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1 Notation

H . . . the empty set [1]
exp U . . . the set of all subsets of set U [1]
U ˆ V . . . Cartesian product of sets U and V [1]
Z . . . whole numbers [1]
Zě0 . . . non-negative Z [2] (i.e. 0, 1, 2, . . .)
Q . . . rational numbers [3]
R . . . real numbers [3]
i . . . imaginary unit [3]
pS,`, q . . . space of geometric scalars
A . . . affine space (space of geometric vectors)
pAo,‘,dq . . . space of geometric vectors bound to point o
pV,‘,dq . . . space of free vectors
A2 . . . real affine plane
A3 . . . three-dimensional real affine space
P2 . . . real projective plane
P3 . . . three-dimensional real projective space
~x . . . vector
A . . . matrix
Ai j . . . i j element of A
AJ . . . transpose of A
A: . . . conjugate transpose of A
|A| . . . determinant of A
I . . . identity matrix
R . . . rotation matrix
b . . . Kronecker product of matrices

β “ r~b1,~b2,~b3s . . . basis (an ordered triple of independent generator vectors)
β‹, β̄ . . . the dual basis to basis β
~xβ . . . column matrix of coordinates of ~x w.r.t. the basis β
~x ¨ ~y . . . Euclidean scalar product of ~x and ~y (~x ¨ ~y “ ~xJ

β
~yβ in an

orthonormal basis β)
~x ˆ ~y . . . cross (vector) product of ~x and ~y
r~xsˆ . . . the matrix such that r~xsˆ ~y “ ~x ˆ ~y
}~x} . . . Euclidean norm of ~x (}~x} “

?
~x ¨ ~x)

orthogonal vectors . . . mutually perpendicular vectors
equi-orthogonal vectors . . . orthogonal vectors of equal length
orthonormal vectors . . . unit orthogonal vectors
orthogonal matrix . . . matrix with non-zero equi-orthogonal columns and rows
orthonormal matrix . . . matrix with orthonormal columns and rows
P ˝ l . . . point P is incident to line l
P _ Q . . . line(s) incident to points P and Q
k ^ l . . . point(s) incident to lines k and l
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2 Linear algebra

We rely on linear algebra [4, 5, 6, 7, 8, 9]. We recommend excellent text books [7, 4] for acquiring basic
as well as more advanced elements of the topic. Monograph [5] provides a number of examples and
applications and provides a link to numerical and computational aspects of linear algebra. We will
next review the most crucial topics needed in this text.

2.1 Change of coordinates induced by the change of basis

Let us discuss the relationship between the coordinates of a vector in a linear space, which is induced
by passing from one basis to another. We shall derive the relationship between the coordinates in a
three-dimensional linear space over real numbers, which is the most important when modeling the
geometry around us. The formulas for all other n-dimensional spaces are obtained by passing from
3 to n.

§1 Coordinates Let us consider an ordered basis β “
”

~b1
~b2
~b3

ı

of a three-dimensional vector

space V3 over scalarsR. A vector ~v P V3 is uniquely expressed as a linear combination of basic vectors

of V3 by its coordinates x, y, z P R, i.e. ~v “ x ~b1 ` y ~b2 ` z~b3, and can be represented as an ordered

triple of coordinates, i.e. as ~vβ “
“

x y z
‰J

.
We see that an ordered triple of scalars can be understood as a triple of coordinates of a vector

in V3 w.r.t. a basis of V3. However, at the same time, the set of ordered triples
“

x y z
‰J

is

also a three-dimensional coordinate linear space R3 over R with
“

x1 y1 z1

‰J `
“

x2 y2 z2

‰J “
“

x1 ` x2 y1 ` y2 z1 ` z2

‰J
and s

“

x y z
‰J “

“

s x s y s z
‰J

for s P R. Moreover, the ordered
triple of the following three particular coordinate vectors

σ “

»

–

»

–

1
0
0

fi

fl

»

–

0
1
0

fi

fl

»

–

0
0
1

fi

fl

fi

fl (2.1)

forms an ordered basis of R3, the standard basis, and therefore a vector ~v “
“

x y z
‰J

is represented

by ~vσ “
“

x y z
‰J

w.r.t. the standard basis inR3. It is noticeable that the vector ~v and the coordinate
vector ~vσ of its coordinates w.r.t. the standard basis of R3, are identical.

§2 Two bases Having two ordered bases β “
”

~b1
~b2
~b3

ı

and β1 “
”

~b 1
1
~b 1

2
~b 1

3

ı

leads to express-

ing one vector ~x in two ways as ~x “ x ~b1 ` y ~b2 ` z ~b3 and ~x “ x1~b 1
1

` y1~b 1
2

` z1~b 1
3
. The vectors of the

basis β can also be expressed in the basis β1 using their coordinates. Let us introduce

~b1 “ a11
~b 1

1 ` a21
~b 1

2 ` a31
~b 1

3

~b2 “ a12
~b 1

1 ` a22
~b 1

2 ` a32
~b 1

3 (2.2)

~b3 “ a13
~b 1

1 ` a23
~b 1

2 ` a33
~b 1

3

2
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§3 Change of coordinates We will next use the above equations to relate the coordinates of ~x w.r.t.
the basis β to the coordinates of ~x w.r.t. the basis β1

~x “ x ~b1 ` y ~b2 ` z ~b3

“ x pa11
~b 1

1 ` a21
~b 1

2 ` a31
~b 1

3q ` y pa12
~b 1

1 ` a22
~b 1

2 ` a32
~b 1

3q ` z pa13
~b 1

1 ` a23
~b 1

2 ` a33
~b 1

3q
“ pa11 x ` a12 y ` a13 zq~b 1

1 ` pa21 x ` a22 y ` a23 zq~b 1
2 ` pa31 x ` a32 y ` a33 zq~b 1

3

“ x1~b 1
1 ` y1~b 1

2 ` z1~b 1
3 (2.3)

Since coordinates are unique, we get

x1 “ a11 x ` a12 y ` a13 z (2.4)

y1 “ a21 x ` a22 y ` a23 z (2.5)

z1 “ a31 x ` a32 y ` a33 z (2.6)

Coordinate vectors ~xβ and ~xβ 1 are thus related by the following matrix multiplication

»

–

x1

y1

z1

fi

fl “

»

–

a11 a12 a13

a21 a22 a23

a31 a32 a33

fi

fl

»

–

x
y
z

fi

fl (2.7)

which we concisely write as

~xβ1 “ A ~xβ (2.8)

The columns of matrix A can be viewed as vectors of coordinates of basic vectors, ~b1,~b2,~b3 of β in the
basis β1

A “

»

—

–

| | |
~b1β1

~b2β1
~b3β1

| | |

fi

ffi

fl
(2.9)

and the matrix multiplication can be interpreted as a linear combination of the columns of A by
coordinates of ~x w.r.t. β

~xβ1 “ x~b1β1
` y~b2β1 ` z~b3β1 (2.10)

Matrix A plays such an important role here that it deserves its own name. Matrix A is very often called
the change of basis matrix from basis β to β1 or the transition matrix from basis β to basis β1 [5, 10] since it
can be used to pass from coordinates w.r.t. β to coordinates w.r.t. β1 by Equation 2.8.

However, literature [6, 11] calls A the change of basis matrix from basis β1 to β, i.e. it (seemingly
illogically) swaps the bases. This choice is motivated by the fact that A relates vectors of β and vectors
of β1 by Equation 2.2 as

”

~b1
~b2
~b3

ı

“
”

a11
~b 1

1 ` a21
~b 1

2 ` a31
~b 1

3 a12
~b 1

1 ` a22
~b 1

2 ` a32
~b 1

3

a13
~b 1

1 ` a23
~b 1

2 ` a33
~b 1

3

ı

(2.11)

”

~b1
~b2
~b3

ı

“
”

~b 1
1
~b 1

2
~b 1

3

ı

»

–

a11 a12 a13

a21 a22 a23

a31 a32 a33

fi

fl (2.12)

and therefore giving

”

~b1
~b2
~b3

ı

“
”

~b 1
1
~b 1

2
~b 1

3

ı

A (2.13)

3
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or equivalently

”

~b 1
1
~b 1

2
~b 1

3

ı

“
”

~b1
~b2
~b3

ı

A´1 (2.14)

where the multiplication of a row of column vectors by a matrix from the right in Equation 2.13 has
the meaning given by Equation 2.11 above. Yet another variation of the naming appeared in [8, 9]
where A´1 was named the change of basis matrix from basis β to β1.

We have to conclude that the meaning associated with the change of basis matrix varies in the literature
and hence we will avoid this confusing name and talk about A as about the matrix transforming
coordinates of a vector from basis β to basis β1.

There is the following interesting variation of Equation 2.13

»

—

–

~b 1
1
~b 1

2
~b 1

3

fi

ffi

fl
“ A´J

»

—

–

~b1

~b2

~b3

fi

ffi

fl
(2.15)

where the basic vectors of β and β1 are understood as elements of column vectors. For instance, vector
~b 1

1
is obtained as

~b 1
1 “ a‹

11
~b1 ` a‹

12
~b2 ` a‹

13
~b3 (2.16)

where ra‹
11
, a‹

12
, a‹

13
s is the first row of A´J.

