A0B17MTB - Matlab Part #3 Miloslav Čapek B2-626, Prague

miloslav.capek@fel.cvut.cz

Filip Kozák, Viktor Adler, Pavel Valtr

Department of Electromagnetic Field

Learning how to ...

	ResTable.data1(
	<pre>PsoData.cond{crt}(spr,2),</pre>
	<pre>PsoData.cond{crt}(spr,3)</pre>
Indexing) =
muching	<pre>bestPersDim(bestGlobNum, crt);</pre>

_

Size and type of data

Output format

Matlab Editor

7. 3. 2016 18:34

A0B17MTB: Part #3

Indexing in Matlab

- now we know all the stuff necessary to deal with indexing in Matlab
- mastering <u>indexing is crucial</u> for efficient work with Matlab!!!
- up to now we have been working with entire matrices, quite often we need, however, to access individual emenets of matrices

- two ways of accessing matrices / vectors are distinguished
 - access using round brackets ,, () "
 - refers to position of elements in a matrix
 - access using square brackets ,, [] "
 - refers to content of a matrix

600 s

- **Indexing in Matlab**
 - let's consider following triplet of matrices
 - execute individual commands and find out their meaning
 - start from inner part of the commands
 - note the meaning of the keyword end

	note th	le meaning (or u	IC K	Сул	volu ena		(11	10	12	11)
	(5)	(1	2	2	1	5)					
	(-5)							22	24	26	28
$\mathbf{N}_1 = \mathbf{N}_1$	0	$\mathbf{N}_2 = \begin{vmatrix} 2 \end{vmatrix}$					$\mathbf{N}_3 =$	33	36	39	42
	5	(2)	3	5	7	11)					
		(-	C	C)		44	48	52	56)

>> N1 = (-5:5:5)';N2 = [1:5;2:2:10;primes(11)];N3 = (1:4)'*(11:14);

>> N1	>> N2(1, 3)	>> N3(2:3, [1 1 1]) % like repmat
>> N1(1:3)	>> N2(3, 1)	>> N3(2:3, ones(1,3))
>> N1([1 2 3])	>> N2(1, end)	>> N3(2:3, ones(3,1))
>> N1(1:2)	>> N2(end, end)	>> N3([N2(2,1:2)/2 4], [2 3])
>> N1([1 3])	>> N2(1, :)	>> N3([1 end], [1:4 1:2:end])
>> N1([1 3]')	>> N2(1, :)'	>> N3(:, :, 2) = magic(4)
>> N1([1 3])'	>> N2(:, 2)	>> N3($[1 3]$, 3:4, 3) =
>> N1([1; 3])	>> N2(:, 3:end)	[1/2 -1/2; pi*ones(1, 2)]

7.3.201618:34

5

Indexing in Matlab

- remember the meaning of end and the usage of colon operator ":"
- try to:
 - flip the elements of the vector N1
 - without using fliplr / flipud functions
 - select only the even columns of N2
 - select only the odd rows of N3
 - 2nd, 4th and 5th column of **N2**'s 2nd row
 - create matrix A (4x3) containing numbers 1 to 12 (row-wise, from left to right)

A0B17MTB: Part #3

420 s

300 s

- Indexing in Matlab
 - calculate cumulative sum S of a vector x consisting of integers from 1 to 20
 - search Matlab help to find appropriate function (*cumulative sum*)

$$\overline{\mathbf{x}} = \begin{pmatrix} 1 & 2 & \dots & 20 \end{pmatrix}$$

 $S = \begin{pmatrix} 1 & 1+2 & \dots & 1+2\dots+20 \end{pmatrix}$

• calculate cumulative sum **L** of even elements of the vector **x**

• what is the value of the last element of the vector **L**?

Indexing in Matlab

150 s

• which one of the following returns corner elements of a matrix A (10x10)?

```
>> A([1,1], [end,end]) % A.
>> A({[1,1], [1,end], [end,1], [end,end]}) % B.
>> A([1,end], [1,end]) % C.
>> A(1:end, 1:end) % D.
```


Deleting elements of a matrix

• empty matrix is a crucial point for deleting matrix elements

>> T = []

- we want to:
 - remove 2nd row of matrix **A**

$$>> A(2, :) = []$$

- remove 3rd column of matrix **A**
- remove 1st, 2nd a 5th column of matrix A

>> A(:, 3) = []

>> A(:, [1 2 5]) = []

Adding and replacing elements of a matrix

- we want to replace:
 - 3^{rd} column of matrix **A** (of size M×N) by a vector **x** (length M)

>> A(:, 3) = x

• 2nd, 4th a 5th row of matrix **A** by three rows of matrice **B** (number of columns of both **A** and **B** is the same)

>> $A([2 \ 4 \ 5], :) = B(1:3, :)$

- we want to swap
 - 2nd row of matrix **A** and 5th column of matrix **B** (number of columns of **A** is the same as number of rows of **B**)

>> A(2, :) = B(:, 5)

• remember that always the size of matrices have to match!

