
Exploring the Alloy Operational Semantics for Case
Management Process Modeling

Irina Rychkova
Centre de Recherche en Informatique

Université Paris 1 Panthéon - Sorbonne,
90 rue Tolbiac, 75013 Paris, France
Email: irina.rychkova@univ-paris1.fr

Abstract—Efficient case management in industry is hampered
by attempts to deal with case management process the same way
as with regular business process. Development of the specific
approaches for case management process modeling and analysis
is therefore an important endeavor that can improve the case
management practice.

In this work, we provide a mathematical model and a
comprehensible formalism for reasoning about the meaning -
the semantics - of case management process. We represent case
management process as a finite state machine (FSM) and express
its operational semantics in the Alloy specification language. The
Alloy Analyzer tool allows us to define, simulate and validate
a case management process model while efficiently managing its
complexity. We illustrate our findings on the example of Mortgage
Approval process.

Index Terms—case management, business process modeling,
finite state machine, Alloy

I. INTRODUCTION

Consider the following processes: crime investigation, mort-
gage processing, patience care, design of a new house. Being
completely different by their objective, they have one im-
portant characteristic in common: unpredictability. Each of
these processes unfold according to a particular case and
emerging knowledge about this case rather than according to
a predefined scenario.

Particular importance of case management processes (CMP)
has been recognized since early 90x [1] [2]. Until now,
however, case management processes remain largely ”pen and
paper”.

Efficient case management in industry is hampered by
attempts to deal with case management process the same way
as with regular business process. Development of the specific
approaches for CMP modeling and analysis is therefore an
important endeavor that can improve the case management
practice.

Lamport defines process as a sequence of events occurring
in system [3], where each event is triggered by an (internal
or external) action. According to this definition, a business
process can be seen as a sequence of events triggered by the
activities of (internal or external) business process actors.

The existing methods for business process modeling and
analysis (e.g. BPMN - BPEL bundle) follow the imperative
principles, implying that the order of events occurring during
the process execution is predefined. For case management

processes, however, it is not true [4]. In this work, we shift
this traditional modeling paradigm and exploit the declarative
principles for CMP modeling and analysis. We model CMP
as a state-transition system that allows us to handle process
events whose order of occurrence is undetermined.

The objective of this paper is to provide a mathematical
model and a comprehensible formalism for reasoning about
the meaning - the semantics - of case management process.
In particular, we focus on (a) how a finite state machine
(FSM) [5] [6] abstract model can be used to provide the
operational semantics for CMP, (b) how CMP model can
be formally specified in Alloy [7] and analyzed with Alloy
Analyzer [8] and (c) how the results of this formal analysis
can be interpreted and used by business specialists for process
improvement.

We illustrate the proposed operational semantics on the
example of Mortgage Approval process. First, we define a
mortgage approval as a FSM: we specify the states of a
mortgage case and the transitions between these states. The
state transitions are triggered by the corresponding mortgage
processing activities (e.g. application completion, validation of
applicant’s information, property appraisal, etc.). Their order
in the model, however, remains undetermined. This FSM,
describes how the mortgage case (application file) evolves
from its submission to approval or rejection.

Once the state and state transitions are defined, we formalize
the semantics of this FSM in Alloy and use the Alloy Analyzer
tool [8] for model simulation and validation. Model simulation
provides us with an instant visual feedback in a form of
diagrams capturing the FSM execution scenarios. We use
Alloy model checking for more specific reasoning about model
properties: for example, we validate if our CMP model meets
its business requirements.

Until now, Alloy specification language was successfully
applied to design and verification of software and hardware
systems. In this work, we position Alloy and Alloy Analyzer
as a toolbox for both technical and business specialists. Along
with UML, BPMN and other conventional diagrams, Alloy
diagrams represent design artifacts and can be studied, referred
to, and serve a mean for communicating and evaluating both
business and technical design decisions.

Once the model validity at a given level of detail is checked
- the model can be refined. This iterative approach allows us

to efficiently manage the model complexity.
The operational semantics defined in this work is a first

step to using formal methods; it paves the road to automated
design, validation and verification of CMP.

The reminder of this paper is organized as follows: In
Section II, we provide a definition for case management
process, discuss the challenges related to case management
and introduce our example - the Mortgage Approval Process;
In Section III, we introduce a finite state machine (FSM)
abstraction for CMP modeling: first, we provide a mathemat-
ical model for FSM as defined by Plotkin [5], then we apply
this model to our example. In Section IV, we formalize the
FSM-based specification of the Mortgage Approval process in
Alloy. In Section V, we illustrate how the CMP model can be
simulated, analyzed and, eventually, improved using the Alloy
Analyzer tool. We show the scenarios of mortgage approval
generated by Alloy Analyzer and demonstrate how business
properties of the Mortgage Approval process can be formally
validated. In Section VI, we discuss the related works; Section
VII presents our conclusions.

II. CASE MANAGEMENT PROCESS AND ADAPTIVE CASE
MANAGEMENT

Davenport [1], [2] defines case management process as
a process that is not predefined or repeatable, but instead,
depends on its evolving circumstances and decisions regarding
a particular situation, a case. He discusses the need in specific
approaches to handle such processes. The Case Management
Process Modeling (CMPM) Request For Proposal released
by OMG on September 2009 [9] expresses the practitioners’
demand in the case management solutions. OMG defines case
management as ”A coordinative and goal-oriented discipline,
to handle cases from opening to closure, interactively between
persons involved with the subject of the case and a case man-
ager or case team”. Case management processes (CMP) have
multiple applications, including ”...licensing and permitting
in government, insurance application and claim processing in
insurance, patient care and medical diagnosis in health care,
mortgage processing in banking...” [9]. The main resource of
a CMP is knowledge obtained as a result of communication
between multiple actors/users. This knowledge is used for
making decisions during the case handling.

