Factorgraph Optimization

Karel Zimmermann

Prerequisites: Gauss-Newton method

Ax* = arg min [Sin(x + Ax)]2
Ax

1.0

0.8 -

0.6 -

0.4 -

0.2 1

0.0 A

-
Sy
=,
= -
\\\\\
“_—-—_‘-'

N\
4 N EE NN NN NN NN NN NENE B ~NBN B N B

—1.5

—-1.0 -0.5 0.0 0.5

=
o

1.5

Ax* = arg min [sin(l + Ax)]2 X arg min [sin(l) + cos(l)Ax]2 = —

Ax

Prerequisites: Gauss-Newton method

Ax

sin(1)

cos(1)

1.0

0.8 -

0.6 -

0.4 1

0.2 1

0.0 A

Seg
Sany
Sy,
s\
‘h ‘*’
“-—-—_'-'

N\
4 N EE NN NN NN NN NN NENE B ~NBN B N B

—1.5

—-1.0 -0.5 0.0 0.5

=
o

1.5

— tan(1)

Ax™ = arg min [Sin(x + Ax)]2 X arg min [sin(x) + cos(x)Ax]2 = —

Ax

Prerequisites: Gauss-Newton method

Ax

s1n(x)

cos(x)

1.0

0.8 -

0.6 -

0.4 1

0.2 1

0.0 A

A

initial point x

B BN BN BN B B OB W .
\

Sany
\
)
\
.h.
e —

Il B I = I = =
\

-*’
— -

—1.5

—-1.0

-0.5 0.0

1.5

— tan(x)

Ax™ = arg min [Sin(x + Ax)]2 X arg min [sin(x) + cos(x)Ax]2 = —

Ax

Prerequisites: Gauss-Newton method

Ax

s1n(x)

cos(x)

1.0

0.8 -

0.6 -

0.4 -

0.2 1

0.0 A

initial point

-
H I = E = E = =E = = =

BN O O N N N NN m
7
\

—-1.5

0.0 0.5 1.0

|
O -
Ul

—-1.0

1.5

— tan(x)

Prerequisites: Gauss-Newton method

Ax™ = arg min [Sin(x + Ax)]2 X arg min [sin(x) + cos(x)Ax]2 = — SIn() = — tan(x)
Ax Ax cos(x)

1.0

0.8 -

0.6 -

0.4 -

0.2 1

0.0 A

—-1.5 —-1.0 -0.5 0.0 0.5 1.0 1.5

Ax™ = arg min [Sin(x + Ax)]2 X arg min [sin(x) + cos(x)Ax]2 = —

Ax

Prerequisites: Gauss-Newton method

Ax

s1n(x)

cos(x)

1.0

0.8 -

0.6 -

0.4 -

0.2 -

0.0 -

-1.5

-1.0 —-0.5 0.0 0.5 1.0

1.5

— tan(x)

Prerequisites: Gauss-Newton method

Ax™ = arg min [sin(x + Ax)]2 X arg min [sin(x) + cos(x)Ax]2 = — SIn() = — tan(x)
Ax Ax cos(x)

Ax* = arg niin [f(x + Ax)] ’ X arg niin [f(x) + f’(x)Ax] ’

J(x)
—_ ' 10 \2 2 / 2 =
= arg nilxn F()“Ax” + 2 (x)Ax + f(x))

Hessian

Prerequisites: Gauss-Newton method

LT 2 Lo 2 sin(1
Ax™ = arg min [sm(l + Ax)] X arg min [sm(l) + cos(l)Ax] = —) = — tan(1)
Ax Ax cos(1)
1.0 ////
What don’t you like about this step? /
0.8 - : : :
Small gradient => too agressive stgp.
0.0 - ///// :
0.4 - /,// E
0.2 - ,/,’,// E
Y o R R :

—-1.5 -1.0 —0.5 0.0 0.5 1.0 1.5

Prerequisites: Gauss-Newton method

in(1
Ax™ = arg min [sin(l + Ax)]2 X arg min [sin(l) + cos(l)Ax]2 = — sin(l) = — tan(1)
Ax Ax cos(1)