A0B17MTB: Part #3
Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

7.3.201618:34

Deleting, adding and replacing matrices

420 s

- which of the following deletes the first and the last column of matrix A (6×6)?
 - create your own matrix and give it a try
 - >> A[1, end] = 0 % A.
 >> A(:, 1, end) = [] % B.
 >> A(:, [1:end]) = [] % C.
 >> A(:, [1 end]) = [] % D.
- replace the 2nd, 3rd and 5th row of matrix **A** by the first row of matrix **B**
 - assume the number of columns of matrices **A** and **B** is the same
 - consider the case where **B** has more columns than **A**
 - what happens if **B** has less columns than **A**?

A0B17MTB: Part #3

Matrix creation, element replacement

300 s

• create following 3D array

$$\mathbf{M}(:,:,1) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad \mathbf{M}(:,:,2) = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}, \quad \mathbf{M}(:,:,3) = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 5 \end{pmatrix}$$
$$\begin{array}{c} 1 & 0 & 0 & 2 & 0 & 0 \\ 0 & 1 & 0 & 0 & 3 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 & 5 \\ \hline 1 & 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 \\ \hline \end{array}$$

• replace elements in the first two rows and columns of the first sheet of the array (i.e. the matrix [1 0; 0 1]) with NaN elements

11

Linear indexing

- elements of an array of arbitrary number of dimensions and arbitrary size can be referred to using single index
 - indexing takes place along the main dimension (column-wise) than along the secondary dimension (row-wise) etc.

12

A0B17MTB: Part #3

Linear indexing - application

- let's consider following matrix:

 - we set all the red-highlighted elements to zero:

```
>> MAT(2:2:end) = 0
>> imagesc(MAT);
```


>> MAT = ones(7);

7.3.201618:34

A0B17MTB: Part #3

13

Linear indexing - ind2sub, sub2ind

- ind2sub: recalculates linear index to subscript corresponding to size and dimension of the matrix
 - applicable to an array of arbitrary size and dimension

- sub2ind: recalculates subscripts to linear index
 - applicable to an array of arbitrary size and dimension

Linear indexing

300 s

- for a two-dimensional array, find a formula to calculate linear index from position given by row (row) and col (column)
 - check with a matrix A of size 4×4 , where

•
$$row = [2, 4, 1, 2]$$

- col = [1, 2, 2, 4]
- and therefore
 - ind = [2, 8, 5, 14]

>> A = zeros(4); >> A(:) = (1:16)

Function who, whos

- function who lists all variables in Matlab Workspace
 - wide variety of options
- function whos lists the variable names + dimension, size and data type of the variables or displays content of a file
 - wide variety of options

>> whos('-file', 'matlab.mat');

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #3

16

Function what, which, delete

• function what lists names of all Matlab files in the current folder

>> Wt = what;

- funkce which is able to localize (in this order)
 - .m/.p/Simulink function
 - Method of Java class
 - Workspace variable
 - arbitrary file, if present in the current folder

```
>> which sin
built-in (C:\Program Files\MATLAB\R2013a\toolbox\matlab\elfun\@double\sin) % double method
```

- function delete deletes
 - files
 - handle objects (e.g. graphical objects)

Functions cd, pwd, dir

- function cd changes current folder
 - lists current folder when called without a parameter
 - "cd ..." jumps up one directory, "cd /" jumps up to root
- function pwd identifies current folder
- function dir lists current folder content
- for other functions (mkdir, rmdir, ...) see Matlab Help

Function prefdir

• folder containing preferences, history, and layout files

```
>> folder = prefdir
>> cd(folder);
```

• it is recommended to do not edit any file!

