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Basic building blocks (repeating)

● Central Processing Unit (CPU)
● Memory – for data and code ordered into hierarchy

● Registers (fast CPU local memory), cache (L1, L2, 
etc), main memory, external memory (disk)

● Interconnection – buses, networking
● ISA, PCI, PCIexpress
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What is purpose to have these building blocks

Entertainment, 
games, video

Enterprise 
applications, 
accountancy, bank 
systems, inventory, 
online shops

Large scale 
mathematical and 
modeling computation 
(global climatic 
forecast and analysis, 
nuclear fusion, etc.)Communications, as a 

main target (phone, 
mobile)  or as a way to 
achieve data exchange 
for other tasks and 
applications

And many others areas of use ...
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Computer as controller in field applications

1. complex process 
    (fast computation.)
2. cheap serially
    produced units
3. very flexible 
    (programmable)
4. hierarchic 
    control available
5. precise evaluation 
    (display)
6. complex algorithms 
    (only memory and
    time constraints)

Computer 
(control system)

Technological
process (plant)

output
variables

state
information

input
variables

control
variables

program
or higher level control 

and knowhow

errors and noise
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Data flow in computer system

Output 
devices

Input 
devices

Control 
unit

Output

Central 
processing unit 
(CPU)

Execution 
units

Input
Memory

Different demands properties of data processing
● Batch processing (a task controls data access as it is processing 

these data)
● Interactive (events driven – by user or when external requests or 

event arrives)
● Real-time control – computation results delivered late are of no or 

inferior value
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Input-output (I/O) subsystem

● Input only peripherals
● Common ones: keyboard, mouse, video camera
● Logic inputs, physical quantities – usually converted to analog 

electrical signal and then by A/D converter to numerical value 
accessible on input port and other sensors

● Output only peripherals
● Video output (2D, 3D + acceleration), audio output
● Outputs with physical effect, 3D printer (rapid prototyping), 

technological process control (D/A converters, PWM) and 
many other kinds of actuators

● Bidirectional
● Hard disk, communication interfaces
● Most of above listed “unidirectional” peripherals  requires read 

and write access for their setup, monitoring and parameters 
control 
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Methods of transferring data between peripheral and CPU

● Programmed input/output (PIO) with polling
● CPU loops in cycle and waits for status information signaling 

available input data or space in output buffer
● Interrupt driven programmed input/output (PIO)

● Program/operating system configures peripheral but does not 
wait for data. Data arrival is signaled by interrupt 
(asynchronous event/exception). The data are read in interrupt 
service routine.

● Output is initiated by CPU write of data to a register if space is 
available. Ready for next data it signaled by interrupt.

● Direct memory access – DMA
● CPU setups source and destination, transfer is realized by 

specialized unit.
● Intelligent peripherals/controllers, bus master DMA
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Programmed input/output (PIO) with polling

● The most inferior solution, CPU waits in a loop for data 
ready (busy wait)

● Even if is not possible to use CPU at that time do do 
some other valuable work (more about time sharing, multi 
processing, threading, user and scheduling later), the 
looping results in energy/power waste

DoSomethingWithData:
    Wait4Device:
        in( dx, al );
        test( 1, al );
        jnz Wait4Device;
     << Do something with the Data>>
     jmp DoSomethingWithData; 

Example: Randall Hyde (randyhyde_at_earthlink.net) e-mail 14 Jun 2004
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Interrupt driven programmed input/output (PIO)

● Peripheral takes care for data availability signaling to CPU – the 
interrupt signal is activates and interrupt/exception is serviced

● The overall situation is not better for above shown example, but if task 
scheduling is added then actual/waiting task can be suspended and  
some other ready/released task can proceed and use CPU until data 
arrival. Then suspended task is activated again at end of interrupt 
processing

InterruptServiceRoutine:
      << Get data and move to a shared memory location >>
      mov( 1, DataAvailable );
      iret();

