Programming for Engineers

Lecture 5 - Array processing

Table of contents

Lecture 5 - Array processing 1
Sorting e 1
Sorting algorithms L 3
Comparison of sorting algorithms L0 14
Sliding window operations L Lo 17
Fixed-size window 17
Variable-size window 20
Convolution e 22
1D convolution 23

2D convolution e e 26
Sparse matrices e e 33
Coordinate list (COO) o 34
Operations on COO sparse matrices 37
Compressed sparse rows (CSR) 40

Lecture 5 - Array processing
import numpy as np
Sorting

Sorting is one of the most common operations on arrays. There are many approaches to sorting
- each performing differently in different situations.

Preparation of the visualization code

Before we start with the explanations of the sorting algorithms, we should create some code
that will allow us to test and visualize what is actually happening.

We will be printing states of the array that is being sorted after each step of the algorithm.
Note that an algorithm having fewer steps does not mean more efficient algorithm.
For some sorting algorithms, a single step might take more operations (such as
looping through the entire array for selection sort).

In the following sections, the sorting functions will have yield statements in them. These
are for visualization of the sorting process. You can ignore them when reading the code. The
yield returns the given value (like return) but does not exit the function.

To show the sorting algorithms in action, let’s create a function that will make an unsorted
array (probably) and run the sorting algorithm on it.

def pretty_format_array(row, digits=2):
return "[" + ', '.join(f"{x:>{digits}d}" for x in row) + "]"

def test_sort(sorting func, show_full=False):
np.random. seed (42)
a = np.random.randint (0, 20, size=10)
if show_full:
print ("Unsorted array:")
print (pretty_format_array(a))
states = []
for i, state in enumerate(sorting func(a)):
if i == 0 and not show_full:
print ("Unsorted array:")
elif i == 1:
print ("Sorting process:")
print(£f"{i:2d}:", pretty_format_array(state))
states.append(state)
return states

To make the visualization nice, let’s plot the sorting process and make an animation out of
it. Don’t worry about the details of the animation code - you don’t need to understand it.
The animation will show a bar graph, where each bar represents an element in the array. The
height of the bar is the value of the element.

import matplotlib.pyplot as plt
import matplotlib.animation as animation
from IPython.display import HTML

def animate_sort(states, title=""):
numel = len(states[-1])
for i, state in enumerate(states):
states[i] = np.pad(

state, (0, numel - len(state)),

mode="constant", constant_values=0)
fig, ax = plt.subplots()
bar_rects = ax.bar(range(numel), states[0], align="edge")
ax.set_title(title)
ax.set_x1im(0, numel)
ax.set_ylim(0, max(max(state) for state in states) * 1.1)

text = ax.text(0.02, 0.95, "", transform=ax.transAxes)

def update_plot(frame):
for rect, val in zip(bar_rects, states[frame]):
rect.set_height(val)
text.set_text(f"Step {frame}")
return bar_rects

ani = animation.FuncAnimation(fig, update_plot, frames=len(states),
interval=300, repeat=False)

plt.close()

return HTML(ani.to_html5_video())

Sorting algorithms

Bubble Sort

Bubble sort is one of the simplest sorting algorithms - simply take two neighboring elements
and swap them if they are out of order or leave them unchanged if they are in order. Do this
for each pair of elements in the array. Repeat until the array is sorted. This has the effect of
large values “bubbling” to the top of the array, hence the name.

While simple in principle, for N elements, each “swapping” pass (comparing every pair of
elements once) requires N comparisons. In worst case, i.e., reversed array, each value would
need to be swapped with each other value. Therefore, we would need N passes and thus the
total number of comparisons would be N2. Actually, (slightly) less, since the largest value
would “bubble” to the top of the array and thus we don’t need to “touch” the last index on
the next pass; likewise for the second largest value, etc. One small advantage is that the
sorting is performed in-place and thus requires (virtually) no additional memory.

Here is an example implementation of the algorithm:

def bubble_sort(a):

n = len(a)

yield a.copy() # Initial state

for i in range(n):

for j in range(0, n - i - 1):
if alj] > alj + 1]: # compare the neighboring items

aljl, alj + 1] = alj + 11, al[j] # swap the items (if necessary)
yield a.copy() # Yield state after each swap

return a

Now, let’s test it:

states = test_sort(bubble_sort)

Unsorted array:

o: [6, 19, 14, 10, 7, 6, 18, 10, 10, 3]
i: [6, 14, 19, 10, 7, 6, 18, 10, 10, 3]
2: [6, 14, 10, 19, 7, 6, 18, 10, 10, 3]
3: [6, 14, 10, 7, 19, 6, 18, 10, 10, 3]
4: [6, 14, 10, 7, 6, 19, 18, 10, 10, 3]
5: [6, 14, 10, 7, 6, 18, 19, 10, 10, 3]
6: [6, 14, 10, 7, 6, 18, 10, 19, 10, 3]
7: [6, 14, 10, 7, 6, 18, 10, 10, 19, 3]
8: [6, 14, 10, 7, 6, 18, 10, 10, 3, 19]
9: [6, 10, 14, 7, 6, 18, 10, 10, 3, 19]
10: [6, 10, 7, 14, 6, 18, 10, 10, 3, 19]
11: [6, 10, 7, 6, 14, 18, 10, 10, 3, 19]
12: [6, 10, 7, 6, 14, 10, 18, 10, 3, 19]
13: [6, 10, 7, 6, 14, 10, 10, 18, 3, 19]
14: [6, 10, 7, 6, 14, 10, 10, 3, 18, 19]
i5: [6, 7, 10, 6, 14, 10, 10, 3, 18, 19]
i6: [6, 7, 6, 10, 14, 10, 10, 3, 18, 19]
i7: [6, 7, 6, 10, 10, 14, 10, 3, 18, 19]
18: [6, 7, 6, 10, 10, 10, 14, 3, 18, 19]
19: [6, 7, 6, 10, 10, 10, 3, 14, 18, 19]
20: [6, 6, 7, 10, 10, 10, 3, 14, 18, 19]
21: [6, 6, 7, 10, 10, 3, 10, 14, 18, 19]
22: [6, 6, 7, 10, 3, 10, 10, 14, 18, 19]
23: [6, 6, 7, 3, 10, 10, 10, 14, 18, 19]
24: [6, 6, 3, 7, 10, 10, 10, 14, 18, 19]

25:
26:

6, 3, 6, 7, 10, 10, 10, 14, 18, 19]
3, 6, 6, 7, 10, 10, 10, 14, 18, 19]

Selection Sort

Selection sort, like the Bubble sort, isn’t, in most cases, practical. It loops over the array,
finds the smallest value and puts it to the first position in the array (where it should be, when
the array is sorted). Then it advances to the second position in the array, finds the second
smallest value and puts it there. This way, it progressively “leaves behind” a sorted array. It
is similar to the Bubble sort “in reverse” (Bubble sort progressively puts highest values at the
end). Because for each element, it needs to loop through the whole (remaining) array, the
asymptotic complexity is also O(n?).

def selection sort(a):

yield a.copy()

n = len(a)

for i in range(n):
min_idx = i # index of the '"currently smallest" element
for j in range(i + 1, n):

if al[j] < almin_idx]: # if an element is smaller
min_idx = j # store its index

at the end, put the smallest element at the current position
alil, a[min_idx] = al[min_idx], alil
yield a.copy()

return a

states = test_sort(selection_sort)