Function memory, ver

• function memory displays information on how much memory is available and how much the MATLAB software is currently using

>>	memory
----	--------

Maximum possible array:	4408 MB (4.622e+09 bytes) *
Memory available for all	arrays: 4408 MB (4.622e+09 bytes) *
Memory used by MATLAB:	696 MB (7.294e+08 bytes)
Physical Memory (RAM):	3534 MB (3.705e+09 bytes)

* Limited by System Memory (physical + swap file) available.

>> ver

>> V = ver

- function ver displays license information
 - Matlab version

>> memory

>> M = memory

- License number
- List of toolboxes and their version
- if you need to know the vesion of Matlab only, use version

>> V = version

7. 3. 2016 18:34

20

20

Format of command line output >> pi ans = 3.1416 • up to now we have been using basic setup >> sin(1.1) • Matlab offers number of other options ans = • use format setting 0.8912 • output format does not change neither the computation accuracy nor the

accuracy of stored result (eps, realmax, realmin, ... still apply)

setting	format description
short	fixed 4 decimal points are displayed
long	15 decimal points for double accuracy, 7 decimal points for single accuracy
shortE	floating-point format (scientific notation)
longE	-//-
bank	Two decimal points only (euro – cents)
rat	Matlab attempts to display the result as a fraction
and others	note.: omitting setting parameter restors default setup

7. 3. 2016 18:34

21

Format of command line output

240 s

- try following output format settings
 - each format is suitable for different type of problem

```
>> s = [5 1/2 1/3 10*pi sqrt(2)];
>> format long; s
>> format rat; s
>> format bank; s
>> format hex; s
>> format +; s
>> format; s
```

- there exist other formats with slight differences
 - check doc format
- later, we will learn how to use formatted conversion into strings (commands sprintf a fprintf)

7.3.201618:34

List of ASCII characters

- ASCII characters used in Matlab
 - All characters to be found on EN keyboard

[ALT + 91	matrix definition, indexing
]	ALT + 93	-//-
{	ALT + 123	cell elements indexing
}	ALT + 125	-//-
Ø	ALT + 64	handle (symbolic math)
>	ALT + 62	relation operator
<	ALT + 60	-//-
\	ALT + 92	Matrix division
	ALT + 124	logical operator
~	ALT + 126	-//-
^	ALT + 94	power

for more see: http://www.asciitable.com/

7.3.201618:34

Launching external programs

- rarely used
- external programs are launched using the exclamation mark "!"
 - the whole line after the "!" is processed as operation system command

>> !calc

• if you don't want to interrupt execution of Matlab by the launch, add "&"

```
>> !calc &
>> !notepad notes.txt &
```

• it is possible to run Matlab with several ways

>> doc matlab Windows
>> doc matlab UNIX

7.3.201618:34

Work with files using the prompt

- try the following
 - copy & paste line by line, observe what happens
 - be careful when editing the commands!!!

```
>> mkdir('My_experiment');
>> cd('My_experiment');
>> this_directory = pwd;
>> our_file = 'pathdef.m';
>> our_data = fullfile(matlabroot, 'toolbox', 'local', our_file);
>> copyfile(our_data, this_directory);
>> new_file = 'my_demo.txt';
>> movefile(our_file, new_file);
>> !write my_demo.txt
```


Exercise #1

• consider signal: $s(t) = \sqrt{2\pi} \sin(2\omega_0 t) + n(\mu, \sigma), \quad \omega_0 = \pi,$ where the mean and standard deviation of normal distribution *n* is:

mu
$$\mu=0, \sigma=1$$
 sigma

- create time dependence of the signal spanning N = 5 periods of the signal using V = 40 samples per period
- one period: T = 1: $t \in [k, k+1], k \in \mathbb{Z}^0$ (choose k equal for instance to 0)
- the function $n(\mu, \sigma)$ has Matlab syntax:

>> n = mu + sigma*randn(1, N*V)

600 s

A0B17MTB: Part #3

26

c

• apply threshold function to generated signal from the previous exercise to limit its maximum and minimum value:

$$s_{p}(t) = \begin{cases} s_{max} \Leftrightarrow s(t) > s_{max} \\ s(t) \dots \text{ otherwise } s_{max} = \frac{\pi}{2} \\ s(t) \dots \text{ otherwise } s_{max} = \frac{\pi}{2} \end{cases}$$