A. Adaptive Case Management (ACM) vs. Business Process
Management (BPM)

Business Process Management (BPM) and Adaptive Case
Management (ACM) demonstrate conceptually different views
on the system design. Process-centered view adapted by
Business Process Management (BPM) implies that the data
emerges and evolves within a process according to a prede-
fined control flow (Fig. 1a) - similarly to a product evolving
on a conveyor belt. This view suits to predictable and highly
repeatable processes. One of the major challenges identified
by both practitioners and researchers in the ACM field, is
the attempts to deal with case management process in the
industry the same way as with regular business process -

(a) Process-centered view (b) Data-centered view

Fig. 1: BPM vs. ACM systems, from [10]

i.e. applying the process-centered view. In this work, we
implement the data-centered view (Fig. 1b) that is proposed
by the Adaptive Case Management (ACM) practitioners [10].
This view implies that the process shall be adapted at run time,
according to evolution of case circumstances and case-related
data. This view suits to nondeterministic, knowledge-intensive
processes like case management processes [11].

The body of knowledge on knowledge-intensive processes
and ACM has been extensively developed by practitioners
and published in the Internet blogs (see http://www.adaptive-
case-management.com/, http://www.column2.com, and many
others). The group of researchers at IBM proposes an approach
that incorporates process- and data-centered perspectives and
is based on concept of business artifacts [12], [13], [14].
Recently it has been complemented by academical research
and gave a rise to a series of publications ([15], [10], [16],
etc.)

In the following sections, we define an operational seman-
tics for case management process and illustrate this semantics
on the example of the Mortgage Approval process.

B. Example: Mortgage Approval process

A mortgage is a loan for buying a house. Mortgage Approval
process is a typical example of a case management process.

The objective of mortgage approval process is to come up
with a right decision about the applicants request: provide
him/her with a loan or reject the application. In order to make
this decision, the potential money lender (e.g. a bank) must
ensure (i) that the applicant is credible and will be able to pay
the loan back and (ii) that the amount of loan is justified with
respect to the real cost of a property. 1

In [17], we provide a detailed description of mortgage
approval process as defined by different financial institutions
in the USA. In this work, however, we model a simplified
version of this process. We summarize the main steps and
business rules defined for Mortgage Approval process in the
list below.

1In the USA, a bank will remain the owner of the property until the
mortgage is fully paid back. Thus the bank shall validate that the property in
question costs at least as much as the seller requests.

Mortgage Approval.:
• An applicant submits a mortgage application where

he/she requests for a loan.
• A bank can process only one application from a given

applicant at a time.
• The application should provide a list of documents in-

cluding the applicant’s name, address, employment in-
formation, Internal Revenue Service (IRS) forms, recent
pay-stubs, medical certificate, information about the prop-
erty to buy2 etc. (The exact list may vary depending on
the financial institution and the particular situation of an
applicant.)

• The application revision starts with a validation of the
applicant’s credibility (i.e. the employment information
must be complete); the information about a property to
buy can be provided later in the process.

• When the information on the property to buy is submitted,
the lender sends an appraisal agent to evaluate (appraise)
this property. Negative appraisal result is a sufficient
condition for the mortgage application rejection.

• Preapproval - is an intermediate status of the application
that is given upon the confirmation of applicant’s credi-
bility.

• The proof of the applicant’s credibility and positive
appraisal results are necessary conditions for application
approval.

• Some elements of the application (e.g. a medical cer-
tificate, family situation, etc.) may trigger the specific
loan approval conditions (e.g. demand supplementary
insurance) or affect the loan type or duration.

As follows from the description, the process above should
be able to handle (in general, unpredictable) sequences of
events (i.e. submission of application elements, receiving eval-
uation results, etc) and cannot follow a predefined scenario.

III. CASE MANAGEMENT PROCESS: ABSTRACT MODEL
AND OPERATIONAL SEMANTICS

Theoretical computer science uses a concept of operational
semantics in order to define the meaning of a computer
program. The operational semantics explains the meaning of a
program ”in terms of a hypothetical computer which performs
the set of actions which constitute the elaboration of that
program.” [18]

In this work, we define the meaning of the Mortgage
Approval process by modeling it as a nondeterministic finite
state machine and by formalizing its operational semantics in
Alloy specification language.

A. Finite State Machine

A finite state machine (FSM) or finite automaton - is a
model of computation that specifies a machine that can be at
one state at a time and can change its state (perform a state
transition) as a result of a triggering event or condition. A FSM

2By the property information we understand all the data that would serve
for further property appraisal.

is defined by a (finite) set of its states and a set of triggering
conditions for each of its transitions.

Mathematical model:
A FSM can be defined as a quintuple (M = ⟨Q,Σ, δ, q0, F ⟩)
where:
Q is a finite set of states;
Σ is a finite set of triggering events or conditions (input
alphabet);
δ : Q× Σ → P (Q) is the state transition relation;
q0 ∈ Q is the initial state;
F ⊂ Q is the set of final states.

One can distinguish deterministic and nondeterministic
FSM: for each state and triggering event, a deterministic
FSM specifies only one next state, whereas a nondeterministic
FSM can specify multiple possible next states. Using the
mathematical model above, for deterministic FSM, we can
write the state transition relation as δ : Q × Σ → Q - a
function that returns a single state. For nondeterministic FSM
it returns a set of states.

It is not difficult to prove that nondeterministic finite
automata (NFA) are equivalent (i.e. can be translated) into
deterministic finite automata (DFA). This translation results
to more complex model (with increased number of states and
transitions) therefore in many cases (including our example)
the use of nondeterministic model is justified.