MainThreadLoop:
    << Tell I/O device we want data >>
    Wait4Data:
         OptionalHALT or OtherDataProcessing;
         test( 1, DataAvailable );
         jnz Wait4Data;
     <<Do Something With Data >>
     jmp MainThreadLoop; 
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Linux kernel: Event waiting with context switch – schedule 

static DECLARE_WAIT_QUEUE_HEAD(foo_wq);
volatile int event_pending;

irqreturn_t foo_irq_fnc(int intno, void *dev_id)
{
  <<read device status, store what can be lost and stop/mask IRQ>>
  event_pending = <<indicate even arrival>>;
  wake_up_interruptible(&foo_wq);
  return IRQ_HANDLED;
}

static ssize_t foo_read(struct file *fp, char __user *buf,
                        size_t len, loff_t *off)
{
  wait_event_interruptible_timeout(foo_wq, event_pending != 0);
  << check error state etc. signal_pending(current) >>
  << process event_pending and event_pending = 0 >>
  err = copy_to_user(buf, internal_buffer, len);
  return len;
}
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RTEMS: Wait for event with use of scheduler

rtems_isr mmcsd_irq_handler(rtems_irq_hdl_param data)
{
  MMCSD_Dev *device=(MMCSD_Dev *)data;
  rtems_event_send(device­>waiter_task_id, MMCSD_WAIT_EVENT);
}

static int mmcsd_read(MMCSD_Dev *device, rtems_blkdev_request *req)
{
  rtems_status_code status;
  rtems_event_set   events;
  rtems_interval    ticks;
  rtems_id          self_tid;

  rtems_task_ident(RTEMS_SELF, 0, &self_tid);
  device­>waiter_task_id = self_tid;
  status=rtems_event_receive(MMCSD_WAIT_EVENT | MMCSD_EVENT_ERROR,
                               RTEMS_EVENT_ANY|RTEMS_WAIT, ticks, &events);
  << process event fill sg = req­>bufs ­ List of scatter/gather buffers >>
  req­>req_done(req­>done_arg, RTEMS_SUCCESSFUL, 0);
  return 0;
}

● The example is simplified.  Temporary task (TID) registration in the driver state 
structure is not used. The device is serviced by worker thread which is created 
during driver/its instance initialization.
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RTEMS: Semaphore used for interrupt event notification

static rtems_id my_semaphore;

rtems_isr my_irq_handler(rtems_irq_hdl_param valu)
{
        if (<<check if really from device>>) {
                rtems_semaphore_release(my_semaphore);
        }
}

wait for event
rtems_semaphore_obtain(semaphore, RTEMS_WAIT, RTEMS_NO_TIMEOUT);

initialize semaphore in the driver init
rtems_semaphore_create(rtems_build_name('s','e','m','a'),

0/*initial value*/, RTEMS_FIFO, 5/*priority*/,
&my_semaphore/*location to store new sem ID*/);

● Similar semaphore based solution can be used for VxWorks or Linuxu 
kernel. These APIs are internal kernel mechanisms, POSIX/ANSI standards 
do not specify mechanisms for interrupts management and servicing.
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Windows: Interrupt and deffered procedure call

VOID NTAPI ulan_bottom_dpc(IN PKDPC Dpc,IN PVOID contex,
                     IN PVOID arg1,IN PVOID arg2);

KSERVICE_ROUTINE InterruptService;
BOOLEAN uld_irq_handler( _In_  struct _KINTERRUPT *Interrupt,
  _In_  PVOID ServiceContext)
{
    …

KeInsertQueueDpc(&(udrv)­>bottom_dpc,NULL,NULL);
return TRUE;

}

status = 
IoConnectInterrupt(&udrv­>InterruptObject,

uld_irq_handler,            // ServiceRoutine
udrv,                       // ServiceContext
NULL,                       // SpinLock
udrv­>irq,                  // Vector
udrv­>Irql,                 // Irql
udrv­>Irql,                 // SynchronizeIrql
udrv­>InterruptMode,        // InterruptMode
TRUE /*FALSE for ISA? */,   // ShareVector
udrv­>InterruptAffinity,    // ProcessorEnableMask

    FALSE);                     // FloatingSave
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Direct Memory Access - DMA