Unsorted array:

o: [6, 19, 14, 10, 7, 6, 18, 10, 10, 3]
i: [3, 19, 14, 10, 7, 6, 18, 10, 10, 6]
2: [3, 6, 14, 10, 7, 19, 18, 10, 10, 6]
3: [3, 6, 6,10, 7, 19, 18, 10, 10, 14]
4: [3, 6, 6, 7, 10, 19, 18, 10, 10, 14]
5: [3, 6, 6, 7, 10, 19, 18, 10, 10, 14]
6: [3, 6, 6, 7, 10, 10, 18, 19, 10, 14]
7: [3, 6, 6, 7, 10, 10, 10, 19, 18, 14]
8: [3, 6, 6, 7, 10, 10, 10, 14, 18, 19]
9: [3, 6, 6, 7, 10, 10, 10, 14, 18, 19]
10: [3, 6, 6, 7, 10, 10, 10, 14, 18, 19]

Insertion Sort

Insertion sort loops through the array (starting from the second position). First, the algorithm
stores the current item at position ¢ as key. Then, for each previous element at position 7,
it checks whether the key item is smaller. If so, it swaps the items, effectively moving the
smaller item backwards. If the key is larger than the item at j (or we are at the beginning
of the array), it puts the key item just after j. It essentially moves each item to the “correct”
position. While the worst case performance is O(n?), it performs slightly better than the
Bubble sort and also does not require any extra memory. It can be useful for nearly sorted
arrays. For example, adding new items to an already sorted data set (the newly added sample
set must be small relative to the whole dataset).

def insertion_sort(a):
yield a.copy()
for i, key in enumerate(al[l:], start=1): # take the current element
j =1 -1 # start with the previous element
while j >= 0 and al[j] > key: # while prev. is larger
alj + 11 = al[j]l # swap the elements
j —= 1 # and move to the previous position
yield a.copy()
alj + 11 = key # finally, (when prev is smaller) put the key at prev. + 1
yield a.copy()
return a

states = test_sort(insertion_sort)

Unsorted array:

o: [6, 19, 14, 10, 7, 6, 18, 10, 10, 3]
1: [6, 19, 14, 10, 7, 6, 18, 10, 10, 3]
2: [6, 19, 19, 10, 7, 6, 18, 10, 10, 3]
3: [6, 14, 19, 10, 7, 6, 18, 10, 10, 3]
4: [6, 14, 19, 19, 7, 6, 18, 10, 10, 3]
5. [6, 14, 14, 19, 7, 6, 18, 10, 10, 3]
6: [6, 10, 14, 19, 7, 6, 18, 10, 10, 3]
7. [6, 10, 14, 19, 19, 6, 18, 10, 10, 3]
8: [6, 10, 14, 14, 19, 6, 18, 10, 10, 3]
9: [6, 10, 10, 14, 19, 6, 18, 10, 10, 3]
10: [6, 7, 10, 14, 19, 6, 18, 10, 10, 3]
11: [6, 7, 10, 14, 19, 19, 18, 10, 10, 3]
12: [6, 7, 10, 14, 14, 19, 18, 10, 10, 3]
13: [6, 7, 10, 10, 14, 19, 18, 10, 10, 3]
4. (6, 7, 7, 10, 14, 19, 18, 10, 10, 3]

i5: [6, 6, 7, 10, 14, 19, 18, 10, 10, 3]
i6: [6, 6, 7, 10, 14, 19, 19, 10, 10, 3]
17: [6, 6, 7, 10, 14, 18, 19, 10, 10, 3]
18: [6, 6, 7, 10, 14, 18, 19, 19, 10, 3]
19: [6, 6, 7, 10, 14, 18, 18, 19, 10, 3]
20: [6, 6, 7, 10, 14, 14, 18, 19, 10, 3]
21: [6, 6, 7, 10, 10, 14, 18, 19, 10, 3]
22: [6, 6, 7, 10, 10, 14, 18, 19, 19, 3]
23: [6, 6, 7, 10, 10, 14, 18, 18, 19, 3]
24: [6, 6, 7, 10, 10, 14, 14, 18, 19, 3]
25: [6, 6, 7, 10, 10, 10, 14, 18, 19, 3]
26: [6, 6, 7, 10, 10, 10, 14, 18, 19, 19]
27: [6, 6, 7, 10, 10, 10, 14, 18, 18, 19]
28: [6, 6, 7, 10, 10, 10, 14, 14, 18, 19]
29: [6, 6, 7, 10, 10, 10, 10, 14, 18, 19]
30: [6, 6, 7, 10, 10, 10, 10, 14, 18, 19]
31: [6, 6, 7, 10, 10, 10, 10, 14, 18, 19]
32: [6, 6, 7, 7, 10, 10, 10, 14, 18, 19]
33: [6, 6, 6, 7, 10, 10, 10, 14, 18, 19]
34: [6, 6, 6, 7, 10, 10, 10, 14, 18, 19]
3%: [3, 6, 6, 7, 10, 10, 10, 14, 18, 19]
Merge Sort

Merge sort is a divide-and-conquer algorithm - it recursively divides the array into smaller
chunks, merge-sorts these chunks (which means, it also divides them) and then merge the
sorted chunks to create a sorted array. That is, at each step, it takes the array, splits it (roughly)
in half. Then, it splits each half into two more halves, and so on, until each half contains only
one (or zero) item. Single (or zero) element array is always sorted - no further processing
needed. So, the sorting function will return this “array”. When two such arrays are returned
(each single element and thus sorted), they are merged - either left_half + right_half if
the left half is smaller, or right_half + left_half if the right half is smaller.

This is then repeated for larger chunks. However, for these, the merging needs to be done
element-by-element because, even though each chunk is sorted, it is not guaranteed that ele-
ments will be sorted when simply concatenating them. For example, consider the following
two arrays (chunks): a = [1, 5, 9] and b = [3, 5, 6, 10]. They are both individually
sorted but you can see we can’t simply stack them together to get one sorted array. Rather,
merge sort goes item by item for both arrays and puts the lowest item (from a and b) in the
resulting array.

Unlike the previous algorithms, merge sort has a time complexity of O(nlogn), which is better
than the quadratic one. However, it requires additional memory - the recursion requires mem-

ory to keep track of the function call (non-recursive version would still need state variables).
Still, the time complexity is stable across varying conditions (size, type of data, etc.) - best
and worst cases have the same O(nlogn) complexity.

def merge(left, right): # subroutine to merge the halves
merged = [] # resulting merged array
left_index, left_length = 0, len(left) # vars to keep track of the left half

right_index, right_length = 0, len(right) # vars to keep track of the right half

while both halves are not empty
while left_index < left_length and right_index < right_length:
if left[left_index] <= right([right_index]: # if left is smaller
merged.append (left[left_index]) # put it in the result
left_index += 1 # advance left index
else: # if right is smaller
merged.append(right [right_index]) # put it in the result
right_index += 1 # advance right index
merged.extend(left[left_index:]) # append remaining left half
merged.extend(right [right_index:]) # append remaining right half
return merged

def merge_sort(arr): # actual merge sort function

if len(arr) <= 1: # if single or zero items => already sorted
yield arr
else: # non-trivial case - we have more items
mid = len(arr) // 2 # compute midpoint
left_half = arr[:mid] # split the array
right_half = arr[mid:]
recursively sort the halves
left_steps = list(merge_sort(left_half))
right_steps = list(merge_sort(right_half))

yield from left_steps

yield from right_steps

merge the sorted halves

merged = merge(left_steps[-1], right_steps[-1])
yield merged

For merge sort, the visualization is, perhaps, confusing, since it is showing the “small” chunks
being sorted. In this case, it is perhaps better to look at the printed steps. See that the
first and second items (step 0 and 1) are merged together into one, two-element array at step
2. Then, there is an odd-numbered array (3 items) being split into one item (step 3) and

two items that are split further (steps 4 and 5). The two items are merged into one (step
6). Afterwards, the single element and the two-element arrays are merged into one (step 7).
Finally (for this chunk of the whole array), the arrays from steps 2 and 7 are merged into one
(step 8).