1.0 7

0.8 -

0.6

0.4 -

0.2 -

il BEH B H = EH H HEH HEH EH EH SN lE SN B E BB B BN =B =
S

==
i
-
-
o=
=
-
‘—'d
~-
—__——

0.0 4 |~ ====——y¢

—-1.5 -1.0 —0.5 0.0 0.5 1.0 1.5

Prerequisites: Gauss-Newton method

in(1
Ax™ = arg min [sin(l + Ax)]2 X arg min [Sin(l) + cos(l)Ax]2 = — Sin(1) = —tan(1)
Ax Ax cos(1)

1.0 N

0.8 -
N Nt x=1

0.6
0.4 -
0.2 -

\\
Tan
\\
~~
‘~‘~ —
‘-~_—_——_—‘-———

0.0

i B B H H = =H = =H HEH = HEH S EHEH E E S N Il SN I I BB =B =B =
/

—-1.5 -1.0 —0.5 0.0 0.5 1.0 1.5

Ax™ = arg min [sin(l + Ax)]2 X arg min [Sin(l) + cos(l)Ax]2 = —

1.0

0.8 -

0.6

0.4 -

0.2 -

0.0

Ax

Prerequisites: Gauss-Newton method

Ax

sin(1)

cos(1)

~’~
oy
\\
~~
Rl
-~
‘-~_—_—

-I-T-----------

b=
)
fa=u}
_—‘-——

—-1.5

—-1.0

—0.5

0.0

0.5 1.0

1.5

= — tan(1)

Nt x=1

12

Prerequisites: Gauss-Newton method

in(1
Ax™ = arg min [sin(l + Ax)]2 X arg min [sin(l) + cos(l)Ax]2 = — sin(l) = — tan(1)
Ax Ax cos(1)

1.0 ’

0.8 -
0.6 %
0.4 y

0.2 A 3

-
-
d"
=
S=N
~~ ‘f’
-~ —
———————_—-—

0.0

\
il B H B = =H = = H = =HEH EH EH E BE S BBl SN I I BB =B =B =

—-1.5 -1.0 —0.5 0.0 0.5 1.0 1.5

Prerequisites: Gauss-Newton method

in(1
Ax™ = arg min [sin(l + Ax)]2 X arg min [sin(l) + cos(l)Ax]2 = — sin(l) = — tan(1)
Ax Ax cos(1)

1.0 ’

0.8 -

0.6

0.4 -

0.2 -

il BEH B H = = E E E EH E SN Il N B I BB =BH =N =
\

-
-
d"
=
S=N
~~ ‘f’
-~ —
———————_—-—

0.0

—-1.5 -1.0 —0.5 0.0 0.5 1.0 1.5

Ax* = arg min [sin(l + Ax)]2 X arg min [sin(l) + cos(l)Ax]2 = —

1.0

0.8 -

0.6

0.4 -

0.2 -

0.0

Ax

Prerequisites: Gauss-Newton method
sin(1)

Ax cos(1)

-
-
-
. -t
N =
\. [
*. ‘#
———__-

—-1.5

-1.0 —0.5 0.0 0.5 1.0 1.5

— tan(1)

15

Ax™ = arg min [sin(l + Ax)]2 X arg min [Sin(l) + cos(l)Ax]2 = —

1.0

0.8 -

0.6

0.4 -

0.2 -

0.0

Ax

Prerequisites: Gauss-Newton method

Ax

sin(1)
cos(1)

\\
\\
oy
~~
e

-

-~
o
-
-
-
-
#-"-
==
-
———-“

--*------

—-1.5

-1.0 —0.5 0.0 0.5

1.0 1.5

— tan(1)

16

Prerequisites: Gauss-Newton method

In(1
Ax™ = arg min [sin(l + Ax)]2 X arg min [sin(l) + cos(l)Ax]2 = — sm((l)) = — tan(1)
Ax COS