Application to the Case Management Process:
Case management process can be modeled as a finite state
machine where

- a FSM state represents ”a status” of the case (e.g.
case-related documents, evidences, examination results,
reports, decisions etc.) at a given moment of time;

- FSM triggering events represent events occurring during
the case (e.g. document submitted, results arrived, de-
cision made by a manager, request canceled, etc) and
resulting from activities performed by human agents or
systems involved into the case;

- FSM transitions can be associated with one (or multiple)
activities and their specific outcomes (triggering events);

- The possible case management outcomes (accepted or
rejected claim, recovered patient etc) can be associated
with as a FSM set of final states.

In the next section, we model the Mortgage Approval process
as a finite state machine and express its operational semantics
in the Alloy specification language.

B. FSM for the Mortgage Approval process
The Mortgage Approval process manages an applicant’s

case until a decision on the mortgage application is made. Here
the current state of the case is represented by a current state of
a submitted mortgage application. We model the evolution of
the mortgage application state over time as a FSM illustrated in
Fig. 2. We define the following abstract states for a mortgage
application:

QApp = {Incomplete, Complete, Preapproved,Approved,Rejected}

The state transitions represent the activities carried out by an
applicant (ex.: complete application) or by a bank (ex.: revise

Fig. 2: A FSM for mortgage application handling: FSMapp

Fig. 3: A FSM for Employment Info handling: FSMempl

application). These activities are shown as transition labels in
Fig. 2.

The resulting FSM is nondeterministic: the same transition
can define more then one resulting state. For example, the
complete application (completeApp) activity in Fig. 2 can
either trigger the application transition from Incomplete to
Complete state or can result in no transition, keeping the
application Incomplete. This reflects the real nature of the
bureaucratic procedure behind.

Based on the process description, the current state of a mort-
gage application depends on the states of elements constituting
this application: the applicant’s employment information and
the property information. We define the abstract states of these
elements as follows:

QEmpInfo = {Undefined,Defined, Invalid, V alid}

QPropInfo = {NotFound, Found,AppraisedOK,AppraisedKO}

Our objective is to design a process for mortgage approval
that will adapt to the evolving circumstances regarding the
concrete applicant’s case while respecting the business rules
of the organization.

To ensure adaptability, we define a model where the mort-
gage application elements (i.e. employment info and property
info) can emerge and evolve independently and with no prede-
fined order (e.g. due to modification, validation, appraisal). For
our example, we model the evolution of Employment info. and
Property info. with separate FSMs (Fig. 3, 4). The transitions
of these machines are labeled with the names of the corre-
sponding activities. These FSMs are also nondeterministic.

The state of the mortgage approval process itself can be
now considered as a combination of states of the three FSM
defined above (Fig. 5.)

To guarantee that our model will respect the business rules
defined by the organization (a bank), we express these rules

Fig. 4: A FSM for Property Info handling: FSMprop

Fig. 5: A FSM for a mortgage approval process as a combi-
nation of FSMapp, FSMempl, FSMprop

as dependencies between the state machines (red dashed lines
in Fig. 5).

To specify how these machines will work together, we
introduce the Alloy operational semantics for our Mortgage
Approval process.

IV. ALLOY OPERATIONAL SEMANTICS FOR MORTGAGE
APPROVAL PROCESS

Alloy [7] is a declarative specification language developed
by the Software Design Group at MIT. Alloy is a language for
expressing complex structural constraints and behavior based
on first-order logic.

Alloy Analyzer [8] is a tool for the automated analysis of
models written in the Alloy specification language. Given a
logical formula and a data structure that defines the value
domain for this formula, the Alloy Analyzer decides whether
this formula is satisfiable. Mechanically, the Alloy Analyzer
attempts to find a model instance - a binding of the variables
to values - that makes the formula true. [19]

Specification of CMP in Alloy can be divided into four steps
as follows:

• Definition of data structure. In this step, the case
elements, their structure and relations between them are
formalized with Alloy signatures (sig) and constraints.

• Definition of FSM states. In this step, the abstract states
for each case element are identified. These states will
later constitute the component FSMs.

• Definition of triggering conditions. Here, the conditions
that will trigger a state transition in FSM are identified
and formalized with Alloy predicates.

• FSM assembling. In this step, the component FSMs,
specified for each case element are assembled into a
composite FSM of the CMP. We formalize the relations
between these FSMs with Alloy predicates.

FSM-based operational semantics provides the meaning for
a CMP model and allows for further formal analysis to be
carried out on this model. In the reminder of this section,
we formalize our example - mortgage approval process -
using Alloy specification language. In the further section we
demonstrate how the formal specification can be analyzed
using formal model checking techniques.

A. Definition of data structure.

Data structures in Alloy are represented with signatures
labeled by the keyword sig. Alloy signatures can be abstract
or concrete, can have explicit cardinalities (i.e. one or set),
and can contain one or multiple fields. A field can be seen as
analogy of a class attribute in OO languages.

Alloy specification language is based on the set theory. From
the set-theoretical perspective, each Alloy signature defines a
set of element of a given kind whereas its fields define the
relations with another sets (signatures).

We define the Employment Info and Property Info data
objects as Alloy signatures extending the generic Obj data
type:
sig EmploymentInfo extends Obj{}
sig PropertyInfo extends Obj{}

At this level of detail, we do not precise the structure of these
elements (this can be elaborated at refinement if needed).

We define the Application signature by specifying the
relations between the mortgage application, employment in-
formation and property information:
sig Application extends Obj{
/*information about a house to buy */
property : one PropertyInfo,
/*information about the applicant employment */
employment : one EmploymentInfo
}

B. Definition of FSM states.
Based on the set-theoretical perspective, we model a state

of a data object as a set of such objects exhibiting the same
properties: for example, the state complete below defines a
set of mortgage applications that are complete.
sig State {
undef, def, valid, invalid: set EmploymentInfo,
incomplete, complete : set Application,
preapproved, approved, rejected : set Application,
found, notFound, appraisedOk,
appraisedKo: set PropertyInfo}

Accordingly, we model a state transition as removing an
element from one set and adding it to another, for example:
complete = complete + e &&
incomplete = incomplete - e

The data structure State defines a state space for the
FSM illustrated in Fig. 5. This finite state machine models
the Mortgage Approval case as a whole.