states = test_sort(merge_sort, show_full=True)

Unsorted array:
[6, 19, 14, 10, 7, 6, 18, 10, 10, 3]

0: [6]

1: [19]

2: [6, 19]

3: [14]

4: [10]

5: [7]

6: [7, 10]

7: [7, 10, 14]

8: [6, 7, 10, 14, 19]
9: [6]

10: [18]

11: [6, 18]

12: [10]

13: [10]

14: [3]

15: [3, 10]

16: [3, 10, 10]

17: [3, 6, 10, 10, 18]
18: [3, 6, 6, 7, 10, 10, 10, 14, 18, 19]
Quick Sort

Quick sort also divides the array into sub-arrays and recursively sorts these. However, the
merge step is essentially reversed, comparing to the merge sort. While merge sort first sorts
each half and then sorts and merges them, item-by-item, quick sort first sorts the items into
two halves - left half contains all items smaller than any item in the right half. Then, each
half is sorted individually. Finally, the sorted halves can be directly concatenated to form a
fully sorted array.

The sorting to left (low) and right (high) halves/chunks, a pivot is first chosen. This is an
item from the array that will be used to “judge” the rest of the values - values smaller than
pivot will go to the left chunk, while values larger than pivot will go to the right chunk.

In a simple implementation, the pivot is chosen as the midpoint element of the array. It’s
probably obvious that if this item has “unfavorable” value, it can cause issues. If the pivot
is incidentally the smallest element in the array, the left chunk will have zero items, while
the right one will contain the whole remaining array. In this case, the current sorting step is
“wasted”, producing almost no change to the array (basically, doing insert sort with the pivot
as the key).

Because of this, the worst case (e.g, always choosing the lowest element as pivot) time complex-
ity of quick sort is O(n?). Nonetheless, if the pivot is chosen well (e.g., using some heuristic or
a priori information about the data), the best case time complexity is O(nlogn). In practice
it can be faster than merge sort, since the merging process is more efficient. It is also possible
to make an in-place sorting implementation of quick sort, when necessary.

def quick_sort(arr):
if len(arr) <= 1: # trivial case O or 1 items => sorted
yield arr # just return it

else:
pivot = arr[len(arr) // 2] # choose pivot
left = [x for x in arr if x < pivot] # make lower-than pivot chunk
middle = [x for x in arr if x == pivot] # make equal-to pivot chunk
right = [x for x in arr if x > pivot] # make greater-than pivot chunk

yield arr

left_steps = list(quick_sort(left)) # sort the chunks
right_steps = list(quick_sort(right))

yield from left_steps

yield middle

yield from right_steps

merge the sorted chunks (and the middle chunk)
merged = left_steps[-1] + middle + right_steps[-1]
yield merged

Like for the merge sort, quick sort visualization is also more difficult to follow and it is better
to analyze the printed steps. First, the pivot is chosen - in this case as len(arr) // 2 (index
5 for array of length 10). The arrays is then split into 3 chunks: Chunks 1: all items smaller
than pivot (step 1) Chunks 2: all items equal to pivot (step 2) Chunks 3: all items larger than
pivot (step 3) These chunks are then also sorted by quick sort and merged.

states = test_sort(quick_sort)

Unsorted array:

10

o: [6, 19, 14, 10, 7, 6, 18, 10, 10, 3]
1: [3]

2: [6, 6]

3: [19, 14, 10, 7, 18, 10, 10]

4: []

5: [7]

6: [19, 14, 10, 18, 10, 10]

7: [14, 10, 10, 10]

8: [

9: [10, 10, 10]

10: [14]

11: [10, 10, 10, 14]

12: [18]

13: [19]

14: [10, 10, 10, 14, 18, 19]

15: [7, 10, 10, 10, 14, 18, 19]

i6: [3, 6, 6, 7, 10, 10, 10, 14, 18, 19]
Heap Sort

Heap sort uses a heap representation of the data - essentially a binary tree in “linear form”.
Each item at index 7 is a parent of item at index 2i + 1 (left child) and 2i + 2 (right child),
and the root of the tree is the item at index 0.

At each step, the heap sort first “heapifies” the array - it checks whether each parent node is
larger than the children. If not, it swaps them (so that in the end, parents are always larger
than their children).

After the array is made into a valid heap, the root element - element at the index 0 must be
the largest item in the array. It is then removed from the array and the remaining array is
heapified again. This is repeated until the heap is empty. In practice, the item is not actually
removed but placed at the end of the current array and the heap “pointer” is reduced to
exclude the sorted part of the array.

Like merge sort, heap sort has also O(nlogn) time complexity in all cases. It has slightly less
memory overhead than the merge sort. However, it is “unstable” (e.g., the order of equal items
is not guaranteed to be preserved) and the performance does not improve when the array is
almost sorted. Actually, for smaller and nearly sorted arrays, insertion sort might be faster.

def heap_sort(a):
n = len(a)

states = []

def make_heap(a, n, i): # ensure the array “a’ is a valid heap

11

for

for

largest i # go through each parent

1=2x1i+1 # and their children

r=2x%x1i+2

if 1 < n and a[l] > al[largest]: # and ensure both children are smaller
largest = 1 # otherwise, swap them

if r < n and al[r] > al[largest]:
largest = r

if largest != 1i:
alil, allargest] = allargest], alil
states.append(a.copy()) # just for visualization
make_heap(a, n, largest) # recursive call for children

i in range(n//2 - 1, -1, -1):
make_heap(a, n, i) # build max heap
yield a.copy()

i in range(n - 1, 0, -1):

al0], alil = alil, al0] # yoink the root and put it at the end
states.append(a.copy())

yield a.copy()

make_heap(a, i, 0)

yield a.copy()

yield a.copy()
return a

In the visualization, notice how the largest item (in the unsorted part of the array) is first
placed at the beginning of the array (i.e., the tree root) and then yanked out and placed at the
end of the array. Or, rather, at the end of the heap / start of the sorted end of the array.

states

= test_sort(heap_sort)

Unsorted array:

0:

O NO Ok WN -

[6,
L6,
[6,
L6,
(19,
L3,
(18,
(10,
(14,

19, 14, 10, 7, 6, 18, 10, 10, 3]
19, 14, 10, 7, 6, 18, 10, 10, 3]
19, 18, 10, 7, 6, 14, 10, 10, 3]
19, 18, 10, 7, 6, 14, 10, 10, 3]
10, 18, 10, 7, 6, 14, 6, 10, 3]
10, 18, 10, 7, 6, 14, 6, 10, 19]
10, 14, 10, 7, 6, 3, 6, 10, 19]
10, 14, 10, 7, 6, 3, 6, 18, 19]
10, 10, 10, 7, 6, 3, 6, 18, 19]

12

9: [6, 10, 10, 10, 7, 6, 3, 14, 18, 19]
10: [10, 10, 10, 6, 7, 6, 3, 14, 18, 19]
11: [3, 10, 10, 6, 7, 6, 10, 14, 18, 19]
12: [10, 7, 10, 6, 3, 6, 10, 14, 18, 19]
13: [6, 7, 10, 6, 3, 10, 10, 14, 18, 19]
14: [10, 7, 6, 6, 3, 10, 10, 14, 18, 19]
15: [3, 7, 6, 6, 10, 10, 10, 14, 18, 19]
16: [7, 6, 6, 3,10, 10, 10, 14, 18, 19]
17: [3, 6, 6, 7, 10, 10, 10, 14, 18, 19]
18: [6, 3, 6, 7, 10, 10, 10, 14, 18, 19]
19: [6, 3, 6, 7, 10, 10, 10, 14, 18, 19]
20: [6, 3, 6, 7, 10, 10, 10, 14, 18, 19]
21: [3, 6, 6, 7, 10, 10, 10, 14, 18, 19]
22: [3, 6, 6, 7, 10, 10, 10, 14, 18, 19]
23: [3, 6, 6, 7, 10, 10, 10, 14, 18, 19]
Radix Sort

Last sorting algorithm works in a slightly different way than the previous sorts - it’s not
actually comparing the elements (see that there is not arr[index] < arr[other_index] or
any other element value comparison). Instead, it sorts by digits (can be adapted to sorting
strings).