§4 Example We demonstrate the relationship between vectors and bases on a concrete example.
Consider two bases α and β represented by coordinate vectors, which we write into matrices

α “
“

~a1 ~a2 ~a3

‰

“

»

–

1 1 0
0 1 1
0 0 1

fi

fl (2.17)

β “
”

~b1
~b2
~b3

ı

“

»

–

1 1 1
0 0 1
0 1 1

fi

fl , (2.18)

and a vector ~x with coordinates w.r.t. the basis α

~xα “

»

–

1
1
1

fi

fl (2.19)

We see that basic vectors of α can be obtained as the following linear combinations of basic vectors of
β

~a1 “ `1~b1 ` 0~b2 ` 0~b3 (2.20)

~a2 “ `1~b1 ´ 1~b2 ` 1~b3 (2.21)

~a3 “ ´1~b1 ` 0~b2 ` 1~b3 (2.22)

or equivalently

“

~a1 ~a2 ~a3

‰

“
”

~b1
~b2
~b3

ı

»

–

1 1 ´1
0 ´1 0
0 1 1

fi

fl “
”

~b1
~b2
~b3

ı

A (2.23)

4



T Pajdla. Elements of Geometry for Robotics 2025-9-20 (pajdla@cvut.cz)

Coordinates of ~x w.r.t. β are hence obtained as

~xβ “ A ~xα, A “

»

–

1 1 ´1
0 ´1 0
0 1 1

fi

fl (2.24)

»

–

1
´1

2

fi

fl “

»

–

1 1 ´1
0 ´1 0
0 1 1

fi

fl

»

–

1
1
1

fi

fl (2.25)

We see that

α “ β A (2.26)
»

–

1 1 0
0 1 1
0 0 1

fi

fl “

»

–

1 1 1
0 0 1
0 1 1

fi

fl

»

–

1 1 ´1
0 ´1 0
0 1 1

fi

fl (2.27)

The following questions arises: When are the coordinates of a vector ~x (Equation 2.8) and the basic
vectors themselves (Equation 2.15) transformed in the same way? In other words, when A “ A´J. We
shall give the answer to this question later in paragraph 2.4.

2.2 Determinant

Determinat [4] of a matrix A, denoted by |A|, is a very interesting and useful concept. It can be, for
instance, used to check the linear independence of a set of vectors or to define an orientation of the
space.

2.2.1 Permutations

A permutation [4] π on the set rns“ t1, . . . ,nu of integers is a one-to-one function from rns onto rns.
The identity permutation will be denoted by ǫ, i.e. ǫpiq “ i for all i P rns .

§1 Composition of permutations Let σ and π be two permutations on rns. Then, their composi-
tion, i.e. πpσq, is also a permutation on rns since a composition of two one-to-one onto functions is a
one-to-one onto function. We see that if πpσpiqq “ πpσp jqq, then σpiq “ σp jq and therefore i “ j since π
and σ are one-to-one functions. On the other hand, if i “ j, then πpσpiqq “ πpσp jqq. To simplify the
notation when composing a large number of permutations, we will sometimes write πσ for the com-
position πpσq and πk for the sequence of k compositions of π. For instance πpπpiqq “ ππpiq “ π2piq.
Let us not forget that πσ ‰ σπ in general.

Let us next show that every permutation can be written as a composition of some simple permu-
tations. We first define particularly simple permutations.

§2 Cycles Take i P rns and look at the values in the sequence ri, πpiq, π2piq, . . .s. Since the range of
π has n values, there must be 1 ď j ď m ď n such that π jpiq “ πmpiq. Hence ǫ “ pπ jpiqq´1pπmpiqq “
πm´ jpiq. Let k be the smallest number among all such numbers m ´ j. Then, the sequence cpiq “
ri, πpiq, . . . , πk´1piqs has pairwise distinct elements. We can now define a new permutation πcpiq as
follows. If j P cpiq, then πcpiqp jq “ πp jq and if j P rns but j R c, then πcpiqp jq “ j. Now, if k ě 2,
then permutation πcpiq is called the cycle of π generated by i. We could at this point also include the
permutations for k “ 1, which are equal to the identity ǫ, but then we would loose the nice property of
unique decomposition of permutations, which are not identities, into a composition of their disjoint
cycles. Notice that when j P cpiq, then πcp jq “ πcpiq, i.e. although sequences cpiq and cp jq are not the
same, functions πcp jq and πcpiq are equal. We say that πc is a cycle of π, or in short a cycle, when πc

5
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is a cycle of π generated by some i P rns. A cycle πc of length k can be represented as a sequence of
numbers c “ ri1, i2, . . . , iks, such that ip jmod k ` 1q “ πcpi jq. To be economical, this representation does
not list the fixed elements of πc, i.e. those for which πcpiq “ i.

§3 Transpositions A shortest cycle, which is of length two, is called a transposition.
It is important to notice that every cycle can be written as a composition of transpositions. All

shortest cycles are transpositions. Consider a cycle of length k ` 1 represented by the sequence
ck`1 “ ri1, i2, . . . , ik, ik`1s and the cycle ck “ ri1, i2, . . . , iks of length k and the transposition t “ ri1, ik`1s.
We see that πck`1

“ πtpπck
q. Thus, by the principle of mathematical induction [1], every cycle can be

written as a composition of transpositions.
There are many ways how to write a cycle as a composition of transpositions. A particularly useful

way is as follows. All shortest cycles are transpositions, which can be represented by ri1, i2s for some
i1, i2 P rns. Consider a cycle of length k ` 1 represented by the sequence ck`1 “ ri1, i2, . . . , ik, ik`1s and
the cycle ck “ ri1, i2, . . . , iks of length k and the transposition t “ rik, ik`1s. We see that πck`1

“ πck
pπtq.

Thus, by the principle of mathematical induction [1] a cycle πri1,i2,...,iks can be written as a composition
of transpositions πri1,i2,...,iks “ πri1,i2s πri2,i3s ¨ ¨ ¨πrik´2,ik´1s πrik´1,iks for every k.

§4 Decomposition of a permutation into disjoint cycles Let us now show that every permuta-
tion π, which is not the identity, can be uniquely written as a composition of cycles of π and thus
also as a composition of permutations of π. We introduce the equivalence relation [1] ”π on rns by
i ”π j when πcpiq “ πcp jq. This equivalence relation partitions [1] rns uniquely into 1 ď m ď n disjoint
equivalence classes. We distinguish two types of the classes. There are classes of the size equal to
one, which correspond to ǫ, and there are classes of the size larger than one, which are cycles. Let
C be the set of k ď m classes ci, i “ 1 . . . , k corresponding to cycles of the size |ci| ě 2, which are
uniquely represented by increasing sequences ci of integres. The set C is empty when π is the identity.
Otherwise C is non-empty and we claim that

π “ πc1
πc2 ¨ ¨ ¨πck

(2.28)

To prove this, we have to show that the function on the left is equal to the function on the right. First,
j P rns is exactly in one of the equivalence classes. If it is in the equivalence class corresponding to
ǫ, then it is in no ci and therefore it is mapped by all πci

to itself, i.e. πci
p jq “ j for all 1 ď i ď k.

Therefore, πc1
πc2 ¨ ¨ ¨πck

p jq “ j “ πp jq. If j is in a ci, then πci
p jq “ πp jq and πcmp jq “ j for all m ‰ i

Thus, πc1
πc2 ¨ ¨ ¨πck

p jq “ πci
p jq “ πp jq. Notice that since ci X c j “ H, we have here πci

πc j
“ πc j

πci
for

all 1 ď i, j ď k and thus all πci
commute. We see that every permutation π ‰ ǫ can be written as a

unique composition of disjoint cycles. The term “disjoint” is related to the fact that the sequences
representing the cycles are disjoint.

§5 Decomposition of a permutation into transpositions Every permutation, which is not the
identity, can be written as a composition of cycles. Every cycle can be written as a composition of
transpositions. Therefore, every permutation, which is not the identity, can be written as a composi-
tion of transpositions. Since ǫ “ τ τ for every transposition, ǫ can also be written as a composition
of transpositions. Hence, we can say that any permutation can be written as a composition of
transpositions.

There are many ways how to compose a cycle from transpositions and there are many ways how
to write ǫ using transpositions, and therefore the decomposition of a permutation into transpositions
is not unique.

§6 Sign of a permutation We will now introduce another important concept related to permuta-
tions. Sign, sgnpπq, of a permutation π is defined as

sgnpπq “ p´1qNpπq (2.29)

6
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where Npπq is equal to the number of inversions in π, i.e. the number of pairs ri, js such that i, j P rns,
i ă j and πpiq ą πp jq.

§7 Hierarchy of permutations Consider a partition [1] of rns into two subsets I, J of rns, i.e.
rns “ I Y J and I X J “ H. Let |I| “ k and |J| “ m. Thus k ` m “ n.

Let us next study the set Srns of all permutations on rns and its relation to the sets SI of all
permutations of set I and SJ of all permutations of set J.

Let us use the following notation πpIq “ tπpiq | i P Iu for a permutation π and a set of integers I.
We introduce the equivalence relation „ on Srns by π „ σ for π, σ P Srns when πpIq “ σpIq. This
equivalence relation partitions Srns into the set E of (disjoint) equivalence classes.

As designed a permutation π P Π is a composition of three permutations, π “ πIpπJpπIJqq, where
πI permutes I, πJ permutes J and πIJ maps I onto IΠ and J onto JΠ such that for all i, j P I πIJpiq ă
πIJp jq ô i ă j and for all i, j P J πIJpiq ă πIJp jq.

Let us see that |E| “
`

n
k

˘

. A member Π of E contains all one-to-one functions from rns onto rns that
map I onto a fixed set IΠ of size k chosen out of rns. There are

`

n
k

˘

sets IΠ of size k. We further claim
that |Π| “ k! pn ´ kq!. An equivalence classΠ contains all one-to-one functions that map I onto IΠ and
J onto JΠ “ rnszIΠ. There are k! pn ´ kq! such functions. Thus, all equivalence classes in E contain the
same number k! pn ´ kq! of functions and we see that

`

n
k

˘

k! pn ´ kq! “ n!, which is the size of Srns.
exchanges some elements between I and J. Consider that every permutation π can be decomposed

into a composition of disjoint cycles

π “ pπI
1π

I
2 ¨ ¨ ¨πI

pqpπIJ
1
πIJ

2
¨ ¨ ¨πIJ

q qpπJ
1
πJ

2
¨ ¨ ¨πJ

rq (2.30)

for some integers p, q, r ě 0 and cycles πI
i
, i “ 1, . . . , p that keep J fixed, cycles πJ

i
, i “ 1, . . . , q that keep

I fixed, and cycles πIJ
i

, i “ 1, . . . , r that map at least one element from I to J and at least one element
from J to I.