We elaborate our FSMs for mortgage application and its
components by introducing constraints on their states and on
their possible state transitions:

EmploymentInfo = undef + def
undef & def = none
valid & invalid = none
(valid + invalid) & undef = none

This example illustrates the constraints defined for the
FSMempl state machine. The first two statements specify
that any employment info element can be either defined or
undefined but not in both states at a time; The third statement
specifies that any element cannot be both valid and invalid;
the last statement implements a business constraint derived
from the process description in section II-B: it stands that
employment info can be validated (and eventually can become
valid or invalid) only if it is defined.

Other business properties of the mortgage approval process
can be also modeled as Alloy constraints:

/*uniqueness of employment info */
fact { all a1, a2:Application
{a1.employment = a2.employment <=> a1=a2}}

This expression stands that no two applications currently
processed by the bank can have the same employment info. It
paraphrases and implements the business rule from the process
description: ”A bank can process only one application from a
given applicant at a time.”

C. Definition of triggering conditions.

We formalize the conditions that trigger state transitions for
FSMapp, FSMempl and FSMprop shown in Fig. 2, 3, 4 with
Alloy predicates. The triggering conditions are directly related
to the (internal or external) activities and their outcomes.
In our example, one activity can trigger different transitions
depending on its outcome (e.g. completeApp). The converse
is not true: each state transition in mortgage approval can be
triggered by one activity only.

In the example below, we specify a triggering condition
for FSMempl - a redefineEmpl activity - a submission of
new information about the employment by an applicant. The
corresponding Alloy predicate is defined with two parameters:
a current state st (the sate of a mortgage case before the
activity is carried out) and a next state st’ (the state of a
mortgage case after the activity is terminated).

pred redefineEmpl [st, st’:State] {
(some e : st.undef & Application.employment |

st’.def = st’.def + e &&
st’.undef = st’.undef - e) ||

(Application.employment = st.def)
}

The FSM mathematical model defines a state transition as a
relation P (Q). This relation is specified in the predicate’s
body. In our example, it states that:

some (arbitrary) instances e of employment info that are
currently undefined for their applications (i.e. belong to the
set undef at the current state st), will be defined upon
redefineEmpl termination (i.e. will be moved from the set
undef to the set def in the next state st’).

We proceed with formalizing all the state transitions for our
FSMs shown in Fig. 2, 3, 4 . This results in the following
Alloy predicates: validateEmployment, searchProperty, ap-
praiseProperty, completeApp, approveApp, rejectApp, preap-
proveApp (for the complete Alloy model, please, contact the
author of this paper).

We specify the final states for FSMs by introducing the
following constraints:

fact finalValid{all s: State, s’: ord/next[s],
e:EmploymentInfo

{e in s.valid => e in s’.valid }}
fact finalApprKo{all s: State, s’: ord/next[s],

p:PropertyInfo
{p in s.appraisedKo => p in s’.appraisedKo }}

The example above states that valid and appraisedKo
are the final states of the corresponding FSMs (see also
Fig.3, 4). The Alloy expressions can be red as follows: once
the employment info is validated, it remains valid; once the
property got a negative appraisal - it remains so (cannot be
re-appraised).

These constraints are derived from the business specification
for mortgage approval (Section II-B). Once a new rule is
introduced: once negatively appraised, the property, can be re-
appraised (dashed transitions in Fig.4) - the finalApprKo
invariant shall be removed.

D. Assembling the component FSMs into the Mortgage Ap-
proval FSM.

Once the component FSMs are specified, we assemble them
into the Mortgage Approval FSM as illustrated in Fig. 5 by
specifying the relations between their state transitions. The
Alloy invariant run below represents such an assembly and
can be seen as a global state transition function for a mortgage
approval process:

Definition of state transitions
fact run{
all s: State, s’: ord/next[s] {
{ completeApp [s.incomplete, s,s’]

&& s’.approved = s.approved &&
...
|| {reviseApp[s.complete-s.approved-s.rejected,s, s’]

&&
}
|| {redefineEmpl [s,s’] &&
|| {searchProperty[s,s’] &&
} } }

This expression specifies two groups of activities that can
be carried out during the mortgage approval: the internal
activities (complete application and/or revise application) and
external activities (redefine employment, search property).
The corresponding predicates are related with inclusive ”or”
operation (||) allowing for concurrent state transitions. From
the mortgage approval perspective, that means that during the
process, the activities can be executed in any order - the
essential property of CMP.

This run expression uses two variables - s and s’ -
that represent respectively a current and a next states of
our mortgage approval FSM. Here ord/next is a predefined
function in Alloy that specifies the ’next’ state as a function

of a current state in the sequence of states to be generated by
the Alloy Analyzer.

Following the definition of FSMapp, completeApp repre-
sents an activity for application completion and specifies a
triggering condition for the applications, which are currently in
the state s.incomplete; similarly, reviseApp is applicable
to complete mortgage applications for which the final decision
(approved or rejected) has not been made yet. The reviseApp
predicate specifies the revision activity with more details:

pred reviseApp [a: set Application, st,st’:State]{
(some a1: a | preapproveApp[a1, st, st’]

&& st.valid=st’.valid
&& st.invalid = st’.invalid

&& st.appraisedOk = st’.appraisedOk
&& st.appraisedKo = st’.appraisedKo) ||
(some a2: a | approveApp[a2, st, st’]

&& st.valid=st’.valid
&& st.invalid = st’.invalid

&& st.appraisedOk = st’.appraisedOk
&& st.appraisedKo = st’.appraisedKo) ||
(some a3: a | rejectApp[a3, st, st’]