The idea is that the array is sorted by the digits of the number - e.g., 123 is sorted as 1, 2,
3. First, the most significant digit is sorted. Depending on the application, it could be the
left-most or right-most digit. Here, it is the right-most digit (for 123 it would be 3). Then, the
second most significant digit is sorted (for 123 it would be 2), then the third, and so on. For
each digit, a list of buckets is created and each element is placed in the appropriate bucket.
The buckets are then merged to form the final sorted array.

It can be adapted to different numbering systems (binary, hex, ...) or even strings. The RADIX
determines the number of digits or elements per-digit “place” (e.g., 10 for decimal, 2 for binary,
16 for hex).

def radix_sort(arr, RADIX=10):
placement = 1 # which digit are we processing now
max_digit = max(arr) # find the largest number

while placement < max_digit: # while there are digits to process
buckets = [list() for _ in range(RADIX)] # create RADIX buckets
for i in arr: # for each element
get the digit at the current placement
tmp = int((i / placement) % RADIX) # it can be though of as "hashing"

13

buckets [tmp] .append(i) # add item to the appropriate bucket
a=20
for bucket in buckets: # bucket-by-bucket
for item in bucket: # "empty" the buckets into the array
arr[a] = item
a+=1
this creates an array sorted by the current digit
yield arr.copy()
advance to the next digit
placement *= RADIX
yield arr.copy()

Notice that the radix sort requires only two steps, if the elements have at most 2 digits.
However, each step is quite laborious and hence it does not mean that radix sort is always
faster. The actual time complexity is O(nk) where n is the number of elements and k is the
number of digits. Therefore, if k is large (relative to n), radix sort might approach quadratic
time complexity. Also, of course, radix sort requires for the items to have digits or anything
equivalent. Otherwise, it can’t be used. Although, it can be adapted for fixed-precision floating
point numbers, if they are treated as integers (e.g., 3.14 is treated as 314).

states = test_sort(radix_sort)

Unsorted array:
0: [10, 10, 10, 3, 14, 6, 6, 7, 18, 19]
i- 3, 6, 6, 7,10, 10, 10, 14, 18, 19]
2: [3, 6, 6, 7,10, 10, 10, 14, 18, 19]

Comparison of sorting algorithms

import time
try:

from tabulate import tabulate
except ImportError:

tabulate = None

sorting_algorithms = {
"Bubble Sort": bubble_sort,
"Insertion Sort": insertion_sort,
"Selection Sort": selection_sort,

14

"Merge Sort": merge_sort,
"Quick Sort": quick_sort,
"Heap Sort": heap_sort,

"Radix Sort": radix_sort,

Compare for different array lengths and max values
array_lengths = [100, 1000]
max_vals = [100, 100000]

Compare the run times of different sorting algorithms
for length in array_lengths:
for max_val in max_vals:
print(f"Array Length: {length}, Max Value: {max_vall}")
results = []
arr = np.random.randint (0, max_val, length)
for name, func in sorting algorithms.items():
arr_copy = arr.copy()
start_time = time.time()
list (func(arr_copy))
end_time = time.time()
run_time = end_time - start_time
results.append([name, f"{run_time:.6f} seconds"])
if tabulate is None:
print('\n'.join([f"{k}: {v}" for (k, v) in results]))
else:
print (tabulate(
results,
headers=["Sorting Algorithm", "Run Time"], tablefmt="grid")
)
print ()

Array Length: 100, Max Value: 100

oo oo +
| Sorting Algorithm | Run Time |
+ + =+
| Bubble Sort 0.005241 seconds |

I
- e +
| Insertion Sort | 0.002116 seconds |
T e +
| Selection Sort | 0.001202 seconds |
e e +

15

| Merge Sort | 0.000450 seconds |
e e +
| Quick Sort | 0.000260 seconds |
o e +
| Heap Sort | 0.000941 seconds |
e e +
| Radix Sort | 0.000172 seconds |
e e +
Array Length: 100, Max Value: 100000

e Fmm +
| Sorting Algorithm | Run Time |
+= ; =+

| Bubble Sort

$——_————,—e—r =

| Insertion Sort

+-——_——————ee——r e — =

| Selection Sort

t—————————————

| Merge Sort

Ftm——————————rr—r——

| Quick Sort

fm———————————————— e

| Heap Sort

+ ____________________

| Radix Sort

+ ____________________

0.004056 seconds |
__________________ +

0.002565 seconds |
__________________ +

0.001197 seconds |
__________________ +

0.000647 seconds |
—————————————————— +

0.000297 seconds |
__________________ +

0.000952 seconds |
__________________ +

0.000278 seconds |
__________________ +

+ — F — + — + — + — + — + — -

Array Length: 1000, Max Value: 100

t————————————

| Sorting Algorithm
=

e +
| Run Time |

| Bubble Sort

fm———————————————— e

| Insertion Sort

+ ____________________

| Selection Sort

+ ____________________

| Merge Sort

+ ____________________

| Quick Sort

+ ____________________

| Heap Sort

1.746768 seconds |
__________________ +

0.451123 seconds |
__________________ +

|

+

|

+

| 0.155976 seconds |
e +
|
+
|
+
|

0.005072 seconds |
__________________ +

0.001399 seconds |
__________________ +

0.027272 seconds |

16

o o +

| Radix Sort | 0.001246 seconds |
e e +

Array Length: 1000, Max Value: 100000

e e +
| Sorting Algorithm | Run Time |
+ + =+
| Bubble Sort | 0.974790 seconds |
B e e +
| Insertion Sort | 0.438587 seconds |
e e +
| Selection Sort | 0.128462 seconds |
B T e +
| Merge Sort | 0.071643 seconds |
e e +
| Quick Sort | 0.004499 seconds |
e e +
| Heap Sort | 0.025438 seconds |
e e +
| Radix Sort | 0.002785 seconds |
B o +

Sliding window operations

Sliding window operations are a fundamental concept in signal processing and image analysis.
They involve applying a function to a subset of data, moving position (start/end indices) of
the subset over the entire data set, and computing the output at each position.

Fixed-size window

In the simplest case, a window of a fixed size is used.

Moving average

The moving average is a simple operation that replaces each element in an array with the
average of its neighboring elements within a fixed-size window. That is, for element at index i
and window size w, the moving average is the average of the elements at indices (i —w//2) to
(i+w//2). For simplicity, we will consider odd windows sizes. One issue that needs to be solved
is what happens if the window “overflows” the array bounds (either from the beginning or the

17

end). This issue can be done with various padding techniques (zero-padding, DC-padding,
circular padding - depends on the desired behavior) or simply limiting the window size.

