test(1, al);
jnz Wait4Device;
<< Do something with the Data>>
jmp DoSomethingWithData;

Example: Randall Hyde (randyhyde at earthlink.net) e-mail 14 Jun 2004

 The most inferior solution, CPU waits in a loop for data
ready (busy wait)

e Even if is not possible to use CPU at that time do do
some other valuable work (more about time sharing, multi
processing, threading, user and scheduling later), the
looping results in energy/power waste

AEOB36APO Computer Architectures 8

Interrupt driven programmed input/output (PIO)

InterruptServiceRoutine:
<< Get data and move to a shared memory location >>

mov(1, DataAvailable);
iret();

MainThreadLoop:
<< Tell I/0O device we want data >>

Waité4Data:
OptionalHALT or OtherDataProcessing;
test(1, DataAvailable);
jnz Waité4Data;
<<Do Something With Data >>
jmp MainThreadLoop;

» Peripheral takes care for data availability signaling to CPU — the
interrupt signal is activates and interrupt/exception is serviced

« The overall situation is not better for above shown example, but if task
scheduling is added then actual/waiting task can be suspended and
some other ready/released task can proceed and use CPU until data
arrival. Then suspended task is activated again at end of interrupt

processing

AEOB36APO Computer Architectures 9

Linux kernel: Event waiting with context switch — schedule

static DECLARE WAIT QUEUE HEAD(foo wq);
volatile int event pending;

irgreturn t foo irqg fnc(int intno, void *dev_id)
{
<<read device status, store what can be lost and stop/mask IRQ>>
event pending = <<indicate even arrival>>;
wake up interruptible(&foo wq);
return IRQ HANDLED;
}

static ssize t foo read(struct file *fp, char _ user *buf,
size t len, loff t *off)
{
wait event interruptible timeout(foo wq, event pending != 0)
<< check error state etc. signal pending(current) >>
<< process event pending and event pending = 0 >>
err = copy to user(buf, internal buffer, len);
return len;

.
14

AEOB36APO Computer Architectures

RTEMS: Wait for event with use of scheduler

rtems isr mmcsd irq handler(rtems irq hdl param data)

{

}

MMCSD Dev *device=(MMCSD Dev *)data;
rtems _event send(device->waiter task id, MMCSD WAIT EVENT);

static int mmcsd read(MMCSD Dev *device, rtems blkdev request *req)

{

}

rtems status code status;
rtems_event set events;
rtems interval ticks;
rtems id self tid;

rtems task ident(RTEMS SELF, 0, &self tid);
device->waiter task id = self tid;
status=rtems_event receive(MMCSD WAIT EVENT | MMCSD_EVENT ERROR,

RTEMS EVENT ANY|RTEMS WAIT, ticks, &events);
<< process event fill sg = reqg->bufs - List of scatter/gather buffers >>
req->req done(reqg->done arg, RTEMS SUCCESSFUL, 0);
return 0;

 The example is simplified. Temporary task (TID) registration in the driver state
structure is not used. The device is serviced by worker thread which is created

during driver/its instance initialization.
AEOB36APO Computer Architectures

11

RTEMS: Semaphore used for interrupt event notification

static rtems id my semaphore;

rtems isr my irq handler(rtems irg hdl param valu)
{
if (<<check if really from device>>) {
rtems semaphore release(my_ semaphore);
}
}

wait for event
rtems semaphore obtain(semaphore, RTEMS WAIT, RTEMS NO TIMEOUT);

initialize semaphore in the driver init
rtems semaphore create(rtems build name('s','e','m','a'),
0/*initial value*/, RTEMS FIFO, 5/*priority*/,
&my semaphore/*location to store new sem ID*/);

« Similar semaphore based solution can be used for VxWorks or Linuxu kernel.

These APIs are internal kernel mechanisms, POSIX/ANSI standards do not
specify mechanisms for interrupts management and servicing.

AEOB36APO Computer Architectures

12

Windows: Interrupt and deffered procedure call

VOID NTAPI ulan bottom dpc(IN PKDPC Dpc,IN PVOID contex,
IN PVOID argl,IN PVOID arg2);

KSERVICE ROUTINE InterruptService;
BOOLEAN uld irq handler(_In_ struct KINTERRUPT *Interrupt,
In PVOID ServiceContext)

{
KeInsertQueueDpc (& (udrv)->bottom dpc,NULL,NULL) ;
return TRUE;

}

status =

IoConnectInterrupt (&udrv->InterruptObject,
uld irqg handler, // ServiceRoutine
udrv, // ServiceContext
NULL, // SpinLock
udrv->irq, // Vector
udrv->Irql, // Irql
udrv->Irql, // SynchronizeIrql
udrv->InterruptMode, // InterruptMode
TRUE /*FALSE for ISA? */, // ShareVector
udrv->InterruptAffinity, // ProcessorEnableMask
FALSE); // FloatingSave

AEOB36APO Computer Architectures

13

Direct Memory Access - DMA

Peripheral

Peripheral

_ Address and data bus
Main ko — —
memory H
BBSY
-
Cache BR T T
4 I—
Processor| TC/IRQ l fv l T \V4
<+— DMA DMA
— Controller » Controller
BG1 1 BG2 2

« Computer system is equipped by unit(s) specialized for data transfers
« Large size data transfers do not trash/displace data at CPU caches

« Program/OS initializes peripheral and setups parameters for transfer
 Then DMA unit source, destination, request line are programmed, DMA unit

signals end of the transfer by interrupt

AEOB36APO Computer Architectures

14

5.