&& st.valid=st’.valid
&& st.invalid = st’.invalid

&& st.appraisedOk = st’.appraisedOk
&& st.appraisedKo = st’.appraisedKo) ||
(some a5: a | validateEmployment[a5, st,st’]

&& st’.approved = st.approved
&& st’.rejected = st.rejected
&& st’.preapproved=st.preapproved

&& st.appraisedOk = st’.appraisedOk
&& st.appraisedKo = st’.appraisedKo) ||
(some a4: a | appraiseProperty[a4, st,st’]

&& st’.approved = st.approved
&& st’.rejected = st.rejected
&& st’.preapproved=st.preapproved

&& st.valid=st’.valid
&& st.invalid = st’.invalid)
}

This predicate can be red as follows: for all applications con-
sidered for revision, the following activities can be carried out
concurrently: some applications can be approved, preaproved
or rejected, whereas for some applications employment can be
validated and/or property can be appraised. Here we explic-
itly specify that preapproveApp, approveApp and rejectApp
do not affect the employment validity or appraisal results;
validateEmployment does not affect the application approval
status neither it does the appraisal results etc.

E. Refinement of the partial model.

Once a CMP is specified at the abstract level, we can
progressively refine our model by defining new case elements,
their corresponding states and triggering conditions. The ob-
jective of step-wise refinement is to evolve from the partial
(abstract) to concrete model of the process that would fully
meet its business specification. According to our formalism,
the CMP model refinement consists of two parts: refinement
of FSM (adding states, transitions and triggering conditions)
and corresponding refinement of the Alloy model (extending
data structures, adding or relaxing constraints).

In its current definition, our Mortgage Approval process
model omits a lot of details: besides the employment info
and property info, applicant’s bank records, tax forms, medical
information, loan type and duration and many other elements
shall be handled during the real mortgage approval. The idea

Fig. 6: A FSM for handling a medical certificate (top); A FSM
for handling a loan type definition (bottom)

Fig. 7: A FSM for a refined mortgage approval process

is to iteratively refine our model by adding new FSMs for
handling these elements and by providing their corresponding
operational semantics in Alloy.

Fig. 6, 7 show a possible refinement scenario according to
the following business specification parts:

• A medical certificate must be provided by the applicant
upon completion of the application file. According to the
evaluation results, the mortgage lender can insist on the
supplementary insurance for the applicant.

• The loan type shall be defined at preapproval and fixed
upon the application approval.

The refined state machine for the mortgage approval process
is illustrated in Fig.7.

The choice of state space and the ”relevance” of case
elements is a separate topic that will not be discussed in this
paper.

After each design iteration, we simulate and validate the
Alloy model with Alloy Analyzer. The main objective of the
step-wise refinement is to maintain the model validity while

increasing its complexity.

V. USING ALLOY MODEL CHECKER FOR SIMULATION
AND ANALYSIS OF MORTGAGE APPROVAL PROCESS

MODEL

Once a CMP model is formalized in Alloy, it can be
simulated with Alloy Analyzer.

A. Simulation

During the simulation, Alloy Analyzer generates the set of
model instances representing random CMP execution scenar-
ios. These instances are shown in a form of diagrams and
provide a modeler with visual feedback. These diagrams can
be examined and analyzed by both technical and domain
specialists in order to detect unintended or implicit process
behavior that might indicate the errors in the business spec-
ification. Along with UML, BPMN and other conventional
diagrams, Alloy diagrams represent design artifacts and can
serve a mean for communicating and evaluating the design
decisions.

For the Mortgage Approval process model, we define a
predicate example and configure the run statement for its
execution:
pred example { ord/last.preapproved+
ord/last.approved +
ord/last.rejected =Application }
run example for exactly 1 Application,
6 State, 1 EmploymentInfo, 1 PropertyInfo

The expressions above specifies a simulation of the Mortgage
Approval FSM for 1 application, 1 employment info and
1 property info. The Alloy Analyzer tool will search for a
scenario that

- starts in the initial state as specified by the initState

invariant,
- follows the state transition rules for the FSM defined in

the run invariant,
- involves exactly 6 states,
- terminates in the final state, where all the applications are

at one of the 3 states: preapproved, approved or rejected
(as specified in the example predicate).

This simulation produces model instances (meaning that the
model is consistent) - possible scenarios - and can be recon-
figured for different number of elements and states.

Table I shows one instance generated by the Alloy Analyzer
tool. The instance is projected over State in order to reproduce
a sequence of state transitions generated by Alloy Analyzer.
The scenario illustrates the case where the employment info is
defined (State 1) completing the application (State 2); then the
revision invalidates the employment info (State 3) and, even
though the property info is submitted (State 4), the application
eventually is rejected (State 5). This scenario seems correct
with respect to the business specification of the mortgage
approval.

The same simulation can be repeated multiple times pro-
ducing different scenarios. TableII illustrates a model instance
where two applications are handled at the same time:
run example for exactly 2 Application,
8 State, 2 EmploymentInfo, 2 PropertyInfo

TABLE I: Mortgage processing scenario for a single application and six states

This scenario (some states are omitted) describes simultaneous
processing of two mortgage applications: one (Application0)
progresses until its approval, whereas another one (Applica-
tion1) is rejected. Running the simulations and analyzing the
resulting scenarios - is an efficient technique for detecting
errors (manifesting as abnormal scenarios) in the model.

B. Validation

Using the Alloy model checker, one can check if a CMP
model corresponds to its business specification or if it has
some specific business properties or meets specific require-
ments. We express the properties to validate as Alloy asser-
tions.

An assertion is a logical expression that ”asserts” a certain
condition to be True in the model. The Alloy Analyzer tool
examines all model instances (within a configured scope) in
order to find at least one for which this condition will not hold
(i.e. a counterexample). As for simulation, the counterexample
is an Alloy diagram that shows the corresponding process
execution scenario. This diagram can be examined and an-
alyzed by technical and domain specialists in order to detect
the problem source and correct the specification.

