
A0B17MTB – Matlab

Part #5

Miloslav Čapek
miloslav.capek@fel.cvut.cz

Filip Kozák, Viktor Adler, Pavel Valtr

Department of Electromagnetic Field
B2-626, Prague

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #527.10.2016 11:14

3

Learning how to …

Program branching

Loops

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #527.10.2016 11:14

4

Program branching – loops

� repeating certain operation multiple-times, one of the basic
programming techniques

� There are 2 types of cycles in Matlab:
� for – the most used one, number of repetitions is known in advance

� while – condition is known ensuring cycle (dis)continuation as long as it
remains true

� essential programing principles to be observed:
� memory allocation (matrix-related) of sufficient size /see later.../

� cycles should be properly terminated /see later.../
� to ensure terminating condition withwhile cycle /see later.../

� frequently is possible to modify the array (1D→ 2D, 2D→ 3D using
functionrepmat and carry out a matrix-wise operation, under certain
conditions the vectorized code is faster and more understandable,
possibility of utilization of GPU)

� we always ask the question: is a cycle really necessary?

Program flow

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #527.10.2016 11:14

5

for loop

� for loop is applied to known number of repetitions of a group of
commands

� expression is a vector / matrix; columns of this vector / matrix are
successively assigned tom/ n

� frequently, expression is generated usinglinspace or using
„ : “, with the help oflength , size , etc.

� instead ofmit is possible to use more relevant names likemPoints ,
mRows, mSymbols , …
� for clarity, it is suitable to use e.g.mXXfor rows andnXX for columns

Program flow

for m = expression
commands

end

for m = magic(4)
m

end

for n = 1:4
n

end

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #527.10.2016 11:14

6

Loops #1

� create a script to calculate factorialN!
� use a cycle, verify your result using Matlabfactorial function

� can you come up with other solutions? (e.g. using vectorising…)

� compare all possibilities for decimal inputN as well

Program flow

400 s ↑

>> factorial(N)

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #527.10.2016 11:14

7

Memory allocation

� allocation can prevent perpetual increase of the size of a variable
� Code Analyser (M-Lint) will notify you about the possibility of allocation

by underlining the matrix's name

� whenever you know the size of a variable, allocate!
� sometimes, it pays off to allocate even when the final size isnot known - then

the worst-case scenario size of a matrix is allocated and then the size of the
matrix is reduced

� allocate the variables of the largest size first, then the smaller ones

� example:
� try…

Program flow

%% WITHOUT allocation
tic;
for m = 1:1e7

A(m) = m + m;
end
toc;
% computed in 0.45s

%% WITH allocation
tic;
A = nan(1,1e7);
for m = 1:1e7

A(m) = m + m;
end
toc;
% computed in 0.06s

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #527.10.2016 11:14

8

while loop

� keeps on executing commands contained in the body of the cycle
(commands) depending on a logical condition

� keeps on executing commands as long as all elements of the expression
(condition can be a multidimensional matrix) are non-zero
� the condition is converted to a relational expression, i.e. till all elementsaretrue

� logical and relational operators are often used for condition testing

� if condition is not a scalar, it can be reduced using functionsany or all

Program flow

while condition
commands

end

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #527.10.2016 11:14

9

Typical application of loops
Program flow

%% script generates N experiments with M throws with a die
close all ; clear; clc;

mThrows = 1e3;
nTimes = 1e2;
results = nan(mThrows, nTimes);
for iThrow = 1:mThrows % however, can be even further vectorized!

results(iThrow, :) = round(rand(1, nTimes)); % vectorized
end

%% script finds out the number of lines in a file
fileName = 'sin.m' ;
fid = fopen(fileName, 'r');
count = 0;
while ~feof(fid)

line = fgetl(fid);
count = count + 1;

end
disp(['lines:' num2str(count)])
fclose(fid);

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #527.10.2016 11:14

10

Loops #2

� calculate the sum of integers from 1 to 100 usingwhile cycle
� apply any approach to solve the task, but usewhile cycle

� are you able to come up with another solution (using a Matlab function
and without cycle)?