● Computer system is equipped by unit(s) specialized for data transfers
● Large size data transfers do not trash/displace data at CPU caches
● Program/OS initializes peripheral and setups parameters for transfer
● Then DMA unit source, destination, request line are programmed, DMA 

unit signals end of the transfer by interrupt

Processor
DMA

Controller
1

DMA
Controller

2BG1 BG2

BR

BBSY

Cache

Peripheral

Peripheral

Address and data bus
Main 

memory

TC/IRQ



15AE0B36APO   Computer Architectures

Example of DMA transfer for hard-disk

Dr. Kalpakis http://www.cs.umbc.edu/~kalpakis/
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Decentralized controllers/DMA – integration into peripherals

Processor Main Memory

Disk

Printer Keyboard
DMA 

Controller

Disk
Network 
Interface

Disk/DMA 
Controller
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Bus Master DMA and IO (Co)Processors

● Intelligent peripherals
● Peripheral is equipped by own controller (CPU)

● Finite state machine
● Input/output processor (IOP) etc.

● Transfer processing sequence
● Superordinate CPU/system stores sequence of the data 

and control blocks into main memory
● Configures or programs controller integrated into peripheral 

and that controls data transfers from/to main memory
● After all transfers are finished (sometimes after the whole 

first packet received) signals CPU that state by interrupt
● CPU/operating system processes interrupt and 

reschedules to task waiting for data
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Where the problems lie? DMA and I/O pitfalls
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Memory mapped peripherals and data consistency/coherence

● Input/output operations and CPU
● The caching has to be disabled for address ranges where input and or 

output ports/registers/memory is mapped 
● Pipelined instruction processing alone does not cause problems (except 

for read after write)
● Data forwarding, subsequent access  (load/store) bypassing and out of 

order instructions processing collides with I/O code
● Special synchronization instructions or HW support on CPU level is then 

necessary to stall instruction execution till (all) previous transfers finis 
– MIPS IV - sync (lx a sx is finished before subsequent lx)
– PowerPC

● eieio (Enforce In-Order Execution of I/O) Instruction
● sync not only for  I/O access but even for I memory reads

● The similar has to be done on compiler level to suppress unintended 
optimizations (volatile, ...)

Paul E. McKenney: Memory Ordering in Modern Microprocessors

Wikipedia: http://en.wikipedia.org/wiki/Memory_ordering
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Atomic operations, compilers and STL

● C++ std::atomic_int, std::atomic_intptr_t, …

typedef enum memory_order

{

     memory_order_relaxed, memory_order_consume,

     memory_order_acquire, memory_order_release,

     memory_order_acq_rel, memory_order_seq_cst

} memory_order;
● C1x 
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C++11 Memory Model and GCC implementation

C++11 memory models
● __ATOMIC_RELAXED –  No barriers or synchronization.
● __ATOMIC_CONSUME – Data dependency only for both barrier 

and synchronization with another thread.
● __ATOMIC_ACQUIRE – Barrier to hoisting of code and 

synchronizes with release (or stronger) semantic stores from 
another thread.

● __ATOMIC_RELEASE – Barrier to sinking of code and 
synchronizes with acquire (or stronger) semantic loads from 
another thread.

● __ATOMIC_ACQ_REL – Full barrier in both directions and 
synchronizes with acquire loads and release stores in another 
thread.

● __ATOMIC_SEQ_CST –  Full barrier in both directions and 
synchronizes with acquire loads and release stores in all threads. 
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Atomic Operations Defined by C++11 Standard

● type __atomic_load_n (type *ptr, int memmodel)
RELAXED, SEQ_CST, ACQUIRE and CONSUME

● void __atomic_load (type *ptr, type *ret, int memmodel)
● __atomic_store_n (type *ptr, type val, int memmodel)

RELAXED, SEQ_CST, RELEASE
● void __atomic_store (type *ptr, type *val, int memmodel)
● __atomic_exchange_n (type *ptr, type val, int memmodel)

RELAXED, SEQ_CST, ACQUIRE, RELEASE and 
ACQ_REL

● void __atomic_exchange (type *ptr, type *val, type *ret, 
int memmodel)
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C++11 Compare and Swap

● bool __atomic_compare_exchange_n (type *ptr, type 
*expected, type desired, bool weak, int 
success_memmodel, int failure_memmodel)