Below, we show several examples of model validation and
improvement using Alloy Analyzer.

Example 1. Conformance to business specification.: The
assertion below expresses the correct approval condition. It
can be interpreted as follows: for all applications, the fact
that an application is approved implies that its corresponding
employment info is valid and that its corresponding property
is appraised with positive result.

applApprovalOk: check {
all st:State, a:Application |
a in st.approved =>
(a.employment in st.valid &&
a.property in st.appraisedOk)

} for 1 Application, 10 State,
4 EmploymentInfo, 1 PropertyInfo

We check this assertion for our current model with Alloy
Analyzer and find no counterexamples. This validates the
corresponding business rule for our model. Along those lines,
rejection, preapproval and other business rules can be vali-
dated.

Example 2. Valid appraisal scheduling: According to the
process description, a property appraisal is scheduled upon
the submission of the property information by the applicant.
However, carrying out the appraisal for the applicants who’s
employment info is already known as invalid does not make
sense for a bank. Thus, we want to ensure that the mortgage
approval process modeled above prohibits an appraisal for the
applications with invalid employment info. This is a business
property that we express as an Alloy assertion:

propAppraisalOk: check {
all st:State, st’:ord/next[st], a:Application |
((a.property not in st.appraisedOk
+ st.appraisedKo
&& a.property in st’.appraisedOk
+ st’.appraisedKo) =>
a.employment not in st.invalid)

} for 1 Application, 6 State,
1 EmploymentInfo, 1 PropertyInfo

The Alloy Analyzer tool searches for an instance that would il-
lustrate the violation of this condition (a counterexample). This
generated instance (Table III) illustrates the scenario where the
appraisal is done (State 5) whereas the employment info was
invalidated in the previous state (State 4) - it invalidates our
assertion.

To correct the model, we revise the appraiseProperty pred-
icate:

pred appraiseProperty[a: set Application,
st, st’:State]{
some ap:a, p:ap.property &
(st.found - st.appraisedOk - st.appraisedKo) |

TABLE II: Mortgage processing scenario for two applications processed concurrently.

TABLE III: Counterexample: wrong appraisal scheduling.

//either the appraisal results are positive
((st’.appraisedOk = st.appraisedOk + p
&& st’.appraisedKo =st.appraisedKo) ||
// or negative
(st’.appraisedOk = st.appraisedOk
&& st’.appraisedKo =st.appraisedKo + p)) ||
// or no conclusion has been made
(st’.appraisedOk = st.appraisedOk
&& st’.appraisedKo =st.appraisedKo)
}

and add the corresponding constraint:

pred appraiseProperty1[a: set Application,
st, st’:State]{
some ap:a, p:ap.property &
(st.found - st.appraisedOk - st.appraisedKo) |
ap.employment in st.valid => ...
}

Now the assertion is validated by the Alloy Analyzer.

Example 3. Valid preapproval status: In this example, we
check that an application with already negatively appraised
property shall not be preapproved for the mortgage (even
though its employment info got validated).

preaprovalOk: check {
all st:State, st’:ord/next[st], a:Application |
((a not in st.preapproved &&
a in st’.preapproved) =>
a.property not in st.appraisedKo)

} for 2 Application, 10 State,
4 EmploymentInfo, 2 PropertyInfo

The counterexample illustrating the violation of this condition
is shown in Table IV. We revise the preapproveApp predicate:

pred preapproveApp[a: set Application, s,s’:State]{
a.employment in s.valid &&

(s’.approved = s.approved &&
s’.rejected = s.rejected &&
s’.preapproved=s.preapproved +a)
}

TABLE IV: Counterexample: wrong preapproval decision

and add the constraint that states that we do not preapprove
the application if the property is appraised to Ko.

a.property in (PropertyInfo - s.appraisedKo)

Now the assertion is validated by Alloy Analyzer.

VI. RELATED WORK

During the last decade, process flexibility and evolution
support remains the central area of interest for many re-
searchers: among others, numerous contributions of the groups
at the University of Ulm (Dadam, Reichert et al) and the
Eindhoven University of Technology (van der Aalst et al) can
be emphasized.

The rigidity of work-flow based approaches as well as
imperative modeling style is well recognized by both re-
searchers and practitioners. In [20], van der Aalst presents
a case handling paradigm to cope with business process flex-
ibility. The differences between case handling and traditional
workflow management are discussed and a metamodel for case
handling is presented. Similarly to our approach, this work
limits the formalization of case handling to activities, data
objects, and their interrelationships. State-transition diagrams
are used to specify the operational semantics of case handling
systems. It proposes a definition of the case as a tuple CD
= (A,P,D,dom,mandatory, restricted, free, condition) whereas
we formalize the case management process using more gen-
eral abstraction of finite state machine. Mandatory, restricted
and free relations defined in this work can be expressed as
conditions in or corresponding Alloy specifications.

The works of Pesic and v.d.Aalst attempt to change the
paradigm and provide an automated support for modeling
and analysis of loosely-structured processes based on the
declarative principles. The Declare framework presented in
[21], [22] is a constraint-based system and uses a declarative
language grounded in temporal logic. The authors propose the
deviation mechanisms to assure the flexibility while preserving
the control over the process validity an correctness through
verification at design time and performance analysis at run
time: ”... DECLARE can offer most features that traditional
WFMSs have: model development, model verification (finding
errors in models), automated model execution, changing mod-
els at run-time (i.e., adaptivity), analysis of already executed
processes, and decomposition of large processes.” [21]. In

[23], the Adept workflow management system is presented.
Adept enables the modifications on the predefined workflow
at the run time. Though, becoming ”more declarative”, the
resulting approach is still based on the imperative principles
of workflow.

