Factorgraph Optimization

Karel Zimmermann



Prerequisites: Gauss-Newton method
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Ax* = arg min [sin(l + Ax)]2 X arg min [sin(l) + cos(l)Ax]2 = —

Ax

Prerequisites: Gauss-Newton method
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Prerequisites: Gauss-Newton method

Ax™ = arg min [Sin(x + Ax)]2 X arg min [sin(x) + cos(x)Ax]2 = — SIn() = — tan(x)
Ax Ax cos(x)
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Prerequisites: Gauss-Newton method

Ax™ = arg min [sin(x + Ax)]2 X arg min [sin(x) + cos(x)Ax]2 = — SIn() = — tan(x)
Ax Ax cos(x)
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Prerequisites: Gauss-Newton method
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Prerequisites: Gauss-Newton method

in(1
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Ax Ax cos(1)

1.0 7

0.8 -

0.6

0.4 -

0.2 -

il BEH B H = EH H HEH HEH EH EH SN lE SN B E BB B BN =B =
S

==
i
-
-
o=
=
-
‘—'d
~-
—__——

0.0 4 |~ ====——y¢

—-1.5 -1.0 —0.5 0.0 0.5 1.0 1.5



Prerequisites: Gauss-Newton method

in(1
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Prerequisites: Gauss-Newton method

In(1
Ax™ = arg min [sin(l + Ax)]2 X arg min [sin(l) + cos(l)Ax]2 = — sm((l)) = — tan(1)
Ax COS
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Prerequisites: Levenberg-Marguardt methoa
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Prerequisites: Levenberg-Marguardt methoa
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Prerequisites: Gauss-Newton method

s1n(x)
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Let's try it on 2D factorgraph problem
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graph-SLAM

X, \iin... estimated robot poses
........ estimated rel. marker position

........ known abs. marker position

abs

z™... marker measurements

| SR local coordinate frame

X ... ground truth pointcloud map
........... ground truth trajectory

28



graph-SLAM formulations

GPS odometry marker(s)
x* = arg mm Z |x, — zgpSHEgps + Z |W2r(X,, 1, X,) — z"HZV + Z |w2r(m/, x,) — zH;
X0 .
Vol Driors motion model loop-closures

X

+ 2 1%, = XN+ QN8 u) = XI5 + Z |w2r(xg, X1,
[



Optimization

x* = arg min Z X, — zgpSHngs + Z |W2r(x,, ;,X,) — z"H%y + Z |w2r(my, X)) — zHém
[

Xo XT

[
i Z 1%, = XN+ Q8 u) = x5 + Z |l w2r(xq. xp) 112,

[
£(x) 2 n-unknowns, m- reS|duaIs->f dim?
— argmin ||f(x)||* where f(x): I

S (x)

X

= arg min Z Hfl-(X)HZ = arg min

INX) || vector of residuals

n

Alternative formulation: argmin ||f(x, + Ax)||* where X; is an initial solution

AX

~ arg n&in If(x) +f (xpAX)||* = — [f' K] f(x;)

R arg H&in Lf(xp) +f (x)AX)||* + 4[| Ax]| = = [f'(xp) + AL]* f(x;)

—_ |

GN: X1 = X — [/ XI7 f(x;)

n_, RM

mxn

subject to ||Ax]|* < ¢ ___ various adjustements EME X = X = [F/(xp) + AT f(x,)

TR:
scipy.optimize.least_squares(fun, x0, jac, method=‘Im’)



Can we get more efficient solution®?

e_ | sin(z/4) ]
r/4+1-1
] = [COS(]Z'/4) ()] -
—1 1|
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-1 1
AX = arg min (sinx1)2 + (Xl + 1 — X2)2
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= o 0 0.58 y O
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At convergence point [ 0 07 ] y=1J [_0_2]

It converges to global optimum after 2 iterations



Can we get more efficient solution®?

| £ sin(z/4)
| sin(x))|| X + 1 =] g4 +1-=1
] [COS(]Z'/4) 0
_ —1 |
X, =0 Xp =] g 12 -1
-1 1

AX = arg min (sinx1)2 + (Xl + 1 — Xz)
X1,X2

2JTJAX + 2]t =0 = J'JAx = - J'f = A== iguem="T"T

\JTJJ AX — ¥_*ITfJ gR _ [12 —082] = RTRAX = g = RTy _

I o 0 0.58 y
. 1.4 —0.7
R =
At convergence point [ 0 07 ]

|
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L et's assume that new measurement has been recelved



Can we get more efficient solution®?

[sin(x)[| %+ 1 —=x%,] 1%, + 1 = x5

Ax = argmin (sinx;)” + (x, + 1 -x,)°

2TIAX+2JE=0 = JJAx =~ JTf = A ==t gae=TT'T_= [__012]

JTJ AX = ¥—.!Tfj Ch—;lyR — [1(')2 _00522] — RTRAX =g = RTy =g =y = [
H 5 | y
At convergence point R = [1(')4 _00&7] > RAX =y=> y = [

L et's assume that new measurement has been recelved



Can we get more efficient solution®?