 $(s \land \Leftrightarrow s(t) < s \land$

- use functi input para
- use the fo

>> close all; >> plot(t, s t) >> stem(t, sp t,

A0B17MTB: Part #3 Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

Matlab Editor

- it is often wanted to evaluate certain sequence of commands repeatedly
 ⇒ utilization of Matlab scripts (plain ACSII coding)
- the best option is to use Matlab Editor
 - to be opened using:

>> edit

- or in Matlab < R2012a: Start \rightarrow Desktop Tools \rightarrow Editor
- a script is a sequence of statements that we have been up to now typing in the command line
 - all the statements are executed one by one on the launch of the script
 - the script operates with global data in Matlab Workspace
 - suitable for quick analysis and solving problems involving multiple statements
- there are specific naming conventions for scripts (and also for functions as we see later)

7.3.201618:34

Script execution, m-files

- to execute script:
 - F5 function key in Matlab Editor
 - Current Folder \rightarrow select script \rightarrow context menu \rightarrow Run
 - Current Folder \rightarrow select script \rightarrow F9
 - From the command line:

>> script_name

- Scripts are stored as so called m-files
 - .m
 - caution: if you have Mathematica installed, the .m files may be launched by Mathematica

elmag.or

Matlab Editor, < R2012a

Edit Text Go Cell Tools Debug Deski	op <u>W</u> indow <u>H</u> elp		5
↓ - 1.0 + ÷ 1.1 ×	** ** 0 : : 🛅 🚔 # 🖷 🛍 🤊 (* 🎍	🗊 - 🛤 🖛 🗰 😥 📡	- • • • • • • • • • • • • • • • • • • •
ila\Matlab_mfiles\TCMapp4.1a\TCM_a			Matlab_mfiles\TCMapp4.1a\mbin\resQuv.m
 function [pTCMout pTCMr %% TCM_afs_executor: Th % -solver- % % INPUT/OUTPUT variable % SAME as TCM_pfs_ex % TCM_pfs_executor vers % ver. 1.0a (12.3.20) % ver. 1.0b (6.6.201) % new features % ver. 1.0c (8.8.201) % new field pTC % as update: 8.8.2 % Notes: % A) SAME as TCM_pfs_ex % B) fIndexes(1,:) ~ so % fIndexes(2,:) ~ as % Author: Miloslav Čape % See also TCM_pfs_exec % TO DO: 	<pre>es done] = TCM_afs_executor(pTCMin,routineD is function computes eigenvalues and eigenv s: ecutor.m ion history: 11-6.6.2011) 1) (2-matrices complete saved to the results d 1) Mout.zmatrix 1 s been added (for Qz cal 011</pre>	ata) 93 - 94 - 95 96 97 - 98 - 99 - 100 - 101 - 102 - 103 - 104 - 102 - 103 - 104 - 105 - 106 107 108 109 - 110 - 111 - 112 - 113 114 115 116 - 117	<pre>The set of the se</pre>
<pre>- pTCMres = {}; % alokace - timePath = [num2str(tt(</pre>	(event. později doplněno) 3)) '.' num2str(tt(2)) '.' num2str(tt(1)) ' num2str(tt(5))]; % alokace data a času star	ile `myF	cel' in the current directory q0 = zeros(size(t,2),modes); % Hustota náboje (divergence J) thisFreq = frInd(i); for j = 1:modes × TCM_afs_executor.m × resQuv 6 Ln 30 Col 35

30

elmaq.c

Matlab Editor, ≥ R2012a

Useful shortcuts for Matlab Editor

key	meaning
CTRL + Pg. UP	switch among all open m-files - one direction
CTRL + Pg. DOWN	- other direction
CTRL + R	adds '%' at the beginning of the selected lines, "comment lines"
CTRL + T	removes '%' from selected lines
F5	execute current script / function
CTRL + S	save current file (done automatically after pressing F5)
CTRL + HOME	jump to the beginning of file
CTRL + END	jump to the end of file
CTRL + \rightarrow / \leftarrow	jump word-by-word or expression-by-expression to the right / left
CTRL + W	close current file
CTRL + O	activates open file dialog box (drag and drop technique also available)
CTRL + F	find / replace dialog box
CTRL + G	"go to", jumps to the indicated line number
CTRL + D	open m-file of the function at the cursor's position
CTRL + I	indention of block of lines corresponding to key words (for / while, if / switch - case)
F1	open context help related to the function at position of cursor