Program flow

360 s ↑

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #527.10.2016 11:14

11

while cycle – infinite loop

� pay attention to conditions in while cycle that are always fulfilled ⇒
danger of infinite loop
� mostly, not always however(!!) it is a semantic error

� trivial, but good example of a code…

… that „never“ ends (shortcut to terminate: CTRL+C)

Program flow

while 1 == 1
disp('ok');

end

while true
disp('ok');

end

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #527.10.2016 11:14

12

Interchange of an index an complex unit

� be careful not to confuse complex unit (i , j) for cycle index
� try to avoid usingi andj as an index

� overloading can occur (applies generally, e.g.>> sum = 2 overloads the
sum function)

� find out the difference in the following pieces of code:

� all the commands, in principle, can be written as one line

� usually less understandable, not even suitable from the point of view of
the speed of the code

Program flow

A = 0;
for i = 1:10

A = A + 1i;
end

A = 0;
for i = 1:10

A = A + i;
end

A = 0;
for i = 1:10

A = A + j;
end

A = 0; for i = 1:10, A = A + 1i; end ,

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #527.10.2016 11:14

13

Nested loops, loop combining

� quite frequently there is a need for nested loops
� consider vectorising instead

� consider loop type

� loop nesting usually rapidly increases computational demands

Program flow

%% script generates N experiments with M throws with a die
close all ; clear; clc;

mThrows = 1e3;
nTimes = 1e2;
results = nan(mThrows, nTimes);
for iThrow = 1:mThrows

for iExperiment = 1:nTimes % not vectorized (30 times slower!!)
results(iThrow, iExperiment) = round(rand(1));

end
end

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #5

� fill in the matrix using loops

� consider , allocate matrix first

� create a new script

� to plot the matrixA use for instance the functionpcolor()

27.10.2016 11:14

14

Loops #3
Program flow

600 s ↑

(),
4 2

mn m
m n

n
= +A

{ } { }1, ,100 , 1, ,20m n∈ … ∈ …

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #527.10.2016 11:14

15

Loops #4
Program flow

600 s ↑

� in the previous task the loops can be avoided entirely by using vectorising
� it is possible to usemeshgrid function to prepare the matrices needed

� meshgrid can be used for 3D arrays as well!!

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #5

for visualization inside the loop use following piece of code:

% ... your code
figure(1);
plot(x, real(I));
axis([x(1) x(end) -1 1]);
pause(0.1);

% ... your code

27.10.2016 11:14

16

Loops #5

� visualize current distribution of a dipole antenna described as

� in the interval choose N = 101

Program flow

600 s ↑

() () () ()0
0 0 0

jI , I e , I cos , 2tx t x x xω ω π− = ==

()0,4 , ,
2 2

t x
π ππ  ∈ ∈ − 

 

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #527.10.2016 11:14

17

Loops #6

� try to write moving average code applied to following function

wherer(x) is represented by function of uniform distribution (rand())
� use following parameters

� and then plot:

� try to make the code more efficient

Program flow

600 s ↑

() () () ()2f sin cos 0.1 ,x x x r x= +

clear; clc;
signalSize = 1e3;
x = linspace(0, 4*pi, signalSize);
f = sin(x).^2.*cos(x) + 0.1*rand(1, signalSize);
windowSize = 50;
% your code ...

plot(x, f, x, my_averaged);

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #527.10.2016 11:14

18

Loops #7

� for comparison it is possible to use Matlab built-in function filter

� check how the result is influenced by parameterwindowSize

Program flow

600 s ↑

windowSize = 150;windowSize = 15;

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #527.10.2016 11:14

19

break, continue

� functionbreak enables to terminate execution of the loop

� functioncontinue passes control to next iteration of the loop

Program flow

% another code ...
for k = 1:length(A)

if A(k) > threshold
break;

end
% another code ...

end

% another code ...
for k = 1:length(A)

if A(k) > threshold
continue;

end
% another code ...

end

if (true)

if (true)

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #527.10.2016 11:14

20

Loops vs. vectorizing #1

� since Matlab 6.5 there are two powerful hidden tools available
� Just-In-Time accelerator (JIT accelerator)

� Real-Time Type Analysis (RTTA)

� JIT enables partial compilation of code segments
� precompiled loops are even faster than vectorizing

� following rules have to be observed with respect to loops:
� scalar index to be used withfor loop

� only built-in functions are called inside the body offor loop

� the loop operates with scalar values only

� RTTA assumes the same data types as during the previous course of
the code - significant speed up for standartized calculations
� when measuring speed of the code, it is necessary to carry out so called

warm-up (first run the code 2 or 3 times)

Program flow

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #527.10.2016 11:14

21

Loops vs. vectorizing #2

� the motivation for introduction of JIT was to catch up with 3.
generation languages
� when fully utilized, JIT's computation time is comparable to that of C or

Fortran

� highest efficiency (the highest speedup) in particular
� when loops operate with scalar data

� when no user-defined functions are called (i.e. only build-in functions are
called)

� when each line of the loop uses JIT

� as the result, some parts of the code don't have to vectorised(or
should not even be!)

