====== Lectures ====== * Tuesdays, 12:45-14:15, KN:E-126 * Lecturers: Petr Pošík (PP), Radek Mařík (RM) List of {{:courses:be3m33ui:ui-competencies.pdf|competencies}} you should have after individual lectures. (Will be updated continuously.) Work in prgress, update for the upcoming semester. ^ datum ^ č.t. ^ S/L ^ náplň ^ | 20.02.2018 | 1. | S | | | 27.02.2018 | 2. | L | | | 06.03.2018 | 3. | S | | | 13.03.2018 | 4. | L | | | 20.03.2018 | 5. | S | | | 27.03.2018 | 6. | L | | | 03.04.2018 | 7. | S | | | 10.04.2018 | 8. | L | | | 17.04.2018 | 9. | S | | | 24.04.2018 | 10. | L | | | 01.05.2018 | 11. | S | Svátek | | 08.05.2018 | 12. | L | Svátek | | 15.05.2018 | 13. | S | | | 17.05.2018 | 13. | S ^ Výuka jako v úterý ^ | 22.05.2018 | 14. | L | | ^ Date ^ W# ^ Who ^ Contents ^ Materials ^ | 21.02.2017 | 1 | RM | AI, PR, learning and robotics. Decision tasks. Empirical learning. |{{:courses:be3m33ui:p01.learningbayesstrategy.pdf| P01.LearningBayesStrategy.pdf}} | | 28.02.2017 | 2 | PP | Linear methods for classification and regression. | {{:courses:be3m33ui:b02linear-slides.pdf|Slides}}. {{:courses:be3m33ui:b02linear-handouts.pdf|Handouts}}. | | 07.03.2017 | 3 | PP | Non-linear models. Feature space straightening. Overfitting. | {{:courses:be3m33ui:b03overfitting-slides.pdf|Slides}}. {{:courses:be3m33ui:b03overfitting-handouts.pdf|Handouts}}. | | 14.03.2017 | 4 | PP | Nearest neighbors. Kernel functions, SVM. Decision trees. | {{:courses:be3m33ui:b04nonlinear-slides.pdf|Slides}}. {{:courses:be3m33ui:b04nonlinear-handouts.pdf|Handouts}}. | | 21.03.2017 | 5 | PP | Bagging. Adaboost. Random forests. | {{:courses:be3m33ui:b05committees-slides.pdf|Slides}}. {{:courses:be3m33ui:b05committees-handouts.pdf|Handouts}}. | | 28.03.2017 | 6 | PP | Probabilistic graphical models. Bayesian networks. | {{:courses:be3m33ui:b06bayesnets-slides.pdf|Slides}}. {{:courses:be3m33ui:b06bayesnets-handouts.pdf|Handouts}}. | | 04.04.2017 | 7 | PP | Hidden Markov models. | {{:courses:be3m33ui:b07hmm-slides.pdf|Slides}}. {{:courses:be3m33ui:b07hmm-handouts.pdf|Handouts}}. | | 11.04.2017 | 8 | PP | Expectation-Maximization algorithm. | {{:courses:be3m33ui:b08em-slides.pdf|Slides}}. {{:courses:be3m33ui:b08em-handouts.pdf|Handouts}}. | | 18.04.2017 | 9 | RM | Planning. Planning problem representations. Planning methods. | {{:courses:be3m33ui:p09.aiplanning.pdf|Handouts}} | | 25.04.2017 | 10 | RM | Scheduling. Local search. | {{:courses:be3m33ui:p10.schedulinghandouts.pdf|Handouts}} | | 02.05.2017 | 11 | ^ No lecture - schedule as on even Monday | | | 09.05.2017 | 12 | RM | Constraint satisfaction problems. | {{:courses:be3m33ui:p11.constraintsatisfactionhandouts.pdf|Handouts}} | | 16.05.2017 | 13 | PP | Neural networks. Basic models and methods, error backpropagation. | {{:courses:be3m33ui:b12nn-slides.pdf|Slides}}. {{:courses:be3m33ui:b12nn-handouts.pdf|Handouts}}. | | 23.05.2017 | 14 | PP | Deep learning. Convolutional and recurrent NNs. | {{:courses:be3m33ui:b13deep-slides.pdf|Slides}}. {{:courses:be3m33ui:b13deep-handouts.pdf|Handouts}}. | /* - The relation of artificial intelligence, pattern recognition, learning and robotics. Decision tasks, Empirical learning. - Linear methods for classification and regression. - Non-linear models. Feature space straightening. Overfitting. - Nearest neighbors. Kernel functions, SVM. Decision trees. - Bagging. Adaboost. Random forests. - * Graphical models. Bayesian networks. - * Markov statistical models. Markov chains. - * Expectation-Maximization algorithm. - Planning. Planning problem representations. Planning methods. - Scheduling. Local search. - Constraint satisfaction problems. - Neural networks. Basic models and methods, error backpropagation. - * Special neural networks. Deep learning. - Evolutionary algorithms (if time permits). */