● bool __atomic_compare_exchange (type *ptr, type 
*expected, type *desired, bool weak, int 
success_memmodel, int failure_memmodel)
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C++11 Arithmetic and Logic Operations

● type __atomic_add_fetch (type *ptr, type val, int 
memmodel)

add, sub, and, xor, or, nand
● type __atomic_fetch_add (type *ptr, type val, int 

memmodel)
● bool __atomic_test_and_set (void *ptr, int memmodel)
● void __atomic_clear (bool *ptr, int memmodel)
● void __atomic_thread_fence (int memmodel)
● void __atomic_signal_fence (int memmodel)
● bool __atomic_always_lock_free (size_t size, void *ptr)
● bool __atomic_is_lock_free (size_t size, void *ptr)
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Scalability Bottleneck in Memory Access from Multiple Cores
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Price of Collisions in Single Row of the Memory Cache
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Which Algorithms and Approaches are Scalable?

✗

✗
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✓

R
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Source
The Scalable Commutativity Rule: Designing Scalable Software for 
Multicore Processors by Austin T. Clements
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Program Constructions That Are Scalable for Multiple Threads

● Scalability: use scalable data structures
● Linear arrays and arrays radix
● Hash tables
● Do not use binary / balanced trees for shared data

● Delaying action / cleaning - defer work, reference tracking, 
read copy update RCU postponed release / cancellations

● Prevent pessimistic operations by optimist check
● Only when the check of the object determines that change is 

required proceed with actions required for change (locking etc.) 
of an entry or file file, etc.

● At the level of work with the operating system  use only such 
operation that is necessary

● Use access (F_OK) to check existence of a file instead of 
checking the return code of the open or read operations



29AE0B36APO   Computer Architectures

DMA and data consistency

● DMA transfers originate/target main memory bypassing cache
● CPU writes has to be finished before (writeback!)
● Data from peripheral stored to memory cannot be used unitila 

(partial) cache invalidation or previous flush is issued 
● CPU/memory management unit needs to control cacheability  

of given pages/cache rows
● PowerPC

– dcbf (Data Cache Block Flush), clcs (Cache Line Compute Size), 
clf (Cache Line Flush), cli (Cache Line Invalidate), dcbi (Data 
Cache Block Invalidate), dcbst (Data Cache Block Store), dcbt 
(Data Cache Block Touch), dcbtst (Data Cache Block Touch for 
Store), dcbz/dclz (Data Cache Block Set to Zero), dclst (Data 
Cache Line Store), icbi (Instruction Cache Block Invalidate), sync 
(Synchronize)/dcs (Data Cache Synchronize)

● MIPS – specialized instruction named cache
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Exceptions and interrupts

● Exceptions – anomalous or exceptional situations (blocking 
further regular execution) requiring special processing

● In a MIPS CPU case next main sources are recognized
– Arithmetic overflow (result for integer/saturated arithmetic not fit )
– Undefined instruction is to be executed  (unknown opcode for IR 

type instruction or unknown function for R type)
– System call (syscall instruction)

● Data unavailable or write fault
– Bad address or page marked as invalid
– Bus error detected (parity, ECC, acknowledge limit exceed)

● Asynchronous/external exceptions (interrupts)
● Maskable, can be disabled in state/control world of CPU,

possibly based on source priority (peripherals, timers, counters)
● Non-maskable – HW faults, supervision circuits (Watch Dog)



31AE0B36APO   Computer Architectures

Steps of exception or interrupt processing

● Exception is accepted/processed usually unconditionally, 
external interrupt only if not masked or if non-maskable 

● CPU state vector is saved including PC (on system stack or to 
the special registers)

● Program Counter is preset to the starting address of handler 
according to exception type or even interrupt source number

● Servicing routine starting at that address is executed
● It stores state of other registers on stack, communicates with 

peripheral,  loads missing page, informs about nonrecoverable 
task fault or whole system, etc.

