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Prerequisites: Gauss-Newton method

Δx* = arg min
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[sin(x + Δx)]2 ≈ arg min
Δx

[sin(x) + cos(x)Δx]2
= −

sin(x)
cos(x)

= − tan(x)

Δx* = arg min
Δx

[f(x + Δx)]2 ≈ arg min
Δx

[f(x) + f′￼(x)Δx]2

= arg min
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Prerequisites: Gauss-Newton method

Δx* = arg min
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[sin(1 + Δx)]2 ≈ arg min
Δx
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= −

sin(1)
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= − tan(1)

Small gradient => too agressive step

What don’t you like about this step?
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Prerequisites: Gauss-Newton method
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[sin(1 + Δx)]2

initial point x=1

≈ arg min
Δx

[sin(1) + cos(1)Δx]2
= −

sin(1)
cos(1)

= − tan(1)

Let’s create a virtual function that always has sufficiently high gradients
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x20 x1

∥x1 + 1 − x2∥∥ sin(x1)∥

= π/4 = 1

Let’s try it on 2D factorgraph problem

Δx = arg min
x1,x2

(sin x1)2 + (x1 + 1 − x2)2

= arg min
x1,x2

sin x1

x1 + 1 − x2

2

2
= arg min

Δx [ sin(π/4)
π/4 + 1 − 1] + [cos(π/4) 0

1 −1] ⋅ [Δx1
Δx2]

2

2
… jacobianJ… residualsf

2J⊤JΔx + 2J⊤f = 0 ⇒ Δx = − (J⊤J)+J⊤f

= [1.5 −1
−1 0 ]

−1

⋅ [−1.28
0.78 ] = [ −1

−0.2]= arg min
Δx

Δx⊤J⊤JΔx + 2f⊤JΔx + f⊤f = − (J⊤J)+J⊤f

⇒ J⊤JΔx = − J⊤f

1.step

x2

x1



x20 x1

∥x1 + 1 − x2∥∥ sin(x1)∥

= π/4 = 1

Let’s try it on 2D factorgraph problem

Δx = arg min
x1,x2

(sin x1)2 + (x1 + 1 − x2)2

= arg min
x1,x2

sin x1

x1 + 1 − x2

2

2

2J⊤JΔx + 2J⊤f = 0 ⇒ Δx = − (J⊤J)+J⊤f

= [1.5 −1
−1 0 ]

−1

⋅ [−1.28
0.78 ] = [ −1

−0.2]= arg min
Δx

Δx⊤J⊤JΔx + 2f⊤JΔx + f⊤f = − (J⊤J)+J⊤f

⇒ J⊤JΔx = − J⊤f

1.step2.ste
p

x2

x1

= arg min
Δx [ sin(π/4)

π/4 + 1 − 1] + [cos(π/4) 0
1 −1] ⋅ [Δx1

Δx2]
2

2
… jacobianJ… residualsf



x20 x1

∥x1 + 1 − x2∥∥ sin(x1)∥

= π/4 = 1

Let’s try it on 2D factorgraph problem

Δx = arg min
x1,x2

(sin x1)2 + (x1 + 1 − x2)2

= arg min
x1,x2

sin x1

x1 + 1 − x2

2

2

2J⊤JΔx + 2J⊤f = 0 ⇒ Δx = − (J⊤J)+J⊤f

= [1.5 −1
−1 0 ]

−1

⋅ [−1.28
0.78 ] = [ −1

−0.2]= arg min
Δx

Δx⊤J⊤JΔx + 2f⊤JΔx + f⊤f = − (J⊤J)+J⊤f

⇒ J⊤JΔx = − J⊤f

1.step2.ste
p

x2

x1

= arg min
Δx [ sin(π/4)