Now, take a cycle πIJ, which exchanges some elements between I and J. We claim that the number
of exchanges between I and J induced by cycle πIJ is always even. Let us write πIJ as a sequence of
k transpositions πIJ “ τri1,i2sτri2,i3s ¨ ¨ ¨ τrik´1,iks. Let us start with a singleton set I1 “ tiu. Then, there are
exactly two transpositions τri´1,is, τri,i`1s from J to I and back. Now, let there be Ik with k exchanges
and add one more element j to Ik to get Ik`1. Then, three possibilities may arrise: (1) j ´ 1 and j ` 1 are
in Ik and then two exchanges are removed, (2) exactly one of j ´ 1, j ` 1 is in Ik and then on exchage
is added and one removed, i.e. the number of echanges remains the same, (3) none of j ´ 1, j ` 1 is
in Ik and then two exhanges are added. In all cases, the number of exchanges is changed by an even
number. Since the number of exchanges in I1 is even, the number of exchanges in Ik is even for all
integers k by the principle of mathematical induction [1].
πIpiq “ πpiq for all i P I and πIpiq “ i for i P J and πJpiq “ πpiq for all i P J and πJpiq “ i for i P I.

Functions πI, πJ commute since I and J are disjoint. Clearly, we see that sgnpπq “ sgnpπIq sgnpπJq.

2.2.2 Determinant

Let Sn be the set of all permutations on rns and A be an n ˆ n matrix. Then, determinant |A| of A is
defined by the formula

|A| “
ÿ

πPSn

sgnpπq A1,πp1q A2,πp2q ¨ ¨ ¨ An,πpnq (2.31)

Notice that for every π P Sn and for j P rns there is exactly one i P rns such that j “ πpiq. Hence

tr1, πp1qs, r2, πp2qs, . . . , rn, πpnqsu “
 

rπ´1p1q, 1s, rπ´1p2q, 2s, . . . , rπ´1pnq,ns
(

(2.32)

and since the multiplication of elements of A is commutative, we get

|A| “
ÿ

πPSn

sgnpπq Aπ´1p1q,1 Aπ´1p2q,2 ¨ ¨ ¨ Aπ´1pnq,n (2.33)

7
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Next, let σ P Sn, then tπσ | @π P Snu “ Sn since for every τ P Sn there is π “ τσ´1 P Sm and
therefore τ “ πσ P tπσ | @π P Snu. The other incluson is obvious. An analogical argument shows that
tσπ | @π P Snu “ Sn too. Thus

ÿ

πPSn

sgnpσπσ´1q A1,σπσ´1p1q A2,σπσ´1p2q ¨ ¨ ¨ An,σπσ´1pnq (2.34)

“
ÿ

πPSn

sgnpσq sgnpπq sgnpσ´1q Aσ´1p1q,πσ´1p1q Aσ´1p2q,πσ´1p2q ¨ ¨ ¨ Aσ´1pnq,πσ´1pnq

“
ÿ

πPSn

sgnpπq Aσ´1p1q,πσ´1p1q Aσ´1p2q,πσ´1p2q ¨ ¨ ¨ Aσ´1pnq,πσ´1pnq (2.35)

“
ÿ

πPSn

sgnpπq A1,πp1q A2,πp2q ¨ ¨ ¨ An,πpnq “ |A| (2.36)

Let us next define a submatrix of A and find its determinant. Consider k ď n and two one-to-one
monotonic functions ρ, ν : rks Ñ rns, i ă j ñ ρpiq ă ρp jq, νpiq ă νp jq. We define k ˆ k submatrix Aρ,ν of
an n ˆ n matrix A by

A
ρ,ν
i, j

“ Aρpiq,νp jq for i, j P rks (2.37)

We get the determinant of Aρ,ν as follows

|Aρ,ν| “
ÿ

πPSk

sgnpπq Aρ,ν
1,πp1q

A
ρ,ν

2,πp2q
¨ ¨ ¨ Aρ,ν

k,πpkq
(2.38)

“
ÿ

πPSk

sgnpπq Aρp1q,νpπp1qq Aρp2q,νpπp2qq ¨ ¨ ¨ Aρpkq,νpπpkqq (2.39)

Let us next split the rows of the matrix A into two groups of k and m rows and find the relationship
between |A| and the determinants of certain k ˆ k and m ˆ m submatrices of A. Take 1 ď k,m ď n such
that k ` m “ n and define a one-to-one function ρ : rms Ñ rk ` 1,ns “ tk ` 1, . . . ,nu, by ρpiq “ k ` i.
Next, let Ω Ď exp rns be the set of all subsets of rns of size k. Let ω P Ω. Then, there is exactly one
one-to-one monotonic function ϕω from rks onto ω since rks and ω are finite sets of integers of the
same size. Let ω “ rnszω. Then, there is exactly one one-to-one monotonic function ϕω from rk ` 1,ns
onto ω. Let further there be πk P Sk and πm P Sm. With the notation introduced above, we are getting
a version of the generalized Laplace expansion of the determinant [12, 13]

|A| “
ÿ

ωPΩ

¨

˝

ź

iPrks, jPrk`1,ns

sgnpϕωp jq ´ ϕωpiqq

˛

‚|Aǫ,ϕω |
ˇ

ˇ

ˇA
ρ,ϕωpρq

ˇ

ˇ

ˇ (2.40)

2.3 Vector product

Let us look at an interesting mapping from R3 ˆ R3 to R3, the vector product in R3 [7] (which it also
often called the cross product [5]). Vector product has interesting geometrical properties but we shall
motivate it by its connection to systems of linear equations.

§1 Vector product Assume two linearly independent coordinate vectors

~x “
“

x1 x2 x3

‰J
and ~y “

“

y1 y2 y3

‰J
in R3. The following system of linear equations

„

x1 x2 x3

y1 y2 y3



~z “ 0 (2.41)

has a one-dimensional subspace V of solutions in R3. The solutions can be written as multiples of
one non-zero vector ~w, the basis of V, i.e.

~z “ λ ~w, λ P R (2.42)

8



T Pajdla. Elements of Geometry for Robotics 2025-9-20 (pajdla@cvut.cz)

Let us see how we can construct ~w in a convenient way from vectors ~x, ~y.
Consider determinants of two matrices constructed from the matrix of the system (2.41) by adjoining

its first, resp. second, row to the matrix of the system (2.41)

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

»

–

x1 x2 x3

y1 y2 y3

x1 x2 x3

fi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

»

–

x1 x2 x3

y1 y2 y3

y1 y2 y3

fi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ 0 (2.43)

which gives

x1 px2 y3 ´ x3 y2q ` x2 px3 y1 ´ x1 y3q ` x3 px1 y2 ´ x2 y1q “ 0 (2.44)

y1 px2 y3 ´ x3 y2q ` y2 px3 y1 ´ x1 y3q ` y3 px1 y2 ´ x2 y1q “ 0 (2.45)

and can be rewritten as
„

x1 x2 x3

y1 y2 y3



»

–

x2 y3 ´ x3 y2

´x1 y3 ` x3 y1

x1 y2 ´ x2 y1

fi

fl “ 0 (2.46)

We see that vector

~w “

»

–

x2 y3 ´ x3 y2

´x1 y3 ` x3 y1

x1 y2 ´ x2 y1

fi

fl (2.47)

solves Equation 2.41.
Notice that elements of ~w are the three two by two minors of the matrix of the system (2.41). The

rank of the matrix is two, which means that at least one of the minors is non-zero, and hence ~w is also
non-zero. We see that ~w is a basic vector of V. Formula 2.47 is known as the vector product in R3 and
~w is also often denoted by ~x ˆ ~y.

§2 Vector product under the change of basis Let us next study the behavior of the vector
product under the change of basis in R3. Let us have two bases β, β 1 in R3 and two vectors ~x, ~y with

coordinates ~xβ “
“

x1 x2 x3

‰J
, ~yβ “

“

y1 y2 y3

‰J
and ~xβ 1 “

“

x 1
1

x 1
2

x 1
3

‰J
, ~yβ “

“

y 1
1

y 1
2

y 1
3

‰J
.

We introduce

~xβ ˆ ~yβ “

»

–

x2 y3 ´ x3 y2

´x1 y3 ` x3 y1

x1 y2 ´ x2 y1

fi

fl ~xβ 1 ˆ ~yβ 1 “

»

–

x 1
2
y 1

3
´ x 1

3
y 1

2
´x 1

1
y 1

3
` x 1

3
y 1

1
x 1

1
y 1

2
´ x 1

2
y 1

1

fi

fl (2.48)

To find the relationship between ~xβ ˆ ~yβ and ~xβ 1 ˆ ~yβ 1 , we will use the following fact. For every three

vectors ~x “
“

x1 x2 x3

‰J
, ~y “

“

y1 y2 y3

‰J
, ~z “

“

z1 z2 z3

‰J
in R3 there holds

~zJp~x ˆ ~yq “
“

z1 z2 z3

‰

»

–

x2 y3 ´ x3 y2

´x1 y3 ` x3 y1

x1 y2 ´ x2 y1

fi

fl “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

»

–

x1 x2 x3

y1 y2 y3

z1 z2 z3

fi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

»

–

~xJ

~yJ

~zJ

fi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

(2.49)
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We can write

~xβ 1 ˆ ~yβ 1 “

»

–

r1 0 0s p~xβ 1 ˆ ~yβ 1q
r0 1 0s p~xβ 1 ˆ ~yβ 1q
r0 0 1s p~xβ 1 ˆ ~yβ 1q

fi

fl “

»

—

–

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

»