In the research reported in [24], the authors ask the question:
”Do Workflow-Based Systems Satisfy the Demands of the
Agile Enterprise of the Future?” and draw the conclusion that
designing and putting into operation workflowable processes
may neither be possible nor desirable in the enterprise of the
future. In [25], process instances are represented as moving
through state space, and the process model is represented
as a set of formal rules describing the valid paths of the
possible trajectories. This approach is grounded on the theory
of automated control systems and implements declarative
modeling principles (purely non-workflow). In [12], [14], an
approach for process management based on business artifacts
is presented. Business entities are changing as they move
through a process. They are described with an information
model and a life cycle model (i.e. a mortgage case in our
example can be considered as a business entity). In [14], the
operational semantics of Guard-Stage-Milestone is presented.
This semantics explains the interactions between business
artifacts which is formalized following declarative principles.
In [26], semantics for a declarative process model based on
Generic Process Model (GPM) is presented. GPM uses states
as a leading element in process representation; it captures the
process context and also reasons about process goals. Similarly
to our approach, the proposed semantics is based on the notion
of states and set theory. Formal validation and model checking,
however, is not yet realized for this approach.

The claim of workflow-based, process-driven or other im-
perative design methodology proponents is that the imperative
specifications can be validated, analyzed and controlled, assur-
ing stable performance and predictable results. Similar results,
however, can be assured by providing formal semantics for
”unpredictable” declarative models and, eventually, applying
the formal verification approaches.

There are two main approaches to formal verification:
model checking [27] and a theorem proving based on logical
inference [28]. Model checking is an approach for verifying
requirements and design for a vast class of systems, including
real-time embedded and safety-critical systems. Model check-

ers include such tools as [8], [29]. The major drawback of the
model checking is a state explosion problem, which originates
from the fact that for real systems the size of the state space
grows exponentially with the number of processes [30].

The second approach is an automated theorem proving
based on logical inference. Within this approach, the fact that
the system specification (a model) satisfies a certain property is
expressed as a logical formula. The task is to prove the validity
of this formula, deducing it from a set of axioms exist for the
underlying logic (e.g. first-, second-, higher-order logic etc),
and hypotheses made about the system. Theorem proving for
the first-order logic is well developed; higher order and other
logics are more expressive and appropriate for wider range
of problems then first-order logic; however the automated
theorem proving for these logics is more complicated [31],
[32] .

In spite of their effectiveness, approaches based on a formal
semantics, model checking and verification using theorem
proving are rarely used in practice due to the high cost.
However, we agree with Colin Snook and Michael Butler
that ”Formal specification is the first step to using formal
methods and is, in itself, a useful activity even if a fully formal
development process is not followed.” [33], [34].

VII. CONCLUSION

In theoretical computer science, the operational semantics
explains the meaning of a program ”in terms of a hypothetical
computer which performs the set of actions which constitute
the elaboration of that program.” [18]

In this work, we explained the meaning of a case man-
agement processes (CMP) in terms of a finite state machine
(FSM), which performs the set of actions which constitute the
case handling. We formalized our operational semantics in the
Alloy specification language.

We implemented the data-centered view (Fig. 1b) and
proposed the model that prescribes no control flow but lets the
process unfold according to a particular case circumstances.

We illustrated our findings on the example of Mortgage
Approval process: first, we represented this process as an
assembly of three independent FSMs handling the mortgage
application, applicant’s employment info. and property info.;
then, we demonstrated how these FSMs and their assembly can
be specified in Alloy and analyzed with the Alloy Analyzer
tool.

We illustrated how model simulation and model checking
with the Alloy Analyzer tool can drive the case management
process design:

The advantage of simulation is a possibility to get an instant
visual feedback in a form of diagrams capturing the FSM
execution scenarios. Model checking enables more specific
reasoning about model properties.

Examining the model instances generated by Alloy Ana-
lyzer, we were able to reason about correctness of our partial
model; specifying and checking the Alloy assertions, we were
able to validate business properties of our model (e.g. correct

conditions for application approval and preapproval, correct
appraisal scheduling, etc.).

Once the model validity is checked at a given level of detail,
the model can be refined. According to our formalism, the
refinement consists of two parts: definition of the new FSMs
and formalization of these FSMs in Alloy. This approach
allows us to efficiently manage model complexity.

Alloy specification language was successfully applied in
various domains including software and hardware system
specification, automatic model completion, service testing,
etc.3 Its use in business domain, however, is rather limited.
In this work, we position Alloy and Alloy Analyzer as a
toolbox for both technical and business specialists: together
with UML and BPMN diagrams, Alloy diagrams represent
design artifacts and can be studied, referred to, and serve a
mean for communicating and evaluating both business and
technical design decisions.

In the mortgage approval example presented in this paper,
we consider that a state transition can be triggered by a
specific outcome of a single activity (i.e. no two activities can
have the same outcome and trigger the same state transition).
Possible effects of contextual events on state transitions (e.g.
an economic crisis may affect a mortgage approval decision)
are not considered by this example. In general case, a trig-
gering condition can be seen as a combination of contextual
events and multiple outcomes of several (internal or external)
activities. Therefore, a user can have a choice of activity to
execute. In [35], we discuss context modeling, formal concept
analysis and Galois lattices as a background theory for context-
aware and agile process management. Definition of automated
user guidance for CMP is a subject of our future work.

The operational semantics defined in this work is a first step
to using formal methods; it paves the road to automated design,
validation and verification of CMP. This work, however, does
not suggest any concrete (graphical) modeling notation for
case management processes as we convinced that visual syntax
can be freely chosen according to the modeler’s taste as soon
as the semantics that has to be encoded by this syntax is well
established.