Ax
Let’s create a virtual function that always he fficiently high gradients

1.0 7

0.8 1
7/ Initial point x=1

0.6 \

-
Il I I N N N =N =N =]
o

04 N \\

0.2 - Mo 7

L.,
oo4 —T==__3

/
N\
B E N E N E N EE N E N E N =M

—-1.5 -1.0 —0.5 0.0 0.5 1.0 1.5

Prerequisites: Levenberg-Marguardt methoa

. . 2 . . 2 cos(x)sin(x
Ax™ = arg min [Sln(x + Ax)] + AAx* =~ argmin [sm(x) + cos(x)Ax] + AAX? = — (osn()
Ax Ax cos(x)? + A
I’ﬁ'v
1.0 ',I
,I

0.8 1 i
\\\\ ,,,’ :
o o? i
S ' i
0.6 - \\\ ,49{ :
RN Rt -
\\\ /’/’/ i
\\\ _ /’,// 1
0.4 - \'"‘~~~ ”,.--"" ,/// :
___________________ ’/, |
/’/ !
-7 |
//' 1
0.2 - T '
:
PPt I
'''''' 1
0.0 f I ===mm === =TT :
1
|

—1.5 —1.0 -0.5 0.0 0.5 1.0 1.5 18

1.0

0.8 -

0.6

0.4

0.2 A

0.0 A

Prerequisites: Levenberg-Marguardt methoa

Lo 2 Lo 2 cos(x)sin(x
Ax™ = arg min [Sln(x + Ax)] + AAx* =~ argmin [sm(x) + cos(x)Ax] + AAX? = — (osn()
Ax Ax cos(x)? + A
I’&v
,I
-4
-\\ : I,
\\\ i ,I
o i o?
. 1 '
\\ | ,//
\\\ i ,,///
o i Prote
\\\ i ’,///
\\\ | /’,//
s~\~ i ”,r RS
~ | ”,,-" P
________ I____‘_-"’ P

______________________________ ,

i

i

|
—1'.5 —1l.0 —6.5 O.IO 015 le 1.15 19

Prerequisites: Levenberg-Marguardt methoa

cos(x)sin(x)

Ax™ = arg min [Sin(x + Ax)] 7 + AAx* =~ argmin [sin(x) + cos(x)Ax] 7 + AAx* = —
Ax Ax cos(x)? + A

Y\
VA
vy

1.0 Y

0.8 -

0.6

0.4

0.2 A

0.0 A

—1.5 —1.0 -0.5 0.0 0.5 1.0 1.5 20

Prerequisites: Levenberg-Marguardt methoa

cos(x)sin(x)

Ax™ = arg min [Sin(x + Ax)] 7 + AAx* =~ argmin [sin(x) + cos(x)Ax] 7 + AAx* = —
Ax Ax cos(x)? + A

Y\
VA
vy

1.0 Y

0.8 -

0.6

0.4

0.2 A

0.0 A

—1.5 —1.0 -0.5 0.0 0.5 1.0 1.5 21

Prerequisites: Levenberg-Marguardt methoa

Ax* = arg min [Sin(x + Ax)] P IAR2 arg min [sin(x) + cos(x)Ax] P AAX = — cos()sin(x)
Ax Ax cos(x)? + A

0.6 i

0.0 A E

—1.5 —-1.0 -0.5

O
o

0.5 1.0 1.5 22

Prerequisites: Levenberg-Marguardt methoa

LT 2 LT 2 cos(x)sin(x)
Ax™ = arg min [Sln(x + Ax)] + AAx* =~ argmin [sm(x) + cos(x)Ax] + AAx* = —
Ax Ax cos(x)? + A
v\
VA
v
1.0 A
VA
A
VA
\
VA L
0.8 i
|
|
|
|
0.6 - :
|
|
|
|
0.4 - i
|
|
|
|
0.2 - :
|
|
|
|
0.0 A '
|
| I | ! | | T
~1.5 ~1.0 -0.5 0.0 0.5 1.0 1.5 03