—

–

~xJ
β 1

~yJ
β 1

1 0 0

fi

ffi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

»

—

–

~xJ
β 1

~yJ
β 1

0 1 0

fi

ffi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

»

—

–

~xJ
β 1

~yJ
β 1

0 0 1

fi

ffi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

fi

ffi

fl

J

“

»

—

–

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

»

—

–

~xJ
β A

J

~yJ
β A

J

1 0 0

fi

ffi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

»

—

–

~xJ
β A

J

~yJ
β A

J

0 1 0

fi

ffi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

»

—

–

~xJ
β A

J

~yJ
β A

J

0 0 1

fi

ffi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

fi

ffi

fl

J

“

»

—

–

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

»

—

–

~xJ
β

~yJ
β

r1 0 0s A´J

fi

ffi

fl
AJ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

»

—

–

~xJ
β

~yJ
β

r0 1 0s A´J

fi

ffi

fl
AJ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

»

—

–

~xJ
β

~yJ
β

r0 0 1s A´J

fi

ffi

fl
AJ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

fi

ffi

fl

J

“

»

–

r1 0 0s A´Jp~xβ ˆ ~yβq
r0 1 0s A´Jp~xβ ˆ ~yβq
r0 0 1s A´Jp~xβ ˆ ~yβq

fi

fl

ˇ

ˇAJ
ˇ

ˇ

“ A´J

|A´J| p~xβ ˆ ~yβq (2.50)

§3 Vector product as a linear mapping It is interesting to see that for all ~x, ~y P R3 there holds

~x ˆ ~y “

»

–

x2 y3 ´ x3 y2

´x1 y3 ` x3 y1

x1 y2 ´ x2 y1

fi

fl “

»

–

0 ´x3 x2

x3 0 ´x1

´x2 x1 0

fi

fl

»

–

y1

y2

y3

fi

fl (2.51)

and thus we can introduce matrix

r~xsˆ “

»

–

0 ´x3 x2

x3 0 ´x1

´x2 x1 0

fi

fl (2.52)

and write
~x ˆ ~y “ r~xsˆ ~y (2.53)

Notice also that r~xsJ
ˆ “ ´ r~xsˆ and therefore

p~x ˆ ~yqJ “ pr~xsˆ ~yqJ “ ´~yJ r~xsˆ (2.54)

The result of § 2 can also be written in the formalism of this paragraph. We can write for every
~x, ~y P R3

“

A ~xβ
‰

ˆ
A ~yβ “ pA ~xβq ˆ pA ~yβq “ A´J

|A´J| p~xβ ˆ ~yβq “ A´J

|A´J|
“

~xβ
‰

ˆ
~yβ (2.55)

and hence we get for every ~x P R3

“

A ~xβ
‰

ˆ
A “ A´J

|A´J|
“

~xβ
‰

ˆ
(2.56)

2.4 Dual space and dual basis

Let us start with a three-dimensional linear space L over scalars S and consider the set L‹ of all linear
functions f : L Ñ S, i.e. the functions on L for which the following holds true

f pa ~x ` b ~yq “ a f p~xq ` b f p~yq (2.57)

10
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for all a, b P S and all ~x, ~y P L.
Let us next define the addition `‹ : L‹ ˆ L‹ Ñ L‹ of linear functions f , g P L‹ and the multiplication

¨‹ : S ˆ L‹ Ñ L‹ of a linear function f P L‹ by a scalar a P S such that

p f `‹ gqp~xq “ f p~xq ` gp~xq (2.58)

pa ¨‹ f qp~xq “ a f p~xq (2.59)

holds true for all a P S and for all ~x P L. One can verify that pL‹,`‹, ¨‹q over pS,`, q is itself a linear
space [4, 7, 6]. It makes therefore a good sense to use arrows above symbols for linear functions, e.g.
~f instead of f .

The linear space L‹ is derived from, and naturally connected to, the linear space L and hence
deserves a special name. Linear space L‹ is called [4] the dual (linear) space to L.

Now, consider a basis β “ r~b1,~b2,~b3s of L. We will construct a basis β‹ of L‹, in a certain natural and

useful way. Let us take three linear functions ~b‹
1
,~b‹

2
,~b‹

3
P L‹ such that

~b‹
1
p~b1q “ 1 ~b‹

1
p~b2q “ 0 ~b‹

1
p~b3q “ 0

~b‹
2
p~b1q “ 0 ~b‹

2
p~b2q “ 1 ~b‹

2
p~b3q “ 0

~b‹
3
p~b1q “ 0 ~b‹

3
p~b2q “ 0 ~b‹

3
p~b3q “ 1

(2.60)

where 0 and 1 are the zero and the unit element of S, respectively. First of all, one has to verify [4] that
such an assignment is possible with linear functions over L. Secondly one can show [4] that functions
~b‹

1
,~b‹

2
,~b‹

3
are determined by this assignment uniquely on all vectors of L. Finally, one can observe [4]

that the triple β‹ “ r~b‹
1
,~b‹

2
,~b‹

3
s forms an (ordered) basis of ~L. The basis β‹ is called the dual basis of L‹,

i.e. it is the basis of L‹, which is related in a special (dual) way to the basis β of L.

§1 Evaluating linear functions Consider a vector ~x P L with coordinates ~xβ “ rx1, x2, x3sJ w.r.t.

a basis β “ r~b1,~b2,~b3s and a linear function ~h P L‹ with coordinates ~hβ‹ “ rh1, h2, h3sJ w.r.t. the dual

basis β‹ “ r~b‹
1
,~b‹

2
,~b‹

3
s. The value ~hp~xq P S is obtained from the coordinates ~xβ and ~hβ‹ as

~hp~xq “ ~hpx1
~b1 ` x2

~b2 ` x3
~b3q (2.61)

“ ph1
~b‹

1 ` h2
~b‹

2 ` h3
~b‹

3qpx1
~b1 ` x2

~b2 ` x3
~b3q (2.62)

“ h1
~b‹

1p~b1q x1 ` h1
~b‹

1p~b2q x2 ` h1
~b‹

1p~b3q x3

`h2
~b‹

2p~b1q x1 ` h2
~b‹

2p~b2q x2 ` h2
~b‹

2p~b3q x3 (2.63)

`h3
~b‹

3p~b1q x1 ` h3
~b‹

3p~b2q x2 ` h3
~b‹

3p~b3q x3

“
“

h1 h2 h3

‰

»

—

–

~b‹
1
p~b1q ~b‹

1
p~b2q ~b‹

1
p~b3q

~b‹
2
p~b1q ~b‹

2
p~b2q ~b‹

2
p~b3q

~b‹
3
p~b1q ~b‹

3
p~b2q ~b‹

3
p~b3q

fi

ffi

fl

»

–

x1

x2

x3

fi

fl (2.64)

“
“

h1 h2 h3

‰

»

–

1 0 0
0 1 0
0 0 1

fi

fl

»

–

x1

x2

x3

fi

fl (2.65)

“
“

h1, h2, h3

‰

»

–

x1

x2

x3

fi

fl (2.66)

“ ~h
J

β‹ ~xβ (2.67)

The value of ~h P L‹ on ~x P L is obtained by multiplying ~xβ by the transpose of ~hβ‹ from the left.

11
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Notice that the middle matrix on the right in Equation 2.64 evaluates into the identity. This is the
consequence of using the pair of a basis and its dual basis. The formula 2.67 can be generalized to the
situation when bases are not dual by evaluating the middle matrix accordingly. In general

~hp~xq “ ~hJ

β̄
r~̄bip~b jqs ~xβ (2.68)

where matrix r~̄bip~b jqs is constructed from the respective bases β, β̄ of L and L‹.

§2 Changing the basis in a linear space and in its dual Let us now look at what happens with
coordinates of vectors of L‹ when passing from the dual basis β‹ to the dual basis β 1‹ induced by

passing from a basis β to a basis β 1 in L. Consider vector ~x P L and a linear function ~h P L‹ and their

coordinates ~xβ, ~xβ 1 and ~hβ‹ , ~hβ 1‹ w.r.t. the respective bases. Introduce further matrix A transforming
coordinates of vectors in L as

~xβ 1 “ A ~xβ (2.69)

when passing from β to β 1.
Basis β‹ is the dual basis to β and basis β 1‹ is the dual basis to β 1 and therefore

~h
J

β‹ ~xβ “ ~hp~xq “ ~hJ

β 1‹ ~xβ 1 (2.70)

for all ~x P L and all ~h P L‹. Hence
~h

J

β‹ ~xβ “ ~hJ

β 1‹ A ~xβ (2.71)

for all ~x P L and therefore
~h

J

β‹ “ ~hJ

β 1‹ A (2.72)

or equivalently
~hβ‹ “ AJ~hβ 1‹ (2.73)

Let us now see what is the meaning of the rows of matrix A. It becomes clear from Equation 2.72 that

the columns of matrix AJ can be viewed as vectors of coordinates of basic vectors of β 1‹ “ r~b 1
1

‹,~b 1
2

‹,~b 1
3

‹s
in the basis β‹ “ r~b‹

1
,~b‹

2
,~b‹

3
s and therefore

A “

»

—

—

–

~b 1
1

‹
β‹

J

~b 1
2

‹
β‹

J

~b 1
3

‹
β‹

J

fi

ffi

ffi

fl

(2.74)

which means that the rows of A are coordinates of the dual basis of the primed dual space in the dual
basis of the non-primed dual space.

Finally notice that we can also write
~hβ 1‹ “ A´J~hβ‹ (2.75)

which is formally identical with Equation 2.15.

§3 When do coordinates transform the same way in a basis and in its dual basis It is natural
to ask when it happens that the coordinates of linear functions in L‹ w.r.t. the dual basis β‹ transform
the same way as the coordinates of vectors of L w.r.t. the original basis β, i.e.