π/4 + 1 − 1] + [cos(π/4) 0
1 −1] ⋅ [Δx1

Δx2]
2

2
… jacobianJ… residualsf



28

mrel…….. estimated rel. marker position

xt ……. estimated robot poses

zmrel

t , zmabs

t … marker measurements

…… local coordinate frame

…… ground truth pointcloud map

mabs…….. known abs. marker position

…… ground truth trajectory

graph-SLAM



graph-SLAM formulations

priors motion model loop-closures

GPS odometry marker(s)
x⋆ = arg min

x0,…xT
∑

t

∥xt − zgps
t ∥2

Σgps
t

+ ∑
t

∥w2r(xt+1, xt) − zv∥2
Σv

t
+ ∑

t,j

∥w2r(mj, xt) − z∥2
Σmj

t

+ ∑
t

∥xt − xprior
t ∥2

Σprior
t

+ ∑
t

∥g(xt−1, ut) − xt∥2
Σg

t
+ ∑

t

∥w2r(x0, xT)∥2
Σlc

t

m1…mJ

x



Optimization

= arg min
x ∑

i

∥fi(x)∥2 = arg min
x

f1(x)
⋮

fN(x)

2

≈ arg min
Δx

∥f(xk) + f′￼(xk)Δx)∥2 = − [ f′￼(xk)]+ f(xk) GN: xk+1 = xk − [ f′￼(xk)]+ f(xk)

≈ arg min
Δx

∥f(xk) + f′￼(xk)Δx)∥2 + λ∥Δx∥2

subject to ∥Δx∥2 ≤ c various adjustements LM: xk+1 = xk − [ f′￼(xk) + λI]+ f(xk)TR:

= − [ f′￼(xk) + λI]+ f(xk)

scipy.optimize.least_squares(fun, x0, jac, method=‘lm’)

arg min
Δx

∥f(xk + Δx)∥2 is an initial solutionxkwhereAlternative formulation:

f(x) : ℝn → ℝmwhere
f′￼(x) : ℝn → ℝm×n

x⋆ = arg min
x0,…xT

∑
t

∥xt − zgps
t ∥2

Σgps
t

+ ∑
t

∥w2r(xt+1, xt) − zv∥2
Σv

t
+ ∑

t,j

∥w2r(mj, xt) − z∥2
Σmj

t

+ ∑
t

∥xt − xprior
t ∥2

Σprior
t

+ ∑
t

∥g(xt−1, ut) − xt∥2
Σg

t
+ ∑

t

∥w2r(x0, xT)∥2
Σlc

t

m1…mJ

x

vector of residuals

n-unknowns, m-residuals=> f-dim?
= arg min

x
∥f(x)∥2
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x20 x1

∥x1 + 1 − x2∥∥ sin(x1)∥

= π/4 = 1

Can we get more efficient solution?

Δx = arg min
x1,x2

(sin x1)2 + (x1 + 1 − x2)2

2J⊤JΔx + 2J⊤f = 0 ⇒ J⊤JΔx = − J⊤f

J⊤J⏟ Δx = −J⊤f
⏟

⇒ R⊤RΔx = g

⇒ Δx = − (J⊤J)+J⊤f = − J+f = [ −1
−0.2]

f = [ sin(π/4)
π/4 + 1 − 1]

J = [cos(π/4) 0
−1 1]

H g

H = [1.5 −1
−1 1 ]

⟹ R = [1.2 −0.82
0 0.58 ]Chol H

⇒ R⊤y = g ⇒ y = [−1.04
−0.12]

⇒ RΔx = y ⇒ y = [−1.0
−0.2]

It converges to global optimum after 2 iterations

At convergence point R = [1.4 −0.7
0 0.7 ]



f = [ sin(π/4)
π/4 + 1 − 1]

J = [cos(π/4) 0
−1 1]

Let’s assume that new measurement has been received

x2=0x1

∥x1 + 1 − x2∥∥ sin(x1)∥

y

2J⊤JΔx + 2J⊤f = 0 ⇒ J⊤JΔx = − J⊤f

J⊤J⏟ Δx = −J⊤f
⏟

⇒ R⊤RΔx = g

⇒ Δx = − (J⊤J)+J⊤f = − J+f = [ −1
−0.2]

H g

H = [1.5 −1
−1 1 ]

⟹ R = [1.2 −0.82
0 0.58 ]Chol H

⇒ R⊤y = g ⇒ y = [−1.04
−0.12]

⇒ RΔx = y ⇒ y = [−1.0
−0.2]

Δx = arg min
x1,x2

(sin x1)2 + (x1 + 1 − x2)2

=1

At convergence point R = [1.4 −0.7
0 0.7 ]

Can we get more efficient solution?