REFERENCES

[1] Davenport, T., Nohria, N.: Case management and the integration of
labor. Sloan Management Review 35 (1994) 11–11

[2] Davenport, T.: Thinking for a living: How to get better performances
and results from knowledge workers. Harvard Business Press (2005)

[3] Lamport, L.: Time, clocks, and the ordering of events in a distributed
system. Commun. ACM 21(7) (July 1978) 558–565

[4] Rychkova, I.: Towards automated support for case management pro-
cesses with declarative configurable specifications. [16] 65–77

[5] Plotkin, G.: A structural approach to operational semantics. (1981)
[6] Rabin, M.O., Scott, D.: Finite automata and their decision problems.

IBM J. Res. Dev. 3(2) (April 1959) 114–125
[7] Jackson, D.: Software Abstractions- Logic, Language and Analysis. MIT

Press (2011)
[8] Jackson, D.: Alloy Analyzer tool. http://alloy.mit.edu/alloy/ (2011)
[9] OMG: Case management process modeling (cmpm) request for pro-

posal. http://www.omg.org/cgi-bin/doc?bmi/09-09-23 (2009)

3See http://alloy.mit.edu/alloy/applications.html.

[10] Swenson, K.: Mastering The Unpredictable: How Adaptive Case
Management Will Revolutionize The Way That Knowledge Workers Get
Things Do. Meghan-Kiffer Press (2010)

[11] Pucher, M.: The elements of adaptive case management. Mastering the
Unpredictable (2010) 89–134

[12] Nigam, A., Caswell, N.S.: Business artifacts: An approach to operational
specification. IBM Systems Journal 42(3) (2003) 428–445

[13] Cohn, D., Hull, R.: Business artifacts: A data-centric approach to
modeling business operations and processes. Bulletin of the IEEE
Computer Society Technical Committee on Data Engineering 32(3)
(2009)

[14] Hull, R., Damaggio, E., De Masellis, R., Fournier, F., Gupta, M.,
Heath III, F.T., Hobson, S., Linehan, M., Maradugu, S., Nigam, A.,
et al.: Business artifacts with guard-stage-milestone lifecycles: Managing
artifact interactions with conditions and events. In: Proc. of DEBS.
(2011)

[15] Herrmann, C., Kurz, M.: Adaptive case management: Supporting
knowledge intensive processes with it systems. In Schmidt, W., ed.:
S-BPM ONE - Learning by Doing - Doing by Learning. Volume 213 of
Communications in Computer and Information Science. Springer Berlin
Heidelberg (2011) 80–97

[16] Rosa, M.L., Soffer, P., eds.: Business Process Management Workshops
- BPM 2012 International Workshops, Tallinn, Estonia, September 3,
2012. Revised Papers. In Rosa, M.L., Soffer, P., eds.: Business Process
Management Workshops. Volume 132 of Lecture Notes in Business
Information Processing., Springer (2013)

[17] Rychkova, I., Nurcan, S.: Towards adaptability and control for
knowledge-intensive business processes: Declarative configurable pro-
cess specifications. In: System Sciences (HICSS), 2011 44th Hawaii
International Conference on, IEEE (2011) 1–10

[18] Wijngaarden, A.v.: Report on the algorithmic language ALGOL 68.
Printing by the Mathematisch Centrum (1969)

[19] Rychkova, I.: Formal Semantics for Refinement Verification of Enter-
prise Models. PhD thesis, EPFL (2008)

[20] Van der Aalst, W., Weske, M., Grünbauer, D.: Case handling: a new
paradigm for business process support. Data & Knowledge Engineering
53(2) (2005) 129–162

[21] Pesic, M., Schonenberg, H., van der Aalst, W.: Declare: Full support
for loosely-structured processes. In: Enterprise Distributed Object
Computing Conference, 2007. EDOC 2007. 11th IEEE International,
IEEE (2007) 287–287

[22] van der Aalst, W., Pesic, M., Schonenberg, H.: Declarative workflows:
Balancing between flexibility and support. Computer Science-Research
and Development 23(2) (2009) 99–113

[23] Reichert, M., Rinderle, S., Dadam, P.: Adept workflow management
system. In: Business Process Management. Springer (2003) 370–379

[24] Bider, I., Johannesson, P., Perjons, E.: Do workflow-based systems
satisfy the demands of the agile enterprise of the future? [16] 59–64

[25] Bider, I.: Towards a non-workflow theory of business processes. [16]
1–2

[26] Soffer, P., Yehezkel, T.: A state-based context-aware declarative process
model. In: Enterprise, Business-Process and Information Systems
Modeling. Springer (2011) 148–162

[27] Dijkstra, E., Dijkstra, E., Dijkstra, E.: Notes on structured programming.
Technological University, Department of Mathematics (1970)

[28] Gordon, M.J.C., Melham, T.F., eds.: Introduction to HOL: a theorem
proving environment for higher order logic. Cambridge University Press,
New York, NY, USA (1993)

[29] Holzmann, G.J.: The SPIN Model Checker - primer and reference
manual. Addison-Wesley (2004)

[30] Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Progress on the
state explosion problem in model checking. In: Informatics, Springer
(2001) 176–194

[31] Weidenbach, C., Brahm, U., Hillenbrand, T., Keen, E., Theobald, C.,
Topić, D.: Spass version 2.0. Automated DeductionCADE-18 (2002)
45–79

[32] Paulson, L.: Isabelle: A generic theorem prover. Volume 828. Springer
(1994)

[33] Snook, C., Butler, M.: Uml-b: Formal modeling and design aided by
uml. ACM Trans. Softw. Eng. Methodol. 15(1) (January 2006) 92–122

[34] Snook, C., Savicks, V., Butler, M.: Verification of uml models by
translation to uml-b. In: Proceedings of the 9th international conference
on Formal Methods for Components and Objects. FMCO’10, Berlin,
Heidelberg, Springer-Verlag (2011) 251–266

[35] Rychkova, I., Kirsch-Pinheiro, M., Le Grand, B.: Context-aware agile
business process engine: Foundations and architecture. In: Proceedings
of the 14th Business Process Modeling, Development, and Support
(BPMDS’13) working conference. (2013) To appear