~xβ 1 “ A ~xβ (2.76)

~hβ 1‹ “ A~hβ‹ (2.77)

12
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for all ~x P L and all ~h P L‹. Considering Equation 2.75, we get

A “ A´J (2.78)

AJA “ I (2.79)

Notice that this is, for instance, satisfied when A is a rotation [5]. In such a case, one often does not
anymore distinguish between vectors of L and L‹ because they behave the same way and it is hence
possible to represent linear functions from L‹ by vectors of L.

§4 Coordinates of the basis dual to a general basis We denote the standard basis in R3 by
σ and its dual (standard) basis in R3‹

by σ‹. Now, we can further establish another basis γ “
“

~c1 ~c2 ~c3

‰

inR3 and its dual basis γ‹ “
“

~c ‹
1
~c ‹

2
~c ‹

3

‰

inR3‹
. We would like to find the coordinates

γ‹
σ‹ “

“

~c ‹
1σ‹ ~c ‹

2σ‹ ~c ‹
3σ‹

‰

of vectors of γ‹ w.r.t. σ‹ as a function of coordinates γσ “
“

~c1σ ~c2σ ~c3σ
‰

of
vectors of γw.r.t. σ.

Considering Equations 2.60 and 2.67, we are getting

~c i
‹
σ‹
J
~c jσ “

"

1 if i “ j
0 if i ‰ j

for i, j “ 1, 2, 3 (2.80)

which can be rewritten in a matrix form as
»

–

1 0 0
0 1 0
0 0 1

fi

fl “

»

—

–

~c1
‹
σ‹
J

~c2
‹
σ‹
J

~c3
‹
σ‹
J

fi

ffi

fl

“

~c1σ ~c2σ ~c3σ
‰

“ γ‹
σ‹
J γσ (2.81)

and therefore
γ‹
σ‹ “ γ´J

σ (2.82)

§5 Remark on higher dimensions We have introduced the dual space and the dual basis in a
three-dimensional linear space. The definition of the dual space is exactly the same for any linear
space. The definition of the dual basis is the same for all finite-dimensional linear spaces [4]. For any
n-dimensional linear space L and its basis β, we get the corresponding n-dimensional dual space L‹

with the dual basis β‹.

2.5 Operations with matrices & tensors

Matrices are a powerful tool which can be used in many ways. Here we review a few useful rules for
matrix manipulation. The rules are often studied in multi-linear algebra and tensor calculus. We shall
not review the theory of multi-linear algebra but will look at the rules from a phenomenological point
of view. They are useful identities making an effective manipulation and concise notation possible.
See [14] for additional material.

§1 Kronecker product Let A be a k ˆ l matrix and B be a m ˆ n matrix

A “

»

—

—

—

–

a11 a12 ¨ ¨ ¨ a1l

a21 a22 ¨ ¨ ¨ a2l
...

...
. . .

...
ak1 ak2 ¨ ¨ ¨ akl

fi

ffi

ffi

ffi

fl

P Rkˆl and B P Rmˆn (2.83)

then k m ˆ l n matrix

C “ Ab B “

»

—

—

—

–

a11 B a12 B ¨ ¨ ¨ a1l B

a21 B a22 B ¨ ¨ ¨ a2l B
...

...
. . .

...
ak1 B ak2 B ¨ ¨ ¨ akl B

fi

ffi

ffi

ffi

fl

(2.84)

13
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is the matrix of the Kronecker product of matrices A, B (in this order).
Notice that this product is associative, i.e. pAb Bq b C “ Ab pBb Cq, but it is not commutative, i.e.
Ab B ‰ Bb A in general. There holds a useful identity pAb BqJ “ AJb BJ.

§2 Matrix vectorization Let A be an m ˆ n matrix

A “

»

—

—

—

–

a11 a12 ¨ ¨ ¨ a1n

a21 a22 ¨ ¨ ¨ a2n
...

...
. . .

...
am1 am2 ¨ ¨ ¨ amn

fi

ffi

ffi

ffi

fl

P Rmˆn (2.85)

We define operator vp.q : Rmˆn Ñ Rm n which reshapes an m ˆ n matrix A into a m n ˆ 1 matrix (i.e.
into a vector) by stacking columns of A one above another

vpAq “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

a11

a21
...

am1

a12

a22
...

am2

a1n

a2n
...

amn

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“ (2.86)

Let us study the relationship between vpAq and vpAJq. We see that vector vpAJq contains permuted
elements of vpAq and therefore we can construct permutation matrices [5] Jmˆn and Jnˆm such that

vpAJq “ Jmˆn vpAq
vpAq “ Jnˆm vpAJq

We see that there holds
Jnˆm Jmˆn vpAq “ Jnˆm vpAJq “ vpAq (2.87)

for every m ˆ n matrix A. Hence
Jnˆm “ J´1

mˆn (2.88)

Consider a permutation J. It has exactly one unit element in each row and in each column.
Consider the i-th row with 1 in the j-th column. This row sends the j-th element of an input vector
to the i-th element of the output vector. The i-the column of the transpose of J has 1 in the j-th row.
It is the only non-zero element in that row and therefore the j-th row of JJ sends the i-th element
of an input vector to the j-th element of the output vector. We see that JJ is the inverse of J, i.e.
permutation matrices are orthogonal. We see that

J´1
mˆn “ JJ

mˆn (2.89)

and hence conclude
Jnˆm “ JJ

mˆn (2.90)

We also write vpAq “ JJ
mˆn vpAJq.

14
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§3 From matrix equations to linear systems Kronecker product of matrices and matrix vector-
ization can be used to manipulate matrix equations in order to get systems of linear equations in the
standard matrix form A x “ b. Consider, for instance, matrix equation

A X B “ C (2.91)

with matrices A P Rmˆk, X P Rkˆl, B P Rlˆn, C P Rmˆn. It can be verified by direct computation that

vpA X Bq “ pBJb Aq vpXq (2.92)

This is useful when matrices A, B and C are known and we use Equation 2.91 to compute X. Notice
that matrix Equation 2.91 is actually equivalent to m n scalar linear equations in k l unknown elements
of X. Therefore, we should be able to write it in the standard form, e.g., as

M vpXq “ vpCq (2.93)

with some M P Rpm nqˆpk lq. We can use Equation 2.92 to get M “ BJ b Awhich yields the linear system

vpA X Bq “ vpCq (2.94)

pBJb Aq vpXq “ vpCq (2.95)

for unknown vpXq, which is in the standard form.
Let us next consider two variations of Equation 2.91. First consider matrix equation

A X B “ X (2.96)

Here unknowns X appear on both sides but we are still getting a linear system of the form

pBJb A´ Iq vpXq “ 0 (2.97)

where I is the pm nq ˆ pk lq identity matrix.
Next, we add yet another constraints: XJ “ X, i.e. matrix X is symmetric, to get

A X B “ X and XJ “ X (2.98)

which can be rewritten in the vectorized form as

pBJb A´ Iq vpXq “ 0 and pJmˆn ´ Iq vpXq “ 0 (2.99)

and combined it into a single linear system

„

Jmˆn ´ I
BJb A´ I



vpXq “ 0 (2.100)
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3 Algebraic geometry for solving polynomial equations

We will explain some elements of algebraic geometry in order to understand how to solve systems of
polynomial (algebraic) equations in several unknowns that have a finite number of solutions. We will
follow the nomenclature in [2]. See [2] for more complete exposition of algebraic geometry and [15]
for more on how to solve systems of polynomial equations in several unknowns.

3.1 Polynomials

We will consider polynomials in n unknowns x1, x2, . . . , xn with rational coefficients a0, a1, . . . , an.
Polynomials are linear combinations of a finite number of monomials xα1

1
xα2

2
¨ ¨ ¨ xαn

n where non-negative
integers αi P Zě0 are exponents. To simplify the notation, we will write xα instead of xα1

1
xα2

2
¨ ¨ ¨ xαn

n

an for n-tuple α “ pα1, α2, . . . , αnq of exponents. N-tuple α is called the multidergree of monomial xα.
For instance, for α “ p2, 0, 1q we get xα “ x2

1
x0

2
x1

3
“ x2

1
x3. We define the total degree d of a non-zero

monomial with exponent α “ pα1, α2, . . . , αnq as d “ α1 ` α2 ` ¨ ¨ ¨ ` αn. Hence, xp2,0,1q has total degree
equal to three. The total degree, degp f q, of a polynomial f is the maximum of the total degrees of its
monomials. The zero polynomial has no degree.

With this notation, polynomials with rational coefficients can be written in the form

f “
ÿ

α

aαx
α, aα P Q (3.1)

where the sum is over a finite set of n-tuples α P Zn
ě0

. The set of all polynomials in unknowns
x1, x2, . . . , xn with rational coefficients will be denoted by Qrx1, x2, . . . , xns.

There is an infinite (countable) number of monomials. If we totally order monomials1 such that 1
is the smallest monomial2 in some way (and we will discuss some useful orderings later), we can also
understand polynomials as infinite sequences of rational numbers with a finite number of non-zero
elements. For instance, polynomial x1 x2

2
` 2 x2

2
` 3 x1 ` 4 can be understood as infinite sequence

p 4 3 0 0 0 0 0 2 1 0 . . . q
1 x1 x2

1
x3

1
x2 x1 x2 x2

1
x2 x2

2
x1 x2

2
x3

2
. . .

with exactly four non-zero elements 1, 2, 3, 4.
Polynomials with rational coefficients can be also understood as complex functions. We evaluate

polynomial f on a point ~p P Cn as

f p~pq “
˜

ÿ

α

aαx
α

¸

p~pq “
ÿ

α

aαx
αp~pq “

ÿ

α

aα~p
α “

ÿ

α

aα~p
α1

1
~p α2

2
¨ ¨ ¨ ~p αn

n

which reflects that the evaluated polynomial is a linear combination of the evaluated monomials. For
instance, we may write px1 x2

2
`2 x2

2
`3 x1`4qpr1, 2sJq “ x1 x2

2
pr1, 2sJq`2 x0

1
x2

2
pr1, 2sJq`3 x1x0

2
pr1, 2sJq`

4 x0
1
x0

2
pr1, 2sJq “ 4 ` 8 ` 3 ` 4 “ 19.