Here is a Python implementation of the moving average:

def moving_ average(arr, window_size):
numel = len(arr)
half window = window_size // 2
avg = np.zeros (numel)
for i in range(numel):
start = max(0, i - half_ window)
end = min(numel, i + half_window + 1)
avg[i] = sum(arr[start:end]) / (end - start)
return avg

arr = np.random.randint(0, 10, 10)

window_size = 3

print("Original array:", arr)

print("Moving average:", moving_average(arr, window_size))

Original array: [61 06 6 99 11 0]
Moving average: [3. 2. 2.33333333 4. 7. 8.
6.33333333 3.66666667 0.66666667 0.5]

Alternatively, we can pad the array and compute the average only on “valid” elements. This
has the advantage that it requires slightly less computations per step but also, provides a
different result at the “edges” of the array.

def moving_average(input_arr, window_size):
numel = len(input_arr)
half window = window_size // 2
zero-pad the array
arr = np.zeros(numel + 2 * half_window)
arr [half_window:-half_ window] = input_arr
avg = np.zeros (numel)
for i in range(numel):
avgli]l = sum(arr[i:i + window_size]) / window_size
return avg

arr = np.random.randint (0, 10, 10)

window_size = 5

print("Original array:", arr)

print("Moving average:", moving_average(arr, window_size))

18

Original array: [9 77 07 8 30 0 2]
Moving average: [4.6 4.6 6. 5.8 5. 3.6 3.6 2.6 1. 0.4]

While this implementation is straight forward, it is not ideal, especially for larger window sizes.
The reason is that for each position in the array, all the “surrounding” elements need to be
summed. Can we do better?

def rolling_ average(input_arr, window_size):

numel = len(input_arr)

half window = window_size // 2

zero-pad the array

arr = np.zeros(numel + 2 * half window)

arr[half_window:-half_window] = input_arr

avg = np.zeros(numel)

compute the first sum and average

wsum = sum(arr[:window_size])

avg[0] = wsum / window_size

for i in range(l, numel):
wsum = wsum - arr[i - 1] + arr[i + window_size - 1]
avgl[i] = wsum / window_size

return avg

print("Original array:", arr)
print("Moving average:", rolling_average(arr, window_size))

Original array: [9 77 07 8 30 0 2]
Moving average: [4.6 4.6 6. 5.8 5. 3.6 3.6 2.6 1. 0.4]

In this version, instead of computing the sum of elements from the current window from
scratch, we compute “a rolling sum”. We keep the sum from the last step. To compute the
sum for the current window, we remove, i.e. subtract the left-most (“oldest”) element and add
in the right-most element (the new one that the window has “moved over” to). This way, we
only need two addition operations per step (plus division, when computing the average).

Speed comparison:

large_array = np.random.randint(0, 10, 1000)
window_size 15

print("Run time for 'simple' moving average:")
%timeit moving_average(large_array, window_size)
print("Run time for improved moving average:")
%timeit rolling average(large_array, window_size)

19

print(
"Are the results equal:",
np.allclose(
moving_average(large_array, window_size),
rolling_average(large_array, window_size)

)

Run time for 'simple' moving average:

2.98 ms + 112 s per loop (mean # std. dev. of 7 runs, 100 loops each)
Run time for improved moving average:

668 s + 162 s per loop (mean + std. dev. of 7 runs, 1,000 loops each)
Are the results equal: True

Variable-size window

In some cases, it is useful to traverse an array with a variable-size window. For example,
finding maximum sub-array, constrained by some max-sum value. That is, the we are looking
for a sub-array sarr = arr[start:end] for which sum(sarr) <= max_sum.

For example, in the given array:

arr = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

The maximum sub-array for max_sum = 20 is [2, 3, 4, 5, 6], summing to (exactly) 20.

We can, of course, brute force it by checking all possible combinations:

def find_max_subarray_bruteforce(arr, max_sum) :
numel = len(arr)
best_sum = 0
best_sub = []
for start in range(numel):
for end in range(start + 1, numel + 1):
current_sum = sum(arr[start:end])
if current_sum <= max_sum and current_sum > best_sum:
best_sum = current_sum
best_sub = arr[start:end]
if len(best_sub) ==
return None
return best_sub, best_sum

print ("Maximum sub-array:", find_max_subarray_bruteforce(arr, 20))

20

Maximum sub-array: ([2, 3, 4, 5, 6], 20)

But this is not the most efficient way to do it. Instead, we can use a sliding window with
variable size, bounded by start and end positions with the following rules:

1. The window size is initially set to 1.

2. If the sum of the current window is less than max_sum, increase end by 1. This adds
another (new) element to the sum, increasing it.

3. If the sum of the current window is greater than or equal to max_sum, increase start
by 1. This removes an element from the sum, decreasing it. Technically, if it is equal to
max_sum, we could end, if we are looking for only one solution.

def find_max_subarray(arr, max_sum):
numel = len(arr)
start = 0O
end = 1
best_sum = 0
best_start, best_end = 0, O
while end <= numel:
current_sum = sum(arr[start:end]) # we could also use the rolling sum
if current_sum <= max_sum and current_sum > best_sum:
best_sum = current_sum
best_start, best_end = start, end
if current_sum < max_sum:
end += 1
else:
start += 1
best_sub = arr[best_start:best_end]
if len(best_sub) ==
return None
return best_sub, best_sum

print("Maximum sub-array:", find_max_subarray(arr, 20))

Maximum sub-array: ([2, 3, 4, 5, 6], 20)

Speed comparison:
N = 100

large_array = np.random.randint(0, 10, N)
max_sum = N >> 2

21

print("Run time for brute force max subarray:")
%timeit find_max_subarray_bruteforce(large_array, max_sum)
print("Run time for sliding window max subarray:")
%timeit find_max_subarray(large_array, max_sum)
a = find_max_subarray_bruteforce(large_array, max_sum)
b = find_max_subarray(large_array, max_sum)
if a is not None and b is not None:
print("Are the results equal:", np.allclose(a[0], b[0]))
else:
print ("Results are None. (couldn't find a valid subarray)")

Run time for brute force max subarray:

22.4 ms + 1.43 ms per loop (mean * std. dev. of 7 runs, 10 loops each)
Run time for sliding window max subarray:

431 s + 67.1 s per loop (mean = std. dev. of 7 runs, 1,000 loops each)
Are the results equal: True

Convolution

Convolution is a more general operation that combines two arrays by sliding one array over the
other and computing the dot product at each position. It is often used in image processing and
signal processing. Many different tasks can be solved using convolution - peak/edge detection,
filtering, “discrete derivation”, etc.

Similarly to sliding window, one has to deal with the array boundary issue - either compute
the indices so that the don’t overflow the “edge” of the array or pad the array.

We will implement a helper function to zero-pad and DC-pad (repeat the boundary values) an
array:

def zero_pad_ld(arr, kernel_size):
pad_size = kernel_size // 2
use NumPy pad function
return np.pad(arr, pad_size, mode='constant', constant_values=0)

def dc_pad_1id(arr, kernel_size):
pad_size = kernel_size // 2
return np.pad(arr, pad_size, mode='edge')

Here, we don’t pad “manually” but make use of the NumPy.pad function.

22

1D convolution
Here is an implementation of 1D convolution:
def convolveld(in_arr, kernel, pad_type='zero'):

kernel _size = len(kernel)
numel = len(in_arr)

if pad_type == 'zero': # first, resolve the padding
arr = zero_pad_1d(in_arr, kernel_size)
elif pad_type == 'dc':

arr = dc_pad_1d(in_arr, kernel_size)
result = np.zeros(numel)

for i in range(numel): # convolve
result[i] = sum(arr[i:i + kernel_size] * kernel)
return result

The implementation for 1D case is quite simple. For each slice of the input array, multiply it
with the kernel and sum the result - essentially a dot product.

Let’s see some practical use-cases of 1D convolution.