y

=0x1

∥x1 + 1 − x2∥∥ sin(x1)∥

Δx = arg min
x1,x2

(sin x1)2 + (x1 + 1 − x2)2

2J⊤JΔx + 2J⊤f = 0 ⇒ Δx = − (J⊤J)+J⊤f = − J+f⇒ J⊤JΔx = − J⊤f

J⊤J⏟ Δx = −J⊤f
⏟H g

⇒ R⊤RΔx = g

= [ −1
−0.2]

⟹ R = [1.2 −0.82
0 0.58 ]Chol H

⇒ R⊤y = g ⇒ y = [−1.04
−0.12]

⇒ RΔx = y⇒ y = [−1.0
−0.2]

x3

∥x2 + 1 − x3∥

= 3x2 =1

At convergence point R = [1.4 −0.7
0 0.7 ]

Let’s assume that new measurement has been received

Can we get more efficient solution?
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∥x1 + 1 − x2∥∥ sin(x1)∥

Δx = arg min
x1,x2

(sin x1)2 + (x1 + 1 − x2)2

I can ignore the old stuff and solve it again but there is more efficient way

x2 =1

+(x3 + 1 − x2)2 R = [1.4 −0.7
0 0.7 ]

Old:
x3

∥x2 + 1 − x3∥

= 3

⟹ R =
1.4 −0.7 0
0 1.2 −0.8
0 0 −0.6

Givens

R = [
1.4 −0.7 0
0 0.7 0
0 1 −1]

⇒ R⊤y = g ⇒ y = [
0

0.8
−1.7]

⇒ RΔx = y⇒ Δx = [
0
0

−1]

Can we get more efficient solution?
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Optimization in SE(2) manifold trajectory length 101

What will break it????



Optimization in SE(2) manifold trajectory length 101
noise 0.5
c_odom=0.2 
c_ma=1 
c_mr=1odom/marker ini adversarial ini



Optimization in SE(2) manifold trajectory length 401

noise_markers =  0.5 noise_odom =  0.1
successive optimization with incoming measurements



Optimization

scipy.optimize.least_squares(fun, x0, jac, method=‘lm’)

0 50 100 200 400300

trajectory length

10

LM
 (a

uto
dif

f)
5

1

LM (jac:analytical)

LM (jac:analytical+sparse)

Optimization time [s]
LM

 (j
ac

:n
um

)

Karel, you don’t know  
how to code stuff properly

Martin, then show me how  
you gonna do it, huh?

What about 50ms?



ricp(x1, x2) ricp(x2, x3)

HW4 factorgraph

m1

x1

x2

x3

m2

ICP odometry 3D marker(s)

= arg min
x1…xT

∑
t

∥w2r(xt+1, xt) − zicp
t ∥2

Σv
t

+
m1…mJ

∑
t,j

∥w2r(mj, xt) − zmj
t ∥2

Σmj
t

ricp(xt, xt+1) rm(xt, mj)



HW4 factorgraph

m1

x1

x2

x3

m2

ICP odometry 3D marker(s)

= arg min
x1…xT

∑
t

∥w2r(xt+1, xt) − zicp
t ∥2

Σv
t

+
m1…mJ

∑
t,j

∥w2r(mj, xt) − zmj
t ∥2

Σmj
t

ricp(xt, xt+1) rm(xt, mj)

ricp(x1, x2) ricp(x2, x3)

rm
(x 1,

m 1)

rm (x 1, m
2)

rm
(x 2,

m 2)

r m(x
2 ,m

1 )

r m(x
3 , m

1 )

r m(x
3 ,m

2 )



HW4 factorgraph

rm(xt, mj) =

+cos θt ⋅ (mx
j − xt) + sin θt ⋅ (my

j − yt) − zmj,x
t

−sin θt ⋅ (mx
j − xt) + cos θt ⋅ (my

j − yt) − zmj,y
t

mθ
j − θt − zmj,θ

t

ICP odometry 3D marker(s)

= arg min
x1…xT

∑
t

∥w2r(xt+1, xt) − zicp
t ∥2

Σv
t

+
m1…mJ

∑
t,j

∥w2r(mj, xt) − zmj
t ∥2

Σmj
t

ricp(xt, xt+1) rm(xt, mj)

ricp(xt, xt+1) =
+cos θt ⋅ (xt+1 − xt) + sin θt ⋅ (yt+1 − yt) − zicp,x

t

−sin θt ⋅ (xt+1 − xt) + cos θt ⋅ (yt+1 − yt) − zicp,y
t

θt+1 − θt − zicp,θ
t



`

=
−cos θt −sin θt −sin θt ⋅ (mx

j − xt) + cos θt ⋅ (my
j − yt)