Example of DMA transfer for hard-disk

DMA controller transfers
bytes to buffer X,
increasing memory
address and decreasing
CuntiC=0

. when C =0, DMA

interrupts CPU to signal
transfer completion

1. device driver is told to

transfer disk data to
buffer at address X

2. device driver tells disk

controller to transfer C
bytes from disk to buffer
at address X

CPU

cache

DMA/bus/interrupt

+— CPU memory bus —

controller

memory

X

buffer

PCI bus

IDE disk controller

DMA transfer

controller

@) @

@) (@

AEOB36APO Computer Architectures

4. disk controller sends
each byte to DMA

3. disk controller initiates

Dr. Kalpakis http://www.cs.umbc.edu/~kalpakis/

Decentralized controllers/DMA — integration into peripherals

Processor Main Memory

T 1 R
T T

Printer Keyboard

Network
Interface

Pus

Disk Disk

AEOB36APO Computer Architectures

Bus Master DMA and IO (Co)Processors

Intelligent peripherals
Peripheral is equipped by own controller (CPU)
« Finite state machine
 |nput/output processor (IOP) etc.
Transfer processing sequence

« Superordinate CPU/system stores sequence of the data
and control blocks into main memory

» Configures or programs controller integrated into peripheral
and that controls data transfers from/to main memory

 After all transfers are finished (sometimes after the whole
first packet received) signals CPU that state by interrupt

CPU/operating system processes interrupt and
reschedules to task waiting for data

AEOB36APO Computer Architectures

Where the problems lie? DMA and I/O pitfalls

AEOB36APO Computer Architectures

Memory mapped peripherals and data consistency

« Input/output operations and CPU

The caching has to be disabled for address ranges where input and or
output ports/registers/memory is mapped

Pipelined instruction processing alone does not cause problems (except
for read after write)

Data forwarding, subsequent access (load/store) bypassing and out of
order instructions processing collides with I/O code

Special synchronization instructions or HW support on CPU level is then
necessary to stall instruction execution till (all) previous transfers finis
- MIPS IV - sync (Ix a sx is finished before subsequent Ix)

- PowerPC

« eieio (Enforce In-Order Execution of I1/O) Instruction
« sync not only for 1/O access but even for | memory reads

The similar has to be done on compiler level to suppress unintended
optimizations (volatile, ...)

Paul E. McKenney: Memory Ordering in Modern Microprocessors
Wikipedia: http://en.wikipedia.org/wiki/Memory_ ordering

AEOB36APO Computer Architectures

19

Atomic operations, compilers and STL

o C++ std::atomic_int, std::atomic_intptr t, ...
typedef enum memory_order

{

memory_order_relaxed, memory_order _consume,
memory_order_acquire, memory_order_release,
memory_order_acq_rel, memory_order _seq_cst
} memory_order;
e C1x

AEOB36APO Computer Architectures

20

DMA and data consistency

« DMA transfers originate/target main memory bypassing cache
« CPU writes has to be finished before (writeback!)

« Data from peripheral stored to memory cannot be used unitila
(partial) cache invalidation or previous flush is issued

« CPU/memory management unit needs to control cacheability of
given pages/cache rows

e PowerPC

- dcbf (Data Cache Block Flush), clcs (Cache Line Compute Size), clf
(Cache Line Flush), cli (Cache Line Invalidate), dcbi (Data Cache Block
Invalidate), dcbst (Data Cache Block Store), dcbt (Data Cache Block
Touch), dcbtst (Data Cache Block Touch for Store), dcbz/dclz (Data
Cache Block Set to Zero), dclst (Data Cache Line Store), icbi (Instruction
Cache Block Invalidate), sync (Synchronize)/dcs (Data Cache
Synchronize)

« MIPS - specialized instruction named cache

AEOB36APO Computer Architectures

21

Exceptions and interrupts

e EXxceptions — anomalous or exceptional situations (blocking further
regular execution) requiring special processing
* Ina MIPS CPU case next main sources are recognized
- Arithmetic overflow (result for integer/saturated arithmetic not fit)

- Undefined instruction is to be executed (unknown opcode for IR type
instruction or unknown function for R type)

- System call (syscall instruction)
e Data unavailable or write fault
- Bad address or page marked as invalid
- Bus error detected (parity, ECC, acknowledge limit exceed)
» Asynchronous/external exceptions (interrupts)
« Maskable, can be disabled in state/control world of CPU,
possibly based on source priority (peripherals, timers, counters)
 Non-maskable — HW faults, supervision circuits (Watch Dog)

AEOB36APO Computer Architectures 22

Steps of exception or interrupt processing

Exception is accepted/processed usually unconditionally,
external interrupt only if not masked or if non-maskable

CPU state vector is saved including PC (on system stack or to
the special registers)

Program Counter is preset to the starting address of handler
according to exception type or even interrupt source number

Servicing routine starting at that address is executed

It stores state of other registers on stack, communicates with
peripheral, loads missing page, informs about nonrecoverable
task fault or whole system, etc.