Discrete “Derivative”

A discrete approximate derivative can be computed by a kernel that essentially computes
the difference of the “function”, represented by the array values, at the current index. Such
kernels are, for example [-1, 1] or [-1, 0, 1] - add the next value, subtract the previous.
To achieve a smoother result, larger kernel can be used (computes difference over a larger
window). For a kernel size independent result, the kernel needs to be normalized. Keep in
mind that this is an approximation and is typically used to “detect” when there is a positive
or negative (trend) change in the signal. Not the actual derivative.

x_vals = np.linspace(0, np.pi * 2, 100)

arr = np.sin(x_vals)

diff_kernel_size = 20

kernel = np.r_[[-1] * diff_kernel_size, [1] * diff_kernel_size] # "derivation"
kernel = kernel / len(kernel)

ddiff = convolveld(arr, kernel, "dc")

import matplotlib.pyplot as plt

plt.plot(x_vals, arr, label="x"
plt.plot(x_vals, ddiff, label="ddiff")

23

kernel

plt.title("Derivative of sin(x) is cos(x) - close enough...")
plt.legend ()
plt.show()

Derivative of sin(x) is cos(x) - close enough...
1.00 - x

0.75 - —— ddiff

0.50 A
0.25 A
0.00 -
—0.25 ~
—0.50 A
—0.75 1

—1.00 A

Peak detection

Sometimes, peaks or otherwise prominent values (local maxima) need to be detected. A kernel
to detect peaks subtracts the surrounding values from the central value. The central value is
also multiplied so that if it is larger than the surrounding values, the result will be positive.

arr = np.exp(np.random.rand(50)) ** 12

peak_window = 15

peak kernel subtracts the surrounding of a value from the value itself
kernel = np.r_[[-1] * peak_window, peak_window * 2 + 1, [-1] * peak_window]
peak_response = convolveld(arr, kernel, "zero")

peaks = np.where(peak_response > 0) [0]

print("Peaks:", peaks)

x = np.arange(len(arr))

plt.plot(x, arr, label="x")

plt.scatter(peaks, arr[peaks], label="peaks", color="red")
plt.title("Peak detection")

24

plt.legend()
plt.show()

Peaks: [1 5 6 7 25 32 34 37]

Peak detection

¢ —_— X
® peaks
80000 A ®
60000 A
40000 A
20000 ~
0 - L\/J L_/_A
0 10 20 30 40 50

The result is not always perfect and typically requires some additional processing. Nonetheless,
it is a fast way to detect at least potential candidates for local maxima.

Filtering (smoothing)

Using the convolution, a signal can be “smoothed”. To smooth a signal, box (average) or
Gaussian kernels can be used (other smoothing kernels exist). Smoothing kernels are often
normalized to unit sum to keep the total “signal-strength” unchanged (otherwise, the kernel
would also “amplify” the signal).

arr = np.exp(np.random.rand(50)) **x 5

box_size = 9

box_kernel = np.ones(box_size) / box_size

gauss_kernel = np.exp(-0.5 * np.arange(-4, 5) ** 2) / np.sqrt(2 * np.pi)
box_smoothed = convolveld(arr, box_kernel, "dc")

gauss_smoothed = convolveld(arr, gauss_kernel, "dc")

plt.plot(arr, label="x", color="b", alpha=0.5)

25

plt.plot(box_smoothed, label="box", color="red")
plt.plot(gauss_smoothed, label="gauss", color="orange")
plt.title("1D signal filtering (smoothing)")
plt.legend ()

plt.show()
1D signal filtering (smoothing)
1409 ___
1204 — box ‘
gauss
|
80 -

60 -

gy
o Wl NI

0 10 20 30 40 50

1

2D convolution

2D convolution is a core operation of image processing. It is similar to 1D convolution, but
the kernel is applied to a 2D array.

Like before, we need padding function:

def pad_zero_2d(image, kernel_height, kernel width):
Calculate the padding sizes
pad_height = kernel_height // 2
pad_width = kernel width // 2

Pad the image with zeros

padded_image = np.pad(
image,
((pad_height, pad_height), (pad_width, pad_width)),
mode='constant', constant_values=0

26

def

)

return padded_image

pad_dc_2d(image, kernel_height, kernel_width):
Calculate the padding sizes

pad_height = kernel_height // 2

pad_width = kernel_width // 2

padded_image = np.pad(image,
((pad_height, pad_height), (pad_width, pad_width)),
mode="'edge'

)

return padded_image

The 2D convolution loops over both dimensions of the input image and applies the kernel
to each region of the image. As in the 1D convolution, dot product is used to compute the
convolution. Although, in this case, it’s a dot product between two “vectorized” (flattened)
matrices.

def

convolve2d(image, kernel, padding_ type='zero'):
Get the dimensions of the image and kernel
image_height, image_width = image.shape
kernel_height, kernel_width = kernel.shape

Pad the image based on the padding type
if padding_type == 'zero':

padded_image = pad_zero_2d(image, kernel_height, kernel_width)
elif padding_type == 'dc':

padded_image = pad_dc_2d(image, kernel_height, kernel_width)
else:

raise ValueError("Invalid padding type. Use 'zero' or 'dc'.")

Calculate the output dimensions
output_height = image_height
output_width = image_width

Initialize the output array
output = np.zeros((output_height, output_width))

Perform the convolution

for i in range(output_height):
for j in range(output_width):

27

Extract the region of interest from the padded image
region = padded_image[i:i+kernel_height, j:j+kernel width]
Perform element-wise multiplication and sum the results
output[i, j] = np.sum(region * kernel)

return output

Let’s test the convolution on a small matrix and a kernel.

Create a simple 5x5 image
image = np.arange(25) .reshape(5, 5)

Create a simple 3x3 kernel
kernel = np.array([

[1, O, _1]9
G, @y il
[1: Or -1]

D

Perform the convolution with zero padding

result_zero = convolve2d(image, kernel, padding_type='zero')
print("Convolved Image with Zero Padding:")

print (result_zero)

Perform the convolution with dc padding

result_dc = convolve2d(image, kernel, padding_type='dc')
print("Convolved Image with DC Padding:")
print(result_dc)

Convolved Image with Zero Padding:
(L -7. -4. -4. -4. 11.]
[-18. -6. -6. -6. 24.]
[-33. -6. -6. -6. 39.]
[-48. -6. -6. -6. b54.]
[-37. -4. -4. -4. 41.]]
Convolved Image with DC Padding:
[[-3. -6. -6. -6. -3.]
[-3. -6. -6. -6. -3.]
[-3. -6. -6. 6. -3.]
[-3. -6. -6. -6. -3.]
[-3. -6. -6. -6. -3.]]

28

To use 2D convolution on image, we need to be able to load some images. For this we will use
the PIL library.

from PIL import Image
import numpy as np
import os

def load_png_image(file_path, fixed_width=512):
Open the image file
image = Image.open(file_path)
image = image.convert("L")

original_width, original_height = image.size

Calculate the new height while maintaining the aspect ratio
new_height = int((fixed_width / original_width) * original_height)
Resize the image

image = image.resize((fixed_width, new_height))

Convert the image to a NumPy array

image_array = np.array(image)

return image_array

Now we can load an image and display it. The loading function also converts the image to
gray-scale, since otherwise, we would have to deal with color channels. Additionally, it resizes
the image, so that the convolution does not take to much time if the image is too large.

Load the image

image_file = os.path.join(os.path.dirname(__file__), 'bike.png')
image_file = 'bike.png'

image = load_png_image (image_file)

Display the image
plt.imshow(image, cmap='gray')
plt.title("Original image")
plt.show()

29

Original image

50
100
150
200
250

300

0 100 200 300 400 500
Now, we are ready to test 2D convolution on the image.