Prerequisites: Gauss-Newton method

s1n(x)

Ax™ = arg min [sin(x + Ax)]2 X arg min [sin(x) + cos(x)Ax]2 = — = — tan(x)

Ax Ax cos(x)

Ax* = arg niin [f(x + Ax)] . X arg Hiin [f(x) + f’(x)Ax] ’

)

= argmin fi(x)*Ax” + 2f (x)Ax + f(x)* =

Ax ' (x)

Hessian

Prerequisites: Levenberg-Marqguardt methoa

Ax™ = arg niin [f(x + Ax)] ’ ~ arg niin [f(x) + f’(x)Ax] 7 + AAX?

= argmin (f(x) + 1)?Ax? + 2f (x)Ax + f(x)* =
' Hessian

Q)

f(x)*+ 2

24

Let's try it on 2D factorgraph problem

Fd
—&— LM Path
* True Minimum

2.0 -

' 1.3 1

O Xl :.][/4 Xé: 1 1.0 1

AX = arg min (sinx1)2 + (Xl + 1 — X2)2 -

= arg min X = arg min sin(z/4)] + [COS(]TM) 0] . [Axll :
X1.X) X1+1_X2) AX n/ld+1—-1 | —1 AXQ 2
f...residuals J... jacolg{an
— argmin AX"JTJAX + 26TJAx + £ = — JTHHITE = [1-5 ‘1] . [‘1°28] = [—]
AX —1 0 0.78 —0.2

DITIAX+2JF=0 = J JAx=-J'f = Ax=—J'DJ'f

Let's try it on 2D factorgraph problem

Fd
—&— LM Path
* True Minimum

2 ' 5 4
2.0 -

-

O Xl :.][/4 Xé: 1 1.0 1

AX = arg min (sinx1)2 + (Xl + 1 — X2)2 -

= arg min X = arg min sn(z/4)] + [COS(]TM) 0] . [AX1] 2
x.x ||X;+1-=X; 2 Ax n/ld+1—-1 | —1 AX,)
f...residuals J... jacolg{an
= arg min AX"JTJAX + 2£TJAx + £ = — JT)HTITE = [1-5 —1] . [—1-28] — [-1]
AX —1 0 0.78 —0.2

DITIAX+2JF=0 = J JAx=-J'f = Ax=—J'DJ'f

Let's try it on 2D factorgraph problem

Fd
—&— LM Path
* True Minimum

2 ' 5 4
2.0 -

-

O Xl :.][/4 Xé: 1 1.0 1

AX = arg min (sinx1)2 + (Xl + 1 — X2)2 -

= arg min X = arg min sn(z/4)] + [COS(]TM) 0] . [AX1] 2
x.x ||X;+1-=X; 2 Ax n/ld+1—-1 | —1 AX,)
f...residuals J... jacolg{an
= arg min AX"JTJAX + 2£TJAx + £ = — JT)HTITE = [1-5 —1] . [—1-28] — [-1]
AX —1 0 0.78 —0.2

DITIAX+2JF=0 = J JAx=-J'f = Ax=—J'DJ'f

graph-SLAM

X, \iin... estimated robot poses
........ estimated rel. marker position

........ known abs. marker position

abs

z™... marker measurements

| SR local coordinate frame

X ... ground truth pointcloud map
........... ground truth trajectory

28

graph-SLAM formulations

GPS odometry marker(s)
x* = arg mm Z |x, — zgpSHEgps + Z |W2r(X,, 1, X,) — z"HZV + Z |w2r(m/, x,) — zH;
X0 .
Vol Driors motion model loop-closures

X

+ 2 1%, = XN+ QN8 u) = XI5 + Z |w2r(xg, X1,
[

Optimization

x* = arg min Z X, — zgpSHngs + Z |W2r(x,, ;,X,) — z"H%y + Z |w2r(my, X)) — zHém
[

Xo XT

[
i Z 1%, = XN+ Q8 u) = x5 + Z |l w2r(xq. xp) 112,

[
£(x) 2 n-unknowns, m- reS|duaIs->f dim?
— argmin ||f(x)||* where f(x): I

S (x)