3.1.1 Univariate polynomials

Polynomials in single unknown are often called univariate polynomials. In this case α becomes a trivial
sequence containing a single number. The total degree degp f q of f is then called degree.

1Total (linear) ordering of a set S is an ordering when every two elements of S are comparable.
2This can allways be done by finding a bijection from integrers to the monomials.
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3.1.2 Long division of univariate polynomials

The set of all polynomials in a single unknown x over rational numbers, Qrxs, forms a ring. Polyno-
mials are almost as real numbers except for the division. Polynomials can’t be in general divided. In
fact, polynomials behave in many aspects as whole numbers Z.

In particular, it is easy to introduce long polynomial division in the same way as it is used with whole
numbers. Consider polynomials f , g P Qrxs, g ‰ 0. Then, there are [2] unique polynomials q, r P Qrxs
such that

f “ q g ` r with degprq ă degpgq or r “ 0

where q is the quotient and r is the remainder (of f on division by g). Equivalently, one also often writes
f ” r pmod gq and r “ f mod g.

Word “division” in “long polynomial division” is indeed somewhat misleading when r ‰ 0 since
there is no real division in that case. We could perhaps better name it “expressing f using g in the
most efficient way”.

3.2 Systems of linear polynomial equations in several unknowns

Solving systems of linear polynomial equations is well understood. Let us give a typical example.
Consider the following system of three linear polynomial equations in three unknowns

2 x1 ` 1 x2 ` 3 x3 “ 0

4 x1 ` 3 x2 ` 2 x3 “ 0

2 x1 ` 1 x2 ` 1 x3 “ 2

and write it in the standard matrix form
»

–

2 1 3
4 3 2
2 1 1

fi

fl

»

–

x1

x2

x3

fi

fl “

»

–

0
0
2

fi

fl

Using the Gaussian elimination [5], we obtain an equivalent system
»

–

2 1 3
0 1 ´4
0 0 1

fi

fl

»

–

x1

x2

x3

fi

fl “

»

–

0
0

´1

fi

fl

We see that the system has exactly one solution x1 “ 7{2, x2 “ ´4, x3 “ ´1.
We notice that the key point of this method is to produce a system in a “triangular shape” such that

there is an equation f3px3q “ 0 in single unknown x3, an equation in two unknowns f2px2, x3q, and
so on. We can thus solve for x3 and then transform f2 by a substitution into an equation in a single
unknown and solve for x2, and so on.

3.3 One non-linear polynomial equation in one unknown

Solving one (non-linear) polynomial equation in one unknown is also well understood. The problem
can be formulated as computation of eigenvalues of a matrix. Let us illustrate the approach on a
simple example. Consider the following polynomial equation

f “ x3 ´ 6 x2 ` 11 x ´ 6 “ 0

We can construct a companion matrix [5]

Mx “

»

–

0 0 6
1 0 ´11
0 1 6

fi

fl

17
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Figure 3.1: Solution to (3.2) is the intersection of a circle and a pair of lines. Solution at r 3
5 ,

4
5 s has

multiplicity two.

of polynomial f and compute the characteristic polynomial of Mx

|x I´ Mx| “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

»

–

x 0 ´6
´1 x 11

0 ´1 x ´ 6

fi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ x3 ´ 6 x2 ` 11 x ´ 6

to see that we are getting polynomial f . Hence, eigenvalues of Mx, 1, 2, 3, are the solutions to equation
f “ 0.

This procedure applies in general when the coefficient at the monomial of f with the highest degree
is equal to one [5], i.e. when we normalize the equation. Obviously, such a normalization, which
amounts to division by a non-zero coefficient at the monomial of the highest degree, produces an
equivalent equation with the same solutions.

The general rule for constructing the companion matrix Mx for polynomial f “ xn ` an´1xn´1 `
an´2xn´2 ` ¨ ¨ ¨ ` a1x ` a0 is [5]

Mx “

»

—

—

—

–

0 0 ¨ ¨ ¨ 0 ´a0

1 0 ¨ ¨ ¨ 0 ´a1
...

0 0 ¨ ¨ ¨ 1 ´an´1

fi

ffi

ffi

ffi

fl

Notice that eigenvalue computation must be in general approximate. In general, roots of polynomials
of degrees higher than four can’t be expressed as finite formulas in coefficients ai using addition,
multiplication and radicals [11].

3.4 Several non-linear polynomial equations in several unknowns

Let us now present a technique for transforming a system of polynomial equations with a finite
number of solutions into a system that will contain a polynomial in the “last” unknown, say xn, only.
Achieving that will allow for solving for xn and reducing the problem from n to n ´ 1 unknowns and
so on until we solve for all unknowns. Let us illustrate the technique on an example.
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Consider the following system

f1 “ x2
2 ` x2

1 ´ 1 “ 0 (3.2)

f2 “ 25 x1x2 ´ 20 x2 ´ 15 x1 ` 12 “ 0

and rewrite it in a matrix form

„

1 0 0 1 0 ´1
0 25 ´20 0 ´15 12



»

—

—

—

—

—

—

–

x2
2

x1x2

x2

x2
1

x1

1

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“
„

0
0



or in short as

»

–

x2
2

x1x2 x2 x2
1

x1 1
1 0 0 1 0 ´1
0 25 ´20 0 ´15 12

fi

fl (3.3)

Now, it is clear that f “ 0 implies g f “ 0 for any g P Qrx1, . . . , xns. For instance x2
1

`x2
2

´1 “ 0 implies,

e.g., x1px2
1

` x2
2

´ 1q “ 0 and 25 x1x2 ´ 15 x1 ´ 20 x2 ` 12 implies x2p25 x1x2 ´ 15 x1 ´ 20 x2 ` 12q.
Hence, adding such “new” equations to the original system produces a new system with the same

solutions. On the other hand, polynomials f , x f are certainly linearly independent when f ‰ 0 since
then x f has degree strictly greater than is the degree of f . Thus, by adding x f , we have a chance to
add another independent row to the matrix (3.3).

Let us now, e.g., add equations x1px2
1

` x2
2

´ 1q “ 0 and x2p25 x1x2 ´ 15 x1 ´ 20 x2 ` 12q to system
(3.2) and write it in the matrix form as

f1
f2

x1 f1
x2 f2

»

—

—

—

—

–

x1x2
2

x2
2

x1x2 x2 x3
1

x2
1

x1 1

0 1 0 0 0 1 0 ´1
0 0 25 ´20 0 0 ´15 12
1 0 0 0 1 0 ´1 0
25 ´20 ´15 12 0 0 0 0

fi

ffi

ffi

ffi

ffi

fl

(3.4)

We have marked each row of the coefficients with its corresponding equation. We see that two more
rows have been added but also two new monomials, x1x2

2
and x3

1
, emerged. The next step will be to

eliminate (3.4) by the Gaussian eliminations to get

x1 f1
f1
f3
f4

»

—

—

—

—

–

x1x2
2

x2
2

x1x2 x2 x3
1

x2
1

x1 1

1 0 0 0 1 0 ´1 0
0 1 0 0 0 1 0 ´1
0 0 25 ´20 0 0 ´15 12
0 0 0 0 ´125 100 80 ´64

fi

ffi

ffi

ffi

ffi

fl

(3.5)

We see that the last row of coefficients gives an equation in single unknown x1

f4 “ ´125 x3
1 ` 100 x2

1 ` 80 x1 ´ 64 “ 0

Notice that we have been ordering the monomials corresponding to the columns of the matrix such
that we have all monomials in sole x1 at the end.

It can be shown [2] that the above procedure works for every system of polynomial equations
t f1, f2, . . . , fku from Qrx1, . . . , xns with a finite number of solutions. In particular, there always are k
finite sets Mi, i “ 1, . . . , k of monomials such that the extended system

t f1, f2, . . . , fku Y
 

m f j|m P M j, j “ 1, . . . , k
(

obtained by adding for each f j its multiples by all monomials in M j, has matrix A with the following
nice property. If the last columns of A correspond to all monomials in a single unknown xi (including
1, which is x0

j
), then the last non-zero row of matrix B, obtained by Gaussian elimination of A, produces

a polynomials in single unknown xi.
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This is a very powerful technique. It gives us a tool how to solve all systems of polynomial
equations with a finite number of solutions. In practice, the main problem is how to find small sets Mi

in acceptable time. Consider that the number of monomials of total degree at most d in n unknowns

is given by the combination number
`

n`d
d

˘

. Hence, in general, the size of the matrix is growing very
quickly as a function of n and d needed to get the result. Practical algorithms, e.g. F4 [2], use many
tricks how to select small sets of monomials and how to efficiently compute in exact arithmetic over
rational numbers.

Let us now return to our example above. We can solve the f4 “ 0 for x1 and substitute all solutions
to f3 “ 0 from the third row, which, for known x1, is an equation in single unknown x2

f3 “ 25 x1x2 ´ 20 x2 ´ 15 x1 ` 12 “ p25 x1 ´ 20q x2 ´ 15 x1 ` 12 “ 0

That gives us solutions for x2.

3.5 Solving a polynomial system as an eigenvector problem

Solving polynomial systems for one unknown after another by the procedure given in the previous
paragraph calls for back-substitution that may be non-trivial to implement in general. Also notice
that in the example above, we did not really see that there are four solutions since one, r 3

5 ,
4
5 s in

Figure 3.1, had multiplicity two but that was “masked” by other solution that we aligned with it.
Let us now present an alternative approach often allowing to compute all solutions at once as an

eigenvector problem. We will first illustrate the technique on an example in a single unknown given
in paragraph 3.3.