Sobel edge detection

There are several different ways to compute edge detection on images. The specific algo-
rithm /kernel depend on what is required. In this example, we will use the Sobel edge detec-
tion algorithm. Sobel kernels are directional - they detect horizontal or vertical edges - or
rather horizontal or vertical gradients in the image, which corresponds with the direction
perpendicular to the edge

Define the Sobel kernels
sobel_x = np.array([[-1, 0, 1], [-2, 0, 2], [-1, O, 111)
sobel_y = np.array([[-1, -2, -1], [0, O, 0], [1, 2, 111)

Apply the Sobel kernels to the image
sobel_x_result = convolve2d(image, sobel_x, padding_ type='dc')
sobel_y_result = convolve2d(image, sobel_y, padding_ type='dc')

plt.imshow(sobel_x_result, cmap='gray')
plt.title("'Horizontal' edge detection")
plt.show()

plt.imshow(sobel_y_result, cmap='gray')

30

plt.title("'Vertical' edge detection")
plt.show()

'Horizontal' edge detection

0 100 200 300 400 500

100

150

200

250

300

Gaussian blur

31

Much like for 1D signal smoothing, images can also be smoothed. Let’s see an example using
a Gaussian kernel.

Define the Gaussian kernel
kernel_size = 11 # kernel size in both dimensions
sigma = 3 # sigma for the Gaussian
kernel = np.zeros((kernel_size, kernel_size))
f£ill in the values for the Gaussian kernel
for i in range(kernel_size):
for j in range(kernel_size):

Xx = i - kernel _size // 2

y = j - kernel_size // 2

kernel[i, jl = (# eq. for Gaussian

1/ (2 * np.pi * sigma*+*2)) * np.exp(-((x**2 + y**2) / (2 * sigmax*2))
)

apply the Gaussian blur to the image
gaussian_result = convolve2d(image, kernel, padding_type='dc')

plt.imshow(gaussian_result, cmap='gray')
plt.title("Gaussian blur")
plt.show()

Gaussian blur

50

100

150

200

250

300

32

Sparse matrices

In some cases, there might be a need to represent and work with so-called sparse data. For
example, edges in a weighted graph might be represented by a matrix, where a row ¢ and
column j represents the weight of the edge from node i to node j (e.g., current flowing from
node i to node j in an electrical circuit, or the distance between node i and node j). Another
example would be a binary image (e.g., a typical result from edge or other types of detection).
In both cases, the underlying data can be represented by a matrix. However, typically, the
number of elements “of interest”, i.e., elements with non-zero values, is much smaller than
the total number of elements. That means, the matrix is sparse and, using “classical” 2D
array, will consume a lot of “needless” memory. For example, a 9 x 9 matrix with the following

values:
Table 1: Sparse matrix example

0 1 2 3 4 5 6 7 8
0 0 5 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
2 0 0 0 4 0 0 0 0 0
3 0 2 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0
5 0 0 0 6 0 7 0 0 0
6 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 1 0 0
8 0 0 0 0 0 0 0 0 12

In Python, we can store the data in a 2D array:

import numpy as np

it's mostly zeros, let's initialize with zeros
dense_matrix = np.zeros((9, 9))

and only "define" non-zero values
dense_matrix[0, 1] = 5

dense_matrix[2, 3] =
dense matrix[3, 1] =
dense_matrix[5, 3] =
dense matrix[5, 5] =
dense_matrix[7, 6] =
dense matrix[8, 8] = 12

=N O N

There are a total of 9 * 9 = 81 elements in the matrix. However, only 7 of them have non-
zero values. if we consider the case where we would need to use 32-bit integers (4 bytes) to

33

store the data (numbers between —231 and 231), the matrix will consume 9 * 9 * 4 = 324
bytes, while storing only 7 * 4 = 28 bytes “worth” of data. Roughly 300 extra bytes is not
a big of a deal. However, imagine you have a database of 1 million people representing some
kind of asymmetric transactions between them. If on average, each person “deals” with 100
other people and you need only 1 byte to store the data about a transaction, then all of the
“interesting” data will require:

1,000, 000 people x 100 transactions x 1 byte = 100,000, 000 bytes ~ 100 M B

However, the full matrix will have:

1,000, 000 rows x 1,000,000 columns x 1 byte = 1,000, 000,000,000 bytes ~ 1 TB

That’s quite a lot of storage space required to store mostly zeros. To deal with this, sparse-
matrix representations are used. There are multiple different approaches, we will show two of
them.

Coordinate list (COO)

Perhaps the simplest way to store matrix data with mostly empty elements, is to store the
indices of the non-zero elements, along with the corresponding values. E.g., considering the
example from the table above, we would store the following:

Row Column Value

0 1)
2 3 4
3 1 2
5 3 6
) 5 7
7 6 1
8 8 12

Representing the sparse matrix in this way is called “coordinate list” (COO).
Let’s make a function that would convert a dense matrix to COO:
def dense_to_coo(matrix, empty_value=0):

data = [] # here we will store our data

row = [] # here we will store the row indices
col = [] # here we will store the column indices

34

for i, d_row in enumerate(matrix): # iter over the rows
for j, d_item in enumerate(d_row): # iter over the items in a row
if d_item != empty_value:

data.append(d_item)

row.append (i)

col.append(j)
data = np.array(data, dtype=matrix.dtype) # convert to match the input type
return data, row, col

Notice that the function also allow us to define what is considered as “non-zero” (or empty)
value. In some cases, the “base” value need not be zero.

Now, demonstrate the function on our example matrix:

A data, A row, A _col = dense to_coo(dense matrix)
print (A_data)
print (A_row)
print (A_col)

[5. 4. 2. 6. 7. 1. 12.]
(o, 2, 3, 5, 5, 7, 8]
(1, 3, 1, 3, 5, 6, 8]

Now, let’s create a simple Python class to store COO data and “attach” the function to it:

class CO0O:
def __init__(self, dense_data, empty_value=0):
not the nicest way of doing thins but it'll do
self.data, self.row, self.col = dense_to_coo(dense_data, empty_value)
let's remember the shape of the original matrix
self.shape = dense_data.shape

def __repr__(self):
just to have a nice print output
return f£"C00(\n\tdata={self.data}\n\trow={self.row}\n\tcol={self.col}\n)"

@classmethod

def from_coo_arrays(cls, data, row, col, shape):
create an empty CO0 object
c = cls(np.zeros(shape))
attach the data

35

c.data = np.array(data)
c.Tow = row

c.col = col

return c

def to_dense(self):
prepare the dense matrix
dense = np.zeros(shape=self.shape, dtype=self.data.dtype)
reconstruct the dense matrix
for d, r, c in zip(self.data, self.row, self.col):
densel[r, c] =d
return dense

Let’s test that the code works properly:

coo = CO0(dense_matrix)

print(coo)

print("CO0 to dense:\n", coo.to_dense())
print("Dense matrix:\n", dense_matrix)

€00(
data=[5. 4. 2. 6. 7. 1. 12.]
row=[0, 2, 3, 5, 5, 7, 8]
col=[1, 3, 1, 3, 5, 6, 8]
)
CO0 to dense:
[[0. 5. 0. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 4. 0. 0. 0. 0. 0.]
[0. 2. 0. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 6. 0. 7. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 1. 0. 0.]
[0. 0. 0. 0. 0. 0. 0. 0. 12.]]
Dense matrix:
[[0. 5. 0. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 4. 0. 0. 0. 0. 0.]
[0. 2. 0. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 0. 0. 0.]