X

= arg min Z Hfl-(X)HZ = arg min

INX) || vector of residuals

n

Alternative formulation: argmin ||f(x, + Ax)||* where X; is an initial solution

AX

~ arg n&in If(x) +f (xpAX)||* = — [f' K] f(x;)

R arg H&in Lf(xp) +f (x)AX)||* + 4[| Ax]| = = [f'(xp) + AL]* f(x;)

—_ |

GN: X1 = X — [/ XI7 f(x;)

n_, RM

mxn

subject to ||Ax]|* < ¢ ___ various adjustements EME X = X = [F/(xp) + AT f(x,)

TR:
scipy.optimize.least_squares(fun, x0, jac, method=‘Im’)

Can we get more efficient solution®?

e_ | sin(z/4)]
r/4+1-1
] = [COS(]Z'/4) ()] -
—1 1|
0 X1=.72'/4 Xézl H — [1.5 —1]
-1 1
AX = arg min (sinx1)2 + (Xl + 1 — X2)2

-0 1 1
—-1.0 -0.5 0.0
X1,X9

2JTJAX + 2]t =0 = J'JAx = - J'f = A== iguem="T"T

\JTJJ AX — ¥_*ITfJ gR _ [12 —082] = RTRAX = g = RTy _

= o 0 0.58 y O
. 1.4 —-0.7 o
R — = RAX=v= v =
At convergence point [0 07] y=1J [_0_2]

It converges to global optimum after 2 iterations

Can we get more efficient solution®?

| £ sin(z/4)
| sin(x))|| X + 1 =] g4 +1-=1
] [COS(]Z'/4) 0
_ —1 |
X, =0 Xp =] g 12 -1
-1 1

AX = arg min (sinx1)2 + (Xl + 1 — Xz)
X1,X2

2JTJAX + 2]t =0 = J'JAx = - J'f = A== iguem="T"T

\JTJJ AX — ¥_*ITfJ gR _ [12 —082] = RTRAX = g = RTy _

I o 0 0.58 y
. 1.4 —0.7
R =
At convergence point [0 07]

|

3.0

-0 | |
—1.0 -0.5 0.0

> RAx=y=>y= [_I'O]

L et's assume that new measurement has been recelved

Can we get more efficient solution®?

[sin(x)[| %+ 1 —=x%,] 1%, + 1 = x5

Ax = argmin (sinx;)” + (x, + 1 -x,)°

2TIAX+2JE=0 = JJAx =~ JTf = A ==t gae=TT'T_= [__012]

JTJ AX = ¥—.!Tfj Ch—;lyR — [1(')2 _00522] — RTRAX =g = RTy =g =y = [
H 5 | y
At convergence point R = [1(')4 _00&7] > RAX =y=> y = [

L et's assume that new measurement has been recelved

Can we get more efficient solution®?

[sin(x)[lIx; +1=x,] 1%y + 1 = x5
X, =0 X; =1 X, — 3
1 ’ Old:
AX = arg min (sinxl)2 + (Xl + 1 - X2)2+<X3 + 1 — X2)2 R = [1(')4 _00&7]
0
~ [l4 =07 O Givens 14 =07 0 | =2>R'y=g=>y=1 08
R=10 07 0 — R=]10 12 -038 —1.7
0 1 =1 0 0 —=0.6

0
> RAX =y=> Ax = [O]
—1

| can ignore the old stuff and solve it again but there is more efficient way

Can we get more efficient solution®?

| sin(x)|| I1x; + 1 —x,|| X5 + 1 — X5]|
X, =0 X;:1 X:= 3
1 3 Old.:
AX = arg min (sinx1)2 + (Xl + 1 — X2)2+(X3 + 1 — X2)2 R = [1(')4 _00&7]
0
~ [l4 =07 O Givens 14 =07 0 | =2>R'y=g=>y=1 08
R=10 07 0 — R=]10 12 -038 —1.7
0 1 —1 0 0 —0.6