[sin(x)[  lIx; +1=x,] 1%y + 1 = x5
X, =0 X; =1 X, — 3
1 ’ Old:
AX = arg min (sinxl)2 + (Xl + 1 - X2)2+<X3 + 1 — X2)2 R = [1(')4 _00&7]
0
~ [l4 =07 O Givens 14 =07 0 | =2>R'y=g=>y=1 08
R=10 07 0 — R=]10 12 -038 —1.7
0 1 =1 0 0 —=0.6

0
> RAX =y=> Ax = [O]
—1

| can ignore the old stuff and solve it again but there is more efficient way



Can we get more efficient solution®?

| sin(x)|| I1x; + 1 —x,|| X5 + 1 — X5]|
X, =0 X;:1 X:= 3
1 3 Old.:
AX = arg min (sinx1)2 + (Xl + 1 — X2)2+(X3 + 1 — X2)2 R = [1(')4 _00&7]
0
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Optimization in SE(2) manifold trajectory length 101

What will break 1t?77?7



Optimization in SE(2) manifold trajectory length 101

odom/marker ini

noise 0.5
c odom=0.2
Cc ma=1

C mr=1 adversarial ini
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Optimization in SE(2) manifold trajectory length 401
successive optimization with iIncoming measurements

noise markers = 0.5 noise odom = 0.1
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Optimization
Karel, you don't know

how to code stuft properly

scipy.optimize.least_squares(fun, x0, jac, methoc

Optimization time [S]

‘ .

Martin, then show me how
you gonna do it, huh?

5 S M ((What about 50ms?




HW4 tactorgraph
3D marker(s)

|CP odometry
. | M2
= arg min Z |W2r(x,,1,X,) — 2,7 15, J+ Z Iw2r(m;, x,) Zt]HE’:‘j
X;...X : t t,]
mll...mTJ rlCP(Xt, X, 1) J rm(xt, mj)

@) @)




HW4 tactorgraph
3D marker( )

|ICP odometry

= arg min
Xi...Xp
m;...m;

iC
r'P(x, X,

1)

r'P(Xy, X,)



HW4 tactorgraph
3D marker(s)

1Y)
t) o Zt]HZIt””]

|CP odometry

= arg min
Xlo ° .XT
m;...m;

IC
r'P(x, X,

1)

o m
+cos 6, - (mi — x,) +sin6, - (m’ —y,) — z,’

rm(Xt’ m]) = | —sin Ht . (m]X o xl‘) + COS 9 . (my — yt) — Ztmj’y
v, m;,0
m —0,—2z"
+COS Qt . ('xt+1 — xt) + sin Qt . (yl‘+1 yt) _ lcpx
rHP(Xpy Xpp1) = | =8in6; - (X1 = X) + €086, (Vg = ) — 4P

_ . icp,o
9t+1 Ht t



: m.x
+COS Ht - (m]gc — xt) 4+ sin Qt : (m]y _ yt) — 2z ;

rM(x,m) = | —sin6,- (mj —x,) +cos 6, - (m) —y,) - 7"
mje — 0, - szjﬁ
0 0 p
0Xt ayt aHt
arm(xp m]) — 05 et —sin ef —sin Ht . (m]x — xt) + COS 6’t : (m]y — yt)
Jy = ox, = | +sin6¢), —cos6, —cos6,-(m—x,)—sinb, - (m’ —y,)
0 0 1

0 0 0

om?* Y 0
j am] dm]

cosf, smmf, U

or'"(x,, m)
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Optimization

scipy.optimize.least_squares(fun, x0, jac, method=‘Im’)

Optimization time grows fast with:

o problem dimensionality (e.g. DOFxT+M)
o number of residual terms (e.g. number of measurements)

In practise you introduce simplifications:

O

use sparse matrix to represent to represent inherently sparse Jacobian
optimize only relevant sub-graph when new measurement comes (Givens rot.)
pre-integrate some factor (e.g. sum up odometry measurements over 0.5s)
sparsification of old factor graph

to tackle the real-time requirements frontend and backend optimizers used
general FG solvers such as gtsam with ISAM/ISAMZ2 optimizers available:




Let's try it on 2D tactorgraph problem

|| sin(x;)|| Ix; + 1 =x5] £ sin(z/4)
wld+1-1| =7
[COS(]Z'/4) O]
J =
: : —1 1] s
0 X, = /4 X,=1
AX = arg min (sin X1)2 + (Xl + 1 — X2>2

import gtsam
initial.insert(x1l, np.pi/4)
initial.insert(x2, 1.0)

graph.add(SinFactor(xl, nolise model))
graph.add(gtsam.BetweenFactorDouble(xl, x2, 1.0, noilse model))

# Update iSAM2 and optimize incrementally
lsam.update(graph, 1nitial)
result = 1sam.calculateEstimate()