● If recoverable – restores registers values to state before entry
● Routine is finalized by special exception return instruction 

which switches CPU into previous state and allows 
continuation of interrupted code
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Block diagrams of exception processing

Fetch instruction at IP

Advance IP to next instruction

Decode the fetched instruction

Execute the decoded instruction

Interrupt?

no

Save context
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User 
Program

IP

ld

add

st

mul
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sub

bne
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jmp

…
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MIPS – registers for exceptions status and control

Cause register
Number Name Description

00 INT External Interrupt

01 IBUS Instruction bus error (invalid instruction)

10 OVF Arithmetic overflow

11 SYSCALL System call

Status register - for disabling interrupts and exceptions
Bit Interrupt/exception

3 INT

2 IBUS

1 OVF

0 SYSCALL

Register 
name

Register 
number

Usage

Status 12 Interrupt mask and enable bits

Cause 13 Exception type

EPC 14 Following address of the instruction where the exception occurred
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MIPS – exception/interrupt processing

EPC <= PC
Cause <= (cause code for event)
Status <= Status << 4
PC <= (handler address)

PC <= EPC
Status <= Status >> 4

CPU accepts interrupt request, exception or syscall opcode

The  rfe instruction finalizes exception handling and returns to previous state 

Interrupt service routine/exception handler startup is responsible for
● identification of request cause from co-processor 0 mfc0 rd, rt
● CPU state can be controlled by instruction mtc0 rd, rt
● rd is gen. purpose register, rt is one of co-processor 0 registers
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Precise exception processing

● If interrupt/exception is successfully handled (i.e. missing 
page has been swapped in, etc.) and execution continues 
at instruction before which interrupt has been accepted, 
then interrupted code flow is not altered and cannot 
detect interruption (except for delay/timing and cases 
when state modification is intended/caused by system 
call)

● Remark: Precise exception handling is most complicated 
by delayed writes (and superscalar CPU instruction 
reordering) which leads to synchronous exceptions 
detected even many instruction later than causing 
instruction finishes execution phase. Concept of state 
rewind or “transactions” confirmation is required for 
memory paging in such systems.
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Evaluation of the exception source

● Software cause evaluation (polled exception handling)
● All exceptions/interrupts start same routine at same address  – i.e. 

for MIPS that routine starts at 0x00000004 address
● Routine reads source from status register (MIPS: cause registr)

● Vectored exception handling
● CPU support hardware identifies cause/source/interrupt number
● Array of ISR start addresses is prepared on fixed or preset (VBR – 

vector base register) address in main memory
● CPU computes index into table based on source number
● CPU loads word from given address to PC

● Non-vectored  exception handling with more routines/initial 
addresses assigned to exception classes and IRQ priorities

● Additional combinations when more addresses are used for 
some division into classes or some helper HW provides 
decoding speedup
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Asynchronous and synchronous exceptions/interrupts

● External interrupts/exceptions are generally asynchronous – 
i.e. they are not tied to some instruction

● RESET- CPU state initialization and (re)start form initial 
address

● NMI - non-maskable interrupt (temperature/bus/EEC fault)
● INT      - maskable/regular interrupts (peripherals etc.) 

● Synchronous exceptions (and or interrupts) are result of 
exact instruction execution

● Arithmetic overflow, division by zero etc.
● TRAP   -  debugger breakpoint, exception after each 

executed instruction for single-stepping, etc.
● Modification of interrupted code flow state (registers, flags, etc.) 

is expected for some of these causes (unknown instruction 
emulation, system calls, jump according to program provided 
exception tables, etc.)
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Interrupt – operating systems level I/O processing

When peripheral transfers data, task is suspended/waiting (and 
other work could be done by CPU). Data arrival results in IRQ 
processing, CPU finalizes transfer and original task continues

User space process...

System call...

read device file

request for data 
programmed 

into peripheral

sleep

Other
processes

are
scheduled

... finalization

Interrupt
handler

data ready 
notification

wake up

...user task 
continues

return

source: Free Electrons: Kernel, drivers and embedded Linux development http://free-electrons.com
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Real-time clocks and supervisor (watchdog) circuits

● real-time clocks
● provide real/wall clock time (local/UTC)

● timer
● periodic or one shot timer interrupt (timer INT), time finctions 

● supervisor/watchdog circuits
● protects system against SW and HW faults and power supply 

lost/faults (watchdog, power fail) 

RTC (real-time clock)

Timer

Watchdog

CTRL

DATA

software

DATA

INT

INT

NMI

RESET
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