120 s

- open Matlab Editor and prepare to work with a new script, call it signal1.m, for instance
- use signal generation and limiting from one of the previous slides as the body of the script
- Save the script in the current (or your own) folder
- try to execute the script (F5)

Matlab Editor

• note: from now on, the code inside scripts will be shown without leading ,,>>"

Useful functions for script generation

- function disp displays value of a variable in Command Window
 - without displaying variable's name and the equation sign "="
 - Can be combined with s text (more on that later)
 - more often it is advantageous to use more complicated but robust function sprintf

```
>> a = 2^13-1;
b = [8*a \ 16*a];
                        a = 2^{13-1};
                                                             a = 2^{13-1};
                                                                                            >> a = 2^{13-1};
b
                        b = [8*a \ 16*a];
                                                             b = [8*a \ 16*a];
                                                                                             = [8*a 16*a];
                                                      VS.
                                                                                            disp(b);
b =
                                                             disp(b);
                        b
                                                                                                  65528
                                                                                                           131056
     65528
              131056
```

- function input is used to enter variables
 - if the function is terminated with an error, the input request is repeated

```
A = input('Enter parameter A: ');
```

```
• It is possible to enter strings as well:
```

str = input('Enter String str: ', 's');

```
>> A = input('Enter parametr A: ');
Enter parametr A: 10.153
>> A = input('Enter string str: ', 's');
Enter string str: this is a test
>> whos
 Name
            Size
                             Bytes Class
                                               Attributes
 A
            1x14
                                28
                                    char
            1x1
                                 8
                                    double
 ans
```


600 s

Matlab Editor – Exercise

- create a script to calculate compound interest*
 - the problem can be described as :

where P is regular repayment of debt A, paid n-times per year in the course of k years with interest rate r (decimal number)

- create a new script and save it
- at the beginning delete variables and clear Command Window
- implement the formula first, then proceed with inputs (input) and outputs (disp)
- Try to vectorize the code, e.g. for various values of *P*, *n* or *k*
- Check your results (pro A = 1000, n = 12, k = 15, r = 0.1 is P = 10.7461)

*interest from the prior period is added to principal

7.3.201618:34

Matlab Editor – Exercise

• try to vectorize the code, both for *r* and *k*

- use scripts for future work with Matlab
 - bear in mind, however, that parts of the code can be debugged using command line

A0B17MTB: Part #3
Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

7.3.201618:34

Linear indexing

600 s

• let's consider following matrix:

>> A = magic(4);

• use linear indexing so that only the element with the highest value in each row of A was left (all other values set to 0); call the new matrix B

>> B = zeros(size(A)); >> % complete ...

Useful functions for script generation

- function keyboard stops execution of the code and gives control to the keyboard
 - the function is widely used for code debugging as it stops code execution at the point where doubts about the code functionality exist

K>>

- keyboard status is indicated by K>> (K appears before the prompt)
- The keyboard mode is terminated by return
- function pause halts code execution,
 - pause(x) halts code execution for x seconds

% code; code; code; pause;

- see also: echo, waitforbuttonpress
 - special purpose functions

7.3.201618:34

Matlab Editor – Exercise

360 s

- modify the script for compound interest calculation in the way that
 - values *A* and *n* are entered from the command line (function input)
 - test the function keyboard (insert it right after parameter input)
 - is it possible to use keyboard mode to change the parameters inserted by input?
 - arrange for exiting the keyboard (K>>) mode, use return
 - interrupt the script before displaying results (function pause)
 - note the warning "*Paused*" in the bottom left part of main Matlab window

Script commenting

• MAKE COMMENTS!!

- important / complicated parts of code
- description of functionality, ideas, change of implementation