+sin θt −cos θt −cos θt ⋅ (mx
j − xt) − sin θt ⋅ (my

j − yt)
0 0 −1

∂
∂xt

∂
∂yt

∂
∂θt

Jm
x =

∂rm(xt, mj)
∂xt

=
cos θt sin θt 0

−sin θt cos θt 0
0 0 1

`

Jm
m =

∂rm(xt, mj)
∂mj

∂
∂mx

j

∂
∂my

j

∂
∂mθ

j

rm(xt, mj) =

+cos θt ⋅ (mx
j − xt) + sin θt ⋅ (my

j − yt) − zmj,x
t

−sin θt ⋅ (mx
j − xt) + cos θt ⋅ (my

j − yt) − zmj,y
t

mθ
j − θt − zmj,θ

t



HW4 factorgraph

rm(xt, mj) =

+cos θt ⋅ (mx
j − xt) + sin θt ⋅ (my

j − yt) − zmj,x
t

−sin θt ⋅ (mx
j − xt) + cos θt ⋅ (my

j − yt) − zmj,y
t

mθ
j − θt − zmj,θ

t

ICP odometry 3D marker(s)

= arg min
x1…xT

∑
t

∥w2r(xt+1, xt) − zicp
t ∥2

Σv
t

+
m1…mJ

∑
t,j

∥w2r(mj, xt) − zmj
t ∥2

Σmj
t

ricp(xt, xt+1) rm(xt, mj)

ricp(xt, xt+1) =
+cos θt ⋅ (xt+1 − xt) + sin θt ⋅ (yt+1 − yt) − zicp,x

t

−sin θt ⋅ (xt+1 − xt) + cos θt ⋅ (yt+1 − yt) − zicp,y
t

θt+1 − θt − zicp,θ
t



ricp(xt, xt+1) =
+cos θt ⋅ (xt+1 − xt) + sin θt ⋅ (yt+1 − yt) − zicp,x

t

−sin θt ⋅ (xt+1 − xt) + cos θt ⋅ (yt+1 − yt) − zicp,y
t

θt+1 − θt − zicp,θ
t

`

=
−cos θt −sin θt −sin θt ⋅ (xt+1 − xt) + cos θt ⋅ (yt+1 − yt)
+sin θt −cos θt −cos θt ⋅ (xt+1 − xt) − sin θt ⋅ (yt+1 − yt)

0 0 −1

∂
∂xt

∂
∂yt

∂
∂θt

Jicp
xt

=
∂ricp(xt, xt+1)

∂xt

Jicp
xt+1

=
∂ricp(xt, xt+1)

∂xt+1
=

cos θt sin θt 0
−sin θt cos θt 0

0 0 1

`

∂
∂xt+1

∂
∂yt+1

∂
∂θt+1



Optimization
scipy.optimize.least_squares(fun, x0, jac, method=‘lm’)

Optimization time grows fast with:
problem dimensionality (e.g. DOFxT+M)
number of residual terms (e.g. number of measurements)

In practise you introduce simplifications:
use sparse matrix to represent to represent inherently sparse Jacobian
optimize only relevant sub-graph when new measurement comes (Givens rot.)

to tackle the real-time requirements frontend and backend optimizers used

pre-integrate some factor (e.g. sum up odometry measurements over 0.5s)
sparsification of old factor graph

general FG solvers such as gtsam with iSAM/iSAM2 optimizers available:



x20 x1

∥x1 + 1 − x2∥∥ sin(x1)∥

= π/4 = 1

Let’s try it on 2D factorgraph problem

Δx = arg min
x1,x2

(sin x1)2 + (x1 + 1 − x2)2

f = [ sin(π/4)
π/4 + 1 − 1]

J = [cos(π/4) 0
−1 1]

import gtsam 
initial.insert(x1, np.pi/4) 
initial.insert(x2, 1.0)

graph.add(SinFactor(x1, noise_model))
graph.add(gtsam.BetweenFactorDouble(x1, x2, 1.0, noise_model))  

# Update iSAM2 and optimize incrementally
isam.update(graph, initial) 
result = isam.calculateEstimate()