3.5.1 Solving a univariate polynomial equation by eigenvectors

Consider a polynomial system consisting of a single equation

f “ x3 ´ 6 x2 ` 11 x ´ 6 “ px ´ 1q px ´ 2q px ´ 3q “ 0

in one unknown x with roots 1, 2, 3. We have seen how to solve this system by computing eigenvalues
of the companion matrix Mx of polynomial f . Let us now see how to do the same by computing
eigenvectors of MJ

x .
Let us first consider remainders of all polynomials g in Qrxs on division by f . It is the set of all

polynomials r of degree at most two. All polynomials of degrees at most two are left unchanged by
the long division by f and all monomials of a higher degree will get rewritten using f in terms of
polynomials of degree at most two. We can thus write

r “ a2x2 ` a1x ` a0 for a0, a1, a2 P Q i.e. r ”

»

–

a0

a1

a2

fi

fl P Q3

and hence identify each remainder with a three-dimensional vector from Q3. We see that the set of
all such remainders is in one-to-one correspondence with Q3.

Secondly, consider the mappingMx : Qrxs Ñ Qrxs on polynomials given by

Mxphq “ px hq mod f

It maps monomials of degree at most two back to polynomials of degree at most two, i.e.

Mxp1q “ x 1 mod f “ x mod f “ x

Mxpxq “ x x mod f “ x2 mod f “ x2 (3.6)

Mxpx2q “ x x2 mod f “ x3 mod f “ 6 x2 ´ 11 x ` 6
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We see thatMx is a linear mapping since for all g, h P Qrxs, a P Qwe have

Mxpg ` hq “ px g ` x hq mod f “ px gq mod f ` px hq mod f “Mxpgq `Mxphq
Mxpa gq “ pa x gq mod f “ a px gq mod f “ aMxpgq

Every linear mapping has a matrix of the mapping w.r.t. a basis [4]. We can write

Mxpa2x2 ` a1x ` a0q “ a2Mxpx2q ` a1Mxpxq ` a0Mxp1q (3.7)

“ ra0, a1, a2s

»

–

Mxp1q
Mxpxq
Mxpx2q

fi

fl (3.8)

“ ra0, a1, a2s

»

–

x
x2

6 x2 ´ 11 x ` 6

fi

fl (3.9)

and thus

Mx

¨

˝r1, x, x2s

»

–

a0

a1

a2

fi

fl

˛

‚ “ r1, x, x2s

»

–

0 0 6
1 0 ´11
0 1 6

fi

fl

»

–

a0

a1

a2

fi

fl (3.10)

We can interpret the above as choosing the standard monomial basis r1, x, x2s in the linear space of
Qrxs of degree at most two, and writing the above represented by vectors in Q3. Then, expressing
monomials as vectors using basis r1, x, x2s we get

Mxp1q ”Mx

¨

˝

»

–

1
0
0

fi

fl

˛

‚ “

»

–

0
1
0

fi

fl

Mxpxq ”Mx

¨

˝

»

–

0
1
0

fi

fl

˛

‚ “

»

–

0
0
1

fi

fl

Mxpx2q ”Mx

¨

˝

»

–

0
0
1

fi

fl

˛

‚ “

»

–

6
´11

6

fi

fl

We see that the matrix of the mappingMx is obtained by

Mx

¨

˝

»

–

1 0 0
0 1 0
0 0 1

fi

fl

˛

‚“

»

–

0 0 6
1 0 ´11
0 1 6

fi

fl “ Mx

and observe that Mx is the matrix of Mx w.r.t. the standard monomial basis B “ r1, x, x2s, is the
companion matrix of f , i.e.

Mxp ~fBq “ Mx
~fB (3.11)

Now, let us evaluate polynomials g P Qrxs on the roots of f . Consider a root p of f , i.e. a solution
to equation f “ 0, and evaluate g on p using its remainder r on division by f

gppq “ qppq f ppq ` rppq “ qppq 0 ` rppq “ rppq

since f ppq “ 0. We see that polynomials evaluate on roots of f to the values of their remainders on
division by f . Let us now evaluate polynomials x, x2, x3 on roots ~p “ rp1, p2, p3sJ of f .

xppiq “ pi “ pi 1 “ pi 1ppiq “ xppiq 1ppiq
x2ppiq “ p2

i
“ pi pi “ pi xppiq “ xppiq xppiq

x3ppiq “ p3
i

“ pi p2
i

“ pi x2ppiq “ xppiq x2ppiq
(3.12)
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Now, since

x3ppiq “ x3 ´ 6 x2 ` 11 x ´ 6 ` p6 x2 ´ 11 x ` 6q (3.13)

“ f ppiq `Mxpx2qppiq (3.14)

“ 0 ` p6 x2 ´ 11 x ` 6qppiq (3.15)

we get
xppiq x2ppiq “ p6 x2 ´ 11 x ` 6qppiq (3.16)

We can rewrite identities (3.12) and (3.16) as the following sequence of matrix identities

xppiq

»

–

1ppiq
xppiq
x2ppiq

fi

fl “

»

–

xppiq
x2ppiq
x3ppiq

fi

fl “

»

–

xppiq
x2ppiq

p6 x2 ´ 11 x ` 6qppiq

fi

fl `

»

–

0
0

f ppiq

fi

fl

xppiq

»

–

1ppiq
xppiq
x2ppiq

fi

fl “

»

–

0 1 0
0 0 1
6 ´11 6

fi

fl

»

–

1ppiq
xppiq
x2ppiq

fi

fl `

»

–

0
0
0

fi

fl

xppiq

»

–

1
pi

p2
i

fi

fl “

»

–

0 1 0
0 0 1
6 ´11 6

fi

fl

»

–

1
pi

p2
i

fi

fl

pi ~vi “ MJ
x ~vi

showing that ppi, ~viq are eigenvalue-eigenvector pairs of MJ
x . Eigenvalues pi are evaluations of x on

roots of f and eigenvectors ~vi are evaluations of the monomials of the standard basis r1, x, x2s on the
roots of f . The above observation holds true in general [15]. For a polynomial f of degree n, we are
getting an n ˆ n matrix with n eigenvalues, counting the multiplicities.

When matrix Mx has separated one-dimensional eigenspaces, which, e.g., happens always when
eigenvalues are pairwise distinct, i.e. when f has all roots of multiplicity one, we can (numerically)
compute basis ~wi of each eigenspace3 and get ~vi as

~vi “ 1

~wi1

~w, i “ 1, . . . ,n

We see that solutions to f are obtained from ~vi as pi “ xppiq “ ~vi2.
It is possible to generalize the above to a more general mapping Mg : Qrxs Ñ Qrxs by replacing

unknown x by a general polynomial g P Qrxs to get

Mgphq “ pg hq mod f

Now, consider that gppiq “ rppiq where r “ a2x2 ` a1x ` a0 is the remainder of g on division by f .
Thus

gppiq “ rppiq “ a2x2ppiq ` a1xppiq ` a01ppiq (3.17)

Further, considering that

λ~v “ A ~v

λ A ~v “ A2 ~v

λ2 ~v “ A2 ~v

3Many algorithms, e.g. in Matlab, deliver ~wi’s with }~wi} “ 1.
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x

f pxq “ px ´ 1qpx ´ 2qpx ´ 3q

gpxq “ x

hpxq “ x2 ´ 4 x ` 5

gpxq ` f pxq

Figure 3.2: Polynomial f pxq and its roots 1, 2, 3. All remainders on division by f , e.g. gpxq, hpxq, which
are of degree not larger than two, are uniquely determined by their values on the roots
1, 2, 3 of f . See the text for more detailed explanation.

we can write

gppiq

»

–

1ppiq
xppiq
x2ppiq

fi

fl “
`

a2x2ppiq ` a1xppiq ` a01ppiq
˘

»

–

1ppiq
xppiq
x2ppiq

fi

fl

gppiq

»

–

1ppiq
xppiq
x2ppiq

fi

fl “
`

a2 pMJ
x q2 ` a1 M

J
x ` a0I

˘

»

–

1ppiq
xppiq
x2ppiq

fi

fl

gppiq

»

–

1
pi

p2
i

fi

fl “
`

a2 pMJ
x q2 ` a1 M

J
x ` a0I

˘

»

–

1
pi

p2
i

fi

fl

gppiq ~vi “ MJ
g ~vi (3.18)

showing that pgppiq, ~viq are eigenvalue-eigenvector pairs of MJ
g “ pa2 M

2
x ` a1 Mx ` a0IqJ.

We saw that remainders r on division by f could be identified with Q3 via their coefficients. Let us
now present another representation of r by vectors fromC3. Figure 3.2 shows f pxq “ px´1qpx´2qpx´3q
and its roots p1 “ 1, p2 “ 1, p3 “ 3. Each remainder on division by f , e.g. g and h, which has degree
not larger than two, is uniquely defined by its values on the roots p1 “ 1, p2 “ 1, p3 “ 3 of f . In
general, roots of f are from C and hence their polynomial evaluations are from C as well. This
way, every remainder r on division by f is on one to one correspondence with a vector from C3, i.e.
rpxq ” rrpp1q, rpp2q, rpp3qsJ.

All polynomials can be written as qpxq f pxq ` rpxq, and thus every polynomial can be assigned its
reminder on division by f . This way, the set of polynomials is partitioned into equivalence classes
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and a bijection between the sets of the equivalence classes and the remainders on division by f is
obtained.

Eigenvalue problem 3.18 thus can be seen as expressing the representative of gpxq f pxq by multipli-
cation by of the representative of f pxq by MJ

g .

3.5.2 Solving systems of multivariate polynomial equations by eigenvectors

To generalize the procedure above to systems of polynomial equations in several unknowns, we
have to generalize the concept of “remainder on division by a single polynomial in one unknown”
to more polynomials in more unknowns. It will require to address several issues. Let us first lay
down a general strategy, then deal with particular issues, and, finally, provide a method for finding
the solutions to a polynomial system with a finite number of solutions by computing eigenvectors.