0
> RAX =y=> Ax = [O]
—1

| can ignore the old stuff and solve it again but there is more efficient way

45

40 -

35 -

30 -

25 -

20 -

15 -

10 -

0

Optimization in SE(2) manifold trajectory length 21

absolute marker
relative marker
odometry

some optimised poses

some ground truth poses
(not used In optimisation)

noise:
o odom 0.2m/0.2rad

o markers 0.3m / 0.3rad

45

40 -

35 -

30 -

25 -

20 -

15 -

10 -

Optimization in SE(2) manifold trajectory length 21

.“
»
LI
. " L
" .

—-20 -10

absolute marker
relative marker
odometry

some optimised poses

some ground truth poses
(not used In optimisation)

noise:
o odom 0.2m/0.2rad

o markers 0.3m / 0.3rad

45

40 -

35 -

30 -

25 -

20 -

15 -

10 -

Optimization in SE(2) manifold trajectory length 21

absolute marker
relative marker
odometry

some optimised poses

some ground truth poses
(not used In optimisation)

noise:
o odom 0.2m/0.2rad

o markers 0.3m / 0.3rad

-20 -10

45

40 -

35 -

30 -

25 -

20 -

15 -

10 -

Optimization in SE(2) manifold trajectory length 21

absolute marker
relative marker
odometry

some optimised poses

some ground truth poses
(not used In optimisation)

noise:
o odom 0.2m/0.2rad

o markers 0.3m / 0.3rad

-20 -10

45

40 -

35 -

30 -

25 -

20 -

15 -

10 -

Optimization in SE(2) manifold trajectory length 21

absolute marker
relative marker
odometry

some optimised poses

some ground truth poses
(not used In optimisation)

noise:
o odom 0.2m/0.2rad

o markers 0.3m / 0.3rad

-20 -10

Optimization in SE(2) manifold trajectory length 101

What will break 1t?77?7

Optimization in SE(2) manifold trajectory length 101

odom/marker ini

noise 0.5
c odom=0.2
Cc ma=1

C mr=1 adversarial ini

60

50 -

40 -

> 30 -

20 -

10 -

50 -

PPy »
o o -
18 S
:lfzo . wr ".(‘\\‘O ‘\ \
.::s" . “.0’ L? ..,.‘.‘_ .‘;“," \\ .
> 30 1 Y e g e e
...‘..‘ ::' o .".o * ".‘\. \‘o. g y
v .
L]
L

<
' . - . - ¢ v
* -

& ® » - - . .

o] &] & S0 e @
40 - o - ~ . v - ° .
Ead * * L

Po . ¢ \ .

o . . ¢ ¢ -
.

~40

-30

-20 -10 0 10

40

Optimization in SE(2) manifold trajectory length 401
successive optimization with iIncoming measurements

noise markers = 0.5 noise odom = 0.1

50 -

40 - -
> 30 - ;é?

20 -

10 -

—40 —-30 —-20 —-10 30 40

Optimization
Karel, you don't know

how to code stuft properly

scipy.optimize.least_squares(fun, x0, jac, methoc

Optimization time [S]

‘ .

Martin, then show me how
you gonna do it, huh?

5 S M ((What about 50ms?

HW4 tactorgraph
3D marker(s)

|CP odometry
. | M2
= arg min Z |W2r(x,,1,X,) — 2,7 15, J+ Z Iw2r(m;, x,) Zt]HE’:‘j
X;...X : t t,]
mll...mTJ rlCP(Xt, X, 1) J rm(xt, mj)

@) @)

HW4 tactorgraph
3D marker()

|ICP odometry

= arg min
Xi...Xp
m;...m;

iC
r'P(x, X,

1)

r'P(Xy, X,)

HW4 tactorgraph
3D marker(s)

1Y)
t) o Zt]HZIt””]

|CP odometry

= arg min
Xlo ° .XT
m;...m;