40

When not making comments...

```
edgTotal = MeshStruct.edgTotal;
                               RHO P
                                         = zeros(3,9,edqTotal);
                                         = zeros(3,9,edqTotal);
                               RHO M
                             🖵 for m = 1:edqTotal
                                   RHO P(:,:,m) = repmat(MeshStruct.Rho Plus1(:,m),[1 9]);
no
                                   RHO M(:,:,m) = repmat(MeshStruct.Rho Minus1(:,m),[1 9]);
                               end
one
                               Ζ
                                         = zeros(edgTotal, edgTotal) + 1j*zeros(edgTotal, edgTotal);
                             [ for p = 1:MeshStruct.trTotal
will
                                   Plus = find(MeshStruct.TrianglePlus - p == 0);
                                  Minus = find (MeshStruct.TriangleMinus - p == 0);
understand!
                                         = MeshStruct.trCenter9 - ...
                                               repmat(MeshStruct.trCenter(:,p), [1 9 MeshStruct.trTotal]);
                                   R
                                        = sqrt(sum(D.*D));
                                        = \exp(-K*R)./R;
                                   q
                                   qP = q(:,:,MeshStruct.TrianglePlus);
                                        = g(:,:,MeshStruct.TriangleMinus);
                                   αM
                                         = sum(gP) - sum(gM);
                                   Fi
                                         = FactorFi.*reshape(Fi,edgTotal,1);
                                   ZF
                                   for k = 1:length(Plus)
                                       n
                                              = Plus(k);
                                       RP
                                              = repmat(MeshStruct.Rho Plus9(:,:,n),[1 1 edgTotal]);
                                       RPi
                                              = repmat(MeshStruct.Rho Minus9(:,:,n),[1 1 edgTotal]);
                                              = sum(gP.*sum(RP.*RHO_P)) + sum(gM.*sum(RP.*RHO_M));
                                       A
                                              = FactorA.*reshape(A,edgTotal,1);
                                       Z1
                                       Z(:,n) = Z(:,n) + MeshStruct.edgLength(n)*(Z1+ZF);
                                   end
                                   for k = 1:length(Minus)
                                              = Minus(k);
                                       n
                                       RP
                                              = repmat(MeshStruct.Rho Minus9(:,:,n),[1 1 edgTotal]);
                                       RPi
                                              = repmat(MeshStruct.Rho Plus9(:,:,n),[1 1 edqTotal]);
                                              = sum(gP.*sum(RP.*RHO_P)) + sum(gM.*sum(RP.*RHO_M));
                                       A
                                              = FactorA.*reshape(A,edqTotal,1);
                                       Z1
                                       Z(:,n) = Z(:,n) + MeshStruct.edqLenqth(n)*(Z1-ZF);
                                   end
                               end
```


7.3.201618:34

5. 2010 10.5

edit	open Matlab Editor	•
disp, pause	display result in the command line, terminate script execution	•
keyboard, return, input	enables user to enter script being executed, value input request	•
who, what, whos, which	information on variables, files, folders	•
cd, pwd, dir	change directory, list folder	•
memory, ver	available memory information, version of Matlabu and toolboxes	•
format, delete	command line display format, delete file / objects	•

• generate vector containing following sequence

- note the x axis (interval, number of samples)
- split the problem into several parts to be solved separately
- several ways how to solve the problem
- use stem(x) instead of plot(x) for plotting
- try to generate the same signal beginning with zero ...

• generate vector containing following sequence

• one of possible solutions:

7. 3. 2016 18:34

44

A0B17MTB: Part #3

• consider following signal:

$$s(t) = \sqrt{2\pi} \sin(2\omega_0 t) + n(\mu, \sigma)$$

where the mean of normal distribution $n(\mu, \sigma)$ is $\mu=0$ (mu) and standard deviation $\sigma=1$ (sigma). Matlab syntax of *n* is:

n = mu + sigma * randn(1, N*V)

- create signal within time interval $\langle 5;10 \rangle$ so that N = 5 periods of the signal is depicted using V = 40 samples per period.
- use the code in the following slide and correct errors in the code. Correct solution will be presented during next lecture.

• Correct solution depicts:

7.3.201618:34

A0B17MTB: Part #3 Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

• reflection coeff. S_{11} of a one-port device of impedance Z is given by :

$$S_{11} = 10\log_{10}\left(\left|\frac{Z-Z_0}{Z+Z_0}\right|^2\right),$$

where $Z_0 = 50 \Omega$ and Z = R + jX.

- calculate and depict the dependence of S_{11} for $R = 30 \Omega$ and X on the $<1, 10^3>$ interval with 100 evenly spaced point in logarithmic scale
- Use the code below and correct errors in the code. Correct solution will be presented during next lecture.

• Correct solution results in the following:

7. 3. 2016 18:34

A0B17MTB: Part #3

Thank you!

ver. 5.1 (06/03/2016) Miloslav Čapek, Pavel Valtr miloslav.capek@fel.cvut.cz Pavel.Valtr@fel.cvut.cz

Apart from educational purposes at CTU, this document may be reproduced, stored or transmitted only with the prior permission of the authors. Document created as part of A0B17MTB course.