36

o O O O
O O O

SO O OO,
o O O O

O O O N
O = O O

Lo I s B e B |
o oo o
o o oo
o oo o
_

N

I._II_II_II_I

Obviously, in this representation, we need some extra memory to store the coordinates. The
(required) data type of the coordinates depends on the size of the matrix. In this example, a
byte is enough. Therefore, we would need 1B + 1B + 4B = 6B for each datapoint. In total,
this will require 7 x 6B = 42B of memory. For the large example above with the 1 million
people, we have to use at least 32-bit integers. In that case, the total memory requirement
would come to:

1,000, 000 people x 100 transactions x (2 x 4B+ 1B) ~ 900 M B

Still a decent saving. Of course, since there is some memory overhead required, it is not
always the best choice. If we, for simplicity, consider both the coordinates and the data to be
represented by the same data type, then COO is only spatially effective if the number of
non-zero elements (NNZ) is at least 3 times smaller than the number of elements, i.e.:

N x N

NNZ <

However, because of the extra computational overhead, it’s best to reserve the use of sparse
matrices for when NNZ is much smaller than that and the overall matrix size is quite large.
The specific values will depend on the specific use-case (e.g., what kind of operations are going
to be performed on the matrix).

Operations on COO sparse matrices

Some operations on sparse matrices, e.g., scalar multiplication, are quite straight-forward
and provide apparent speedup: for an M x N matrix, only NN Z multiplications need to be
performed, instead of M x .

However, other operations, like matrix multiplications are more complex to implement.

def coo_matmul (sparse_A, sparse_B):
Initialize the result data, row, and col arrays
result_data = []
result_row = []
result_col = []

result_shape = (sparse_A.shape[0], sparse_B.shape[1])

37

The two outer loops for the result matrix items
for i in range(result_shape[0]):
for j in range(result_shape[1]):
Initialize the sum for the current element
sum = O
The two inner loops iterate of the input matrices
Iterate over NNZ of sparse_A in the current row
for k, (d, r, c) in enumerate(
zip(sparse_A.data, sparse_A.row, sparse_A.col)):
if r == i
Iterate over NNZ of sparse_B in the current column
for other_k, (other_d, other_r, other_c) in enumerate(
zip(sparse_B.data, sparse_B.row, sparse_B.col)):
if other_c == j and other_r == c:
Add the product to the sum
sum += d * other_d
If the sum is non-zero, add it to the result
if sum != O:
result_data.append (sum)
result_row.append (i)
result_col.append(j)

result = C00.from_coo_arrays(result_data, result_row, result_col, result_shape)
return result

To test our methods, we need to create some sparse data. The following function generates a
matrix with approximately NNZ = n_rows x n__cols x fill_rate non-zero elements.

def make_sparse_data(n_rows, n_cols, fill rate = 0.01):

make a matrix with approx. fill_rate * 100 7 of non-zero elements

if fill rate * n_rows * n_cols < 1:
fill rate = 1 / (n_rows * n_cols) # at least 1 element

data = np.random.rand(n_rows, n_cols)

while data.min() > fill_rate: # at least 1 element above fill _rate
data = np.random.rand(n_rows, n_cols)

data[data > fill_rate] = 0O

return data

Now, we can test that the code works properly:

38

N = 100

prepare the data

A = make_sparse_data(N, N, 0.01)
B = make_sparse_data(N, N, 0.01)
dense matrix multiplication
C=AQB

A_sparse = C00(A)

B_sparse = C00(B)

sparse matrix multiplication
C_sparse = coo_matmul (A_sparse, B_sparse)

C_densified = C_sparse.to_dense()

print("Check if the results are equal:", np.allclose(C, C_densified))

Check if the results are equal: True

Of course, runtime-wise, our four loop-based implementation is not going to beat the optimized,
multi-threaded NumPy matrix multiplication, that is actually, implemented in C. Still, storage-
wise, we are still saving some space.

Speed comparison:

%timeit -n 1 -r 1 coo_matmul (A_sparse, B_sparse)
J%timeit -n 1 -r 1 A @ B

602 ms + O ns per loop (mean * std. dev. of 1 run, 1 loop each)
221 s + 0 ns per loop (mean + std. dev. of 1 run, 1 loop each)

Size comparison:

import sys
print(f"Size of A: {sys.getsizeof(A) / 1le6} MB")
print("Size of A_sparse: "
f"{(sys.getsizeof (A_sparse.data) + sys.getsizeof (A_sparse.row) + sys.getsizeof (A_spars

Size of A: 0.080128 MB
Size of A_sparse: 0.002784 MB

39

Again, the size difference is going to be relevant for much larger matrices.

Now, this is not the most efficient implementation. There are a few “speed-ups” that can be
implemented. For example, we could make sure the indices are sorted and only “pick” the
current row/column in the inner loops.

Compressed sparse rows (CSR)

One representation of sparse matrices that allows for faster matrix multiplications (and other
operations) is compressed sparse rows (CSR).

It is similar to COO in that only the data and indices are stored. For CSR, the data and
columns of each data point are stored in in exactly the same way as for COO. However, the
row indices are not stored directly. Instead, only pointers to where each row starts are stored.
For example, the following matrix:

S O = =
S O ot O
~N O O N

Will be stored as:

values = [1, 2, 4, 5, 6, 7]
col_indices = [0, 2, 0, 1, 1, 2]
row_pointers = [0, 2, 4, 4, 6]

The row_pointers indicate that row 0 starts at index 0 and row 1 starts at index 2. This
means that values[0:2] at col_indices[0:2] represent the data in the first row (row 0).
For empty rows, the row_pointers will be set to the index of the next row. E.g., row 2 in our
example has index 4, the same as row 3, indicating, it’s empty. The last value in row indices
indicate the end of the last row. This is per-convention to make it clear whether the last row
is empty or not.

The advantage of this representation is that rows can be retrieved very quickly:

def print_csr_row(values, col_indices, row_pointers):
row = 1
start = row_pointers[row]
end = row_pointers[row + 1]
print (f"Row {row}:")
print ("Coumn indices:", col_indices[start:end])

40

print ("Row values:", values[start:end])

print_csr_row(values, col_indices, row_pointers)

Row 1:
Coumn indices: [0, 1]
Row values: [4, 5]

This enables, for example, much more efficient matrix-vector multiplication..

CSR in practice

While it’s nice to know the “inner workings” of sparse matrices, there are also off-the-shelf
implementations available in Python.

For the following example, the SciPy library is required (pip install scipy).

import numpy as np
from scipy.sparse import csr_matrix

Create two dense matrices

2000

make_sparse_data(N, N, 0.01)
make_sparse_data(N, N, 0.01)

o ==+
non

++

Perform matrix multiplication using NumPy
C = np.dot(A, B)

Create two sparse matrices
A_sparse = csr_matrix(A)

B_sparse = csr_matrix(B)

Perform matrix multiplication using SciPy
C_sparse = A_sparse.dot(B_sparse)

Check if the results are equal
print(np.allclose(C, C_sparse.toarray()))

True

41

print("Run time of dense matrix multiplication:")
%timeit -n 1 -r 1 np.dot(A, B)

print("Run time of sparse matrix multiplication:")
%timeit -n 1 -r 1 A_sparse.dot(B_sparse)

Run time of dense matrix multiplication:

256 ms + O ns per loop (mean + std. dev. of 1 run, 1 loop each)
Run time of sparse matrix multiplication:

10.9 ms + O ns per loop (mean * std. dev. of 1 run, 1 loop each)

42

	Lecture 5 - Array processing
	Sorting
	Sorting algorithms
	Comparison of sorting algorithms

	Sliding window operations
	Fixed-size window
	Variable-size window

	Convolution
	1D convolution
	2D convolution

	Sparse matrices
	Coordinate list (COO)
	Operations on COO sparse matrices
	Compressed sparse rows (CSR)