� the whole topic is more complex (and simplified here)
� for more details seeJIT_accel_Matlab.pdf at the webpage of this

course

Program flow

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #527.10.2016 11:14

22

Loops vs. vectorizing #3

� previous statement will be verified using a

simple code - filling a band matrix

� conditions for using JIT are fulfilled …
� working with scalars only, calling built-in

functions only

� filling up the matrix usingfor loops is faster!
� try it yourself…

Program flow

clear; clc;
N = 5e3;
mat = NaN(N, N);
tic,
for n1=1:N

for n2=1:N
mat(n1, n2)=0;

end
end
for n1 = 1:N

mat(n1, n1)=1;
end
for n1 = 1:(N-1)

mat(n1, n1+1)=2;
end
for n1 = 2:N

mat(n1, n1-1)=3;
end
toc,
% computed in 0.52s
(2015b)

clear; clc;
N = 5e3;

tic,
mat = diag(ones(N, 1)) + ...

2*diag(ones(N-1, 1), 1) + ...
3*diag(ones(N-1, 1), -1);

toc,
% computed in 0.18s (2015b)

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #527.10.2016 11:14

23

Program branching

� if it is needed to branch program (execute certain part of code
depending on whether a condition is fulfilled), there are two basic
ways:
� if – elseif – else – end

� switch – case – otherwise – end

Program flow

if condition
commands

elseif condition
commands

elseif condition
commands

else
commands

end

switch variable
case value1

commands
case {value2a, value2b, ...}

commands
case ...

commands
otherwise

commands
end

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #527.10.2016 11:14

24

if vs. switch
Program flow

if-elseif-else-end switch-otherwise-end

it is possible to create very complex structure
(&& / ||)

simple choice of many options

strcmp is used to compare strings of various
lengths

test strings directly

test equality / inequality test equality only

great deal of logical expressions is needed in
the case of testing many options

enables to easily test one of many options
using {}

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #527.10.2016 11:14

25

Program branching – if / else / elseif

� the most probable option should immediately follow theif statement

� only theif part is obligatory

� the else part is carried out only in the case where other conditions
are not fulfilled

� if a M×N matrix is part of the condition, the condition is fulfilled only
in the case it is fulfilled for each element of the matrix

� the condition may contain calling a function etc.
� if conditions may be nested

Program flow

c = randi(1e2);
if mod(c, 2)

disp('c is odd');
elseif c > 10

disp('even, >10');
end

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #527.10.2016 11:14

26

Program branching – if / else / elseif

� generate random numbers
� save the numbers in vectorsNeq and Pos depending on whether

each number is negative or positive; usefor cycle, if–else
statement and indexing for storing values ofr

� pay attention to growth in size of vectorsPos andNeq – how to solve the
problem?

� can you come up with a more elegant solution? (for cycle is not
always necessary)

Program flow

400 s ↑
r = 2*rand(8, 1)-1;

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #527.10.2016 11:14

27

Program branching – if / else / elseif

� write a script generating a complex number and determining to what
quadrant the complex number belongs to

Program flow

500 s ↑

{z}ℜ

{z}ℑ

0

.I.II

.III .IV

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #527.10.2016 11:14

28

Program branching – switch / case

� does a variable correspond to one of (usually many) values?
� the commands in the partotherwise are carried out when none of

the cases above applies (compare toelse in the if statement)

� suitable to evaluate conditions containing strings
� if you want to learn more details on when to useif and when to use

switch , visit pagesblogs.mathworks.com

� it is appropriate to always terminate
the statement by otherwise part

Program flow

c = randi(1e2);
switch mod(c,2)

case 1
disp('c is odd');

case 0 & c > 10
disp('even, >10');

otherwise
disp('even, <=10');

end

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #5

%% HINT:
% input variables will be here
%(including type of unknown side)
switch aaa % aaa denotes the type of unknown side

case yyy % calculation for the first type of side
% calculation1

case zzz % calculation for the second type of side
% calculation2

otherwise % unknown type
% return empty (default) values
end

27.10.2016 11:14

29

Program branching – switch / case

� create a script that, given lengths of two sides of a right triangle,
calculates the length of the third side (Pythagorean theorem)
� two sides are known together with string marking the type of unknown

side ('leg' for leg or 'hyp' for hypotenuse)

Program flow

450 s ↑

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #527.10.2016 11:14

30

What does the script do ?

� try to estimate what does the script below assign tologResult
variable depending on input variablevec (a vector)
� are you able to decide whether there is a Matlab function doing the same?

Program flow

300 s ↑

% vec is a given vector

logResult = false;
m = 1;
while (m <= length(vec)) && (logResult == false)

if vec(m) ~= 0
logResult = true;

end
m = m + 1;

end

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #527.10.2016 11:14

31

What does the script do ?