IC
r'P(x, X,

1)

o m
+cos 6, - (mi — x,) +sin6, - (m’ —y,) — z,’

rm(Xt’ m]) = | —sin Ht . (m]X o xl‘) + COS 9 . (my — yt) — Ztmj’y
v, m;,0
m —0,—2z"
+COS Qt . ('xt+1 — xt) + sin Qt . (yl‘+1 yt) _ lcpx
rHP(Xpy Xpp1) = | =8in6; - (X1 = X) + €086, (Vg =) — 4P

_ . icp,o
9t+1 Ht t

: m.x
+COS Ht - (m]gc — xt) 4+ sin Qt : (m]y _ yt) — 2z ;

rM(x,m) = | —sin6,- (mj —x,) +cos 6, - (m) —y,) - 7"
mje — 0, - szjﬁ
0 0 p
0Xt ayt aHt
arm(xp m]) — 05 et —sin ef —sin Ht . (m]x — xt) + COS 6’t : (m]y — yt)
Jy = ox, = | +sin6¢), —cos6, —cos6,-(m—x,)—sinb, - (m’ —y,)
0 0 1

0 0 0

om?* Y 0
j am] dm]

cosf, smmf, U

or'"(x,, m)

3 —sin6, cos@, 0
H 0 0 I

HW4 tactorgraph
3D marker(s)

1Y)
t) o Zt]HZIt””]

|CP odometry

= arg min
Xlo ° .XT
m;...m;

IC
r'P(x, X,

1)

o m
+cos 6, - (mi — x,) +sin6, - (m’ —y,) — z,’

rm(Xt’ m]) = | —sin Ht . (m]X o xl‘) + COS 9 . (my — yt) — Ztmj’y
v, m;,0
m —0,—2z"
+COS Qt . ('xt+1 — xt) + sin Qt . (yl‘+1 yt) _ lcpx
rHP(Xpy Xpp1) = | =8in6; - (X1 = X) + €086, (Vg =) — 4P

_ . icp,o
9t+1 Ht t

ICp,X

+cos b, - (x 1 —x)+smb, - (y, 1 —y)—z

riP(x,, X,y 1) = | —=smnb, - (x, ., —x)+coslO -y, —y) — z/PY
Orp1 — 0, — ZtiCp’e
0 0 0
0X, oy, 00,
N —cos, —sin@, —sinb -(x,;—x)+cosO, -, —Y)
iC or p(Xt’ Xt+1) _ - :
J.r = = | +sinf, —cos#, —cosO,-(x,;—x)—sinb, - (v, -y,
f 0X,
0 0 —1
0 0 0

0X14 1 0Vr41 00,4

3picp cosf, smmf,
JP = X X) —sinf, cosf, O
. aXH—l () O 1

Optimization

scipy.optimize.least_squares(fun, x0, jac, method=‘Im’)

Optimization time grows fast with:

o problem dimensionality (e.g. DOFxT+M)
o number of residual terms (e.g. number of measurements)

In practise you introduce simplifications:

O

use sparse matrix to represent to represent inherently sparse Jacobian
optimize only relevant sub-graph when new measurement comes (Givens rot.)
pre-integrate some factor (e.g. sum up odometry measurements over 0.5s)
sparsification of old factor graph

to tackle the real-time requirements frontend and backend optimizers used
general FG solvers such as gtsam with ISAM/ISAMZ2 optimizers available:

Let's try it on 2D tactorgraph problem

|| sin(x;)|| Ix; + 1 =x5] £ sin(z/4)
wld+1-1| =7
[COS(]Z'/4) O]
J =
: : —1 1] s
0 X, = /4 X,=1
AX = arg min (sin X1)2 + (Xl + 1 — X2>2

import gtsam
initial.insert(x1l, np.pi/4)
initial.insert(x2, 1.0)

graph.add(SinFactor(xl, nolise model))
graph.add(gtsam.BetweenFactorDouble(xl, x2, 1.0, noilse model))

Update iSAM2 and optimize incrementally
lsam.update(graph, 1nitial)
result = 1sam.calculateEstimate()