If recoverable — restores registers values to state before entry

Routine is finalized by special exception return instruction which
switches CPU into previous state and allows continuation of
interrupted code

AEOB36APO Computer Architectures

23

User
Program

\ 4

Interrupt? yes IRET

no

-

AEOB36APO Computer Architectures 24

MIPS — registers for exceptions status and control

Cause Exception type

Cause regqister

IBUS Instruction bus error (invalid instruction)

11 SYSCALL System call

Status reqister - for disabling interrupts and exceptions

2 IBUS
0 SYSCALL

AEOB36APO Computer Architectures

MIPS — exception/interrupt processing

CPU accepts interrupt request, exception or syscall opcode

EPC <= PC

Cause <= (cause code for event)
Status <= Status << 4

PC <= (handler address)

Interrupt service routine/exception handler startup is responsible for
« identification of request cause from co-processor 0 mfcO rd, rt
» CPU state can be controlled by instruction mtcO rd, rt
* rd is gen. purpose register, rt is one of co-processor 0 registers

The rfe instruction finalizes exception handling and returns to previous state

PC <= EPC
Status <= Status >> 4

AEOB36APO Computer Architectures

26

Precise exception processing

 If interrupt/exception is successfully handled (i.e. missing
page has been swapped in, etc.) and execution continues
at instruction before which interrupt has been accepted,
then interrupted code flow is not altered and cannot
detect interruption (except for delay/timing and cases
when state modification is intended/caused by system
call)

 Remark: Precise exception handling is most complicated
by delayed writes (and superscalar CPU instruction
reordering) which leads to synchronous exceptions
detected even many instruction later than causing
instruction finishes execution phase. Concept of state
rewind or “transactions” confirmation is required for
memory paging in such systems.

AEOB36APO Computer Architectures 27

Evaluation of the exception source

« Software cause evaluation (polled exception handling)

« All exceptions/interrupts start same routine at same address —i.e. for
MIPS that routine starts at 0x00000004 address

« Routine reads source from status register (MIPS: cause registr)

« Vectored exception handling
« CPU support hardware identifies cause/source/interrupt number

« Array of ISR start addresses is prepared on fixed or preset (VBR — vector
base register) address in main memory

« CPU computes index into table based on source number

« CPU loads word from given address to PC

Non-vectored exception handling with more routines/initial addresses

assigned to exception classes and IRQ priorities

Additional combinations when more addresses are used for some
division into classes or some helper HW provides decoding speedup

AEOB36APO Computer Architectures

Asynchronous and synchronous exceptions/interrupts

« External interrupts/exceptions are generally asynchronous —i.e.
they are not tied to some instruction

« RESET- CPU state initialization and (re)start form initial address
« NMI - non-maskable interrupt (temperature/bus/EEC fault)
o [NT - maskable/regular interrupts (peripherals etc.)

« Synchronous exceptions (and or interrupts) are result of exact
instruction execution

« Arithmetic overflow, division by zero etc.

« TRAP - debugger breakpoint, exception after each executed
instruction for single-stepping, etc.

« Modification of interrupted code flow state (registers, flags, etc.) is
expected for some of these causes (unknown instruction
emulation, system calls, jump according to program provided
exception tables, etc.)

AEOB36APO Computer Architectures 29

Interrupt — operating systems level I/O processing

When peripheral transfers data, task is suspended/waiting (and
other work could be done by CPU). Data arrival results in IRQ
processing, CPU finalizes transfer and original task continues

I I
...user task
User space process... | Other | :
| processes continues
read device file | are |
I scheduled | return
System call...| | ... finalization
| | i
\
Interrupt | Wake up
request for data sleep handleI:*
programmed I“-
into peripheral data ready
notification

source: Free Electrons: Kernel, drivers and embedded Linux development http://free-electrons.com

AEOB36APO Computer Architectures

Real-time clocks and supervisor (watchdog) circuits

» real-time clocks

e provide real/wall clock time (local/UTC)
e timer

« periodic or one shot timer interrupt (timer INT), time finctions
« supervisor/watchdog circuits

e protects system against SW and HW faults and power supply
lost/faults (watchdog, power fail)

CTRL ———p :

_p| RTC (real-time clock) = INT
DATA 4—0—»‘ Timer — [NT

_ Watchdog — NMI
software A > RESET

AEOB36APO Computer Architectures

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