� try to estimate what does the script below assign tologResult
variable depending on input variablemat (a matrix)
� are you able to decide whether there is a Matlab function doing the same?

Program flow

300 s ↑

% mat is a given matrix
count = 0;
[mRows, nColumns] = size(mat);
for m = 1:mRows

for n = 1:nColumns
if mat(m,n) ~= 0

count = count + 1;
end

end
end
logResult = count == numel(mat);

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #527.10.2016 11:14

32

Example of listing more options

� switch supports options listing
� evaluation of options A1 a A2 in the same way:

Program flow

switch my_expression
case { 'A1' , 'A2' }

% do something
otherwise

% do something else
end

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #5

33

Inifinite loop – for cycle (a riddle)

� in the last lecture we learned how to construct the infinite loop with
thewhile command (>>while true, 'ok' , end)
� Do you think, that the infinite loop can be constructed with thefor cycle

as well?

� How?

� Are there any restrictions? How many cycles will be performed and why?

Program flow

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #510/27/2016 11:14
AM 34

Discussed functions

cell create cell array ●

factoriál calculate factorial

switch-case-otherwise-end condition statement ●

for-end loop over distributed range ●

while-end repeat loop while condition is true ●

break, continue terminate loop, pass control to next iteration of loop ●

if-elseif-else-end branching statement ●

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #527.10.2016 11:14

35

Exercise #1

� draft a script to calculate values of Fibonacci sequence up to certain
valuelimit

� have you come across this sequence already?

� if not, find its definition

� implementation:
� what kind of loop you use (if any)?

� what matrices / vectors do you allocate?

� plot the resulting series using
function plot

600 s ↑

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #527.10.2016 11:14

36

Exercise #2

� rate of reproduction of rabbits:

� try to find out the relation of the series

to the value of golden ratio

� try to calculate it:

240 s ↑

5
1.61

1
8033

2
ϕ = ≈+ …

number of elements [-]

va
lu

e
[-

]

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #510/27/2016 11:14
AM 37

Exercise #3

� try to determine the density of prime numbers
� examine the functionprimes generating prime numbers

� for the orders 101 – 107 determine the primes density (i.e. the number of
primes up to 10, to 100, …, to 107)

� outline the dependence using plot

� use logarithmic scale
(function loglog)
� how does the plot change?

600 s ↑

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #527.10.2016 11:14

38

Exercise #4

� did you use loop?

� is it advantageous (necessary) to use a loop?

� do you allocate matrices?

� what does, in your view, have the dominant impact on computation time?

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #527.10.2016 11:14

39

Exercise #5

� the script can be further speeded-up
� functionprimes is costly and can be run just once:

� would you be able to speed-up the script even more?

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #527.10.2016 11:14

40

Exercise #6

� following expansion holds true:

� based on the expansion forx = 1 estimate value ofπ:

� determine the number of elements of the sum and computational time
required to achieve estimation accuracy better than 1·10-6

600 s ↑

() () ()2 1 3 5 7 9

0

arctan 1 ...
2 1 3 5 7 9

n
n

n

x x x x x
x x

n

+∞

=

= − = − + − + −
+∑

() 1 1 1 1
arctan 1 1 ...

4 3 5 7 9

π= = − + − + −

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #527.10.2016 11:14

42

Exercise #7

� estimate value ofπ using following expansion

� determine the number of elements of the sum and computational time
required to achieve estimation accuracy better than 1·10-6

600 s ↑

()0

1 1 1 1
...

8 (4 1) 4 3 1 3 5 7 9 11n n n

π ∞

=

= = + + +
+ + ⋅ ⋅ ⋅∑

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #527.10.2016 11:14

44

Exercise #8

� use following expression to approximateπ :

� use following expression to implement the arctan function :

� determine the number of elements of the sum and computational time
required to achieve estimation accuracy better than 1·10-6 and
compare the solution with previous solutions

600 s ↑

1 1 1
6arctan 2arctan arctan

4 8 57 239

π      = + +     
     

() () ()2 1 3 5 7 9

0

arctan 1 ...
2 1 3 5 7 9

n
n

n

x x x x x
x x

n

+∞

=

= − = − + − + −
+∑

Thank you !

ver. 6.1 (27/10/2016)

Miloslav Čapek, Miloslav Čapek
miloslav.capek@fel.cvut.cz

Apart from educational purposes at CTU, this document may be reproduced,
stored or transmitted only with the prior permission of the authors.

Document created as part of A0B17MTB course.