We have seen that the key concept for deriving the relationship between the solutions to f “ 0 and
the eigenvectors of Mh in the univariate case was that the remainder r of h on division by f gave the
values of h on the roots of f .

Long division produced r “ h ´ q f such that r was “the simplest” polynomial evaluating on roots
of f to the same values as h. We could also see this as removing from h all what can be generated by
f , i.e. all what is in x f y = th f | h P Qrxsu. We can also say that r is equivalent4 to f , writing h ” r,
when h ´ r “ q f P I “ x f y.

In the multivariate case, this motivates introducing ideal I generated by polynomials f1, . . . , fk,
denoted by x f1, . . . , fky, as

I “ x f1, . . . , fky “ t
k
ÿ

i“1

gi fi | gi P Qrx1, . . . , xnsu

Ideal I is the set of all polynomials that can be generated from f1, . . . , fk by polynomial combinations.
All polynomials in I evaluate to zero (are satisfied) on the solutions of the system f1, . . . , fk.

In the univariate case, monomials were naturally ordered by their degree. The total degrees of
univariate monomials, i.e. the powers of the unknown, provided a total ordering [1] of the monomials
in one unknown5. In the multivariate case, however, total degrees do not provide a total ordering.
For instance, consider that degpx2yq “ 3 “ degpx y2q but x2y ‰ xy2, which means that x2y, x y2 are
not comparable when ordered by the total degree. We see that the total degree makes only a partial
ordering of monomials. Hence, we need to introduce another way of ordering the monomials to get
a total ordering. We will discuss this in more detail in paragraph 3.5.3.

From the point of view of the eigenvector method in the univariate case, the remainders r on the
long division by f had the good property that all monomials of r were strictly smaller (when ordered
by the degree) than the largest (leading) monomial of f . The maximal degree of r was equal to the
number m of solutions minus one and hence r was a linear combination of exactly m monomials. That
gave m ˆ m multiplication matricesMg and thus m one-dimensional sub-spaces of eigenvectors. This
was thanks to the fact that ideal x f y was in one-to-one correspondence with its generator f .

Now, in the multivariate case, when ideals are generated by more generators F “ t f1, . . . , fku,
I “ xFy can be generated by infinitely many different sets of generators and, in general, there is no
direct connection between the multidegrees of the leading monomials of a particular generator set
and the number of solutions. Further, with a general set of generators F of I, there is no good way
of defining the remainder on division by F because when algorithmically writing a polynomial g as
a polynomial combination g “ q1 f1 ` ¨ ¨ ¨ ` qn fn ` r, different r’s can be obtained when changing the
order in which fi’s are used in the rewriting of g.

4Equivalence ” is a relation on a set S, i.e. a subset of S ˆ S, satisfying three axioms: @a, b, c P S: (reflexivity) a ” a,
(transitivity) a ” b and b ” c implies a ” c, (symmetry) a ” b implies b ” a [1].

5Ordering ăo is a relation on a set S, i.e. a subset of S ˆ S, satisfying three axioms: @a, b, c P R Ď S: (reflexivity) a ăo a,
(transitivity) a ăo b and b ăo c implies a ăo c, (antisymmetry) a ăo b and b ăo a, then a “ b. Ordering that is defined for
all members of S, i.e. when R “ S is called total ordering (or linear ordering). An ordering is called partial ordering when
R Ă S [1].
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Fortunately, one can always find a “good set” G of generators of I, called reduced Gröbner basis of
I, that “behaves well”. It is possible to generalize the univariate long division to a multivariate long
division by several polynomials such that it, for every g P Qrx1, . . . ,nns, produces a unique reminder
r on division by G independently on the order in which the generators G are used in the division
process. Remainder r “ g modăo G is thus defined uniquely by the ideal I and monomial ordering
ăo used. Further, r becomes a linear combination of monomials that are not divisible by any leading
monomial of the generators G. The actual monomials may be different depending on the monomial
ordering used but their number l will always be the same.

The relationship of l to the number of solutions m is more intricate. In general l ě m. The equality
occurs exactly when I is a radical ideal, which means that I is such that f k P I for some k implies f P I.
Intuitively, radicality is connected to multiplicity of solutions. Fix an unknown xi and look at all
polynomials in I that are only in xi. They form an ideal Ii. The ideal Ii is univariate and hence is
generated by a single polynomial eipxiq. Roots of ei are the projections on the solutions of F on the
xi axis. Now, if the roots of eipxi) are of multiplicity one for all unknowns, then I is radical. Radical
ideals have no multiplicities in any coordinate.

For ideals I “ xFy with a finite number of solutions, we can construct its radical ideal
?

I by
removing all multiplicities from each eipxiq. This can be done [15] by constructing polynomials

pi,red “ ei

GCDpei, e1
i
q

where e1
i

is the derivative of ei w.r.t. xi and GCD is the greatest common divisor of two polynomials.
Radical ideal of I is obtained as

?
I “ x f1, . . . , fk, p1,red, . . . , pn,redy

A generalization of the long division for the multi-variate and multi-polynomial case will be
described in paragraph 3.5.4 and an algorithm for finding Gröbner basis of I will be given in para-
graph 3.5.5.

We are now ready to generalize the eigenvector-method to polynomial systems F “ t f1, . . . , fku in
multiple unknowns x1, . . . , xn:

1. Fix a particular monomial ordering ăo.

2. Construct the reduced Gröbner basis G of I “ xFy for ăo.

3. Construct the set B of all monomials that are divisible by no leading monomial of all polynomial
in G.

4. Fix a polynomial g P Qrx1, . . . , xns such that g has different values on different solutions, e.g.
take a random linear polynomial. This, guarantees isolated one-dimensional eigenspaces for
radical ideals xFy.

5. Construct the multiplication matrixMg by finding remainders of g b for all g P B on division by
G w.r.t. ăo.

6. Find eigenvalues and eigenvectors ofMg. Check if all eigenspaces are one-dimensional. If not,
extend F by setting F :“ F Y

 

p1,red, . . . , pn,red

(

and start again from the beginning with extended
F.

7. Recover the solutions from the eigenvalues, eigenvectors and G.

We will illustrate the above procedure in paragraph 3.5.6.
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Figure 3.3: (a) Lex monomial ordering xα
1

yα2 with x ălex y orders monomials as

1, x, x2, . . . , y, x y, x2y, . . . , y2, x y2, . . . while (b) the GRevLex monomial ordering orders
monomials as 1, y, x, y2, x y, x2, y3, x y2, x2y, x3, . . .. We see that y ” α “ p0, 1q ăgrevlex x ”
β “ p1, 0q since they both have total degree equal to one and β´α “ p1, 0q´p0, 1q “ p1,´1q,
i.e. the last non-zero coordinate of β´ α is negative.

3.5.3 Monomial ordering

We saw that a useful total ordering of monomials in single unknown was obtained by ordering the
monomials by their degree, giving

rx0, x1, x2, . . .s (3.19)

Unfortunately, ordering monomials in more unknowns by their total degree produces only a partial
ordering, i.e. we can’t compare all monomials. Consider, e.g. , monomials x2 y, x y2. They both have
total degree equal to three

degpx2 yq “ 3 “ degpx y2q but x2 y ‰ x y2 (3.20)

and hence we see that the total degree does not define ordering of this two monomials. For multi-
variate polynomials, we have to introduce another way how to order them.

Every set can be totally ordered such that it has the least element [1] but we have to satisfy additional
constraints to make the ordering useful for our case. The ordering by the degree in the univariate
case had two important properties we have to preserve. First, (i) constant 1 was the smallest element.
Secondly, (ii) the ordering “worked nicely” together with the multiplication by monomials, i.e.

degpm1q ă degpm2q ñ degpm m1q ă degpm m2q

for all monomials m P Qrx1, . . . , xns.
To get a useful ordering for the multivariate case, we have to preserve the above two properties.

Since monomials are in one-to-ne correspondece with their multidegrees, literature talks about mono-
mial ordering ăo as any total ordering ofZn

ě0
satisfying properties (i) and (ii) above. There are infinitely

many ways how to construct a monomial ordering [16]. Let us now present two classical orderings
that, in a way, represent all different monomial orderings.
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Lex Monomial Ordering (Lex) ălex orders monomials as words in a dictionary. An important param-
eter of ălex order (i.e. ordering of words) is the order of the unknowns (i.e. ordering of letters). For
instance, monomial x y2z “ x y y z ălex x y z z “ x y z2 when x ălex y ălex z (i.e. x y y z is before x y z z
in a standard dictionary). However, when z ălex y ălex x, then x y z2 “ x y z z ălex x y y z “ x y2z. We
see that there are n! possible ălex orderings when dealing with n unknowns.

Formally, we say that monomial xα ălex xβ, as well as α ălex β for exponents, when either β´ α “ 0
or the first non-zero element of β´ α is positive.

For instance p0, 3, 4q ălex p1, 2, 0q since p1, 2, 0q ´ p0, 3, 4q “ p1,´1,´4q and p3, 2, 1q ălex p3, 2, 4q since
p3, 2, 4q ´ p3, 2, 1q “ p0, 0, 3q.

Graded Reverse Lex Monomial Ordering (GRevLex) ăgrevlex is an extension of the partial ordering by
the total degree to a total monomial ordering.

Formally, we say that monomial xα ăgrevlex xβ, as well as α ăgrevlex β for exponents, when either
degpαq ă degpβq or degpαq “ degpβq and the last non-zero element of β´ α is negative.

For instance y3z „ p0, 3, 1q ăgrevlex p1, 2, 2q „ x y2z2 since 0 ` 3 ` 1 “ 4 ă 5 “ 1 ` 2 ` 2 but

x y2z2 „ p1, 2, 2q ăgrevlex p1, 3, 1q „ x y3 z since 1`2`2 “ 5 “ 1`3`1 and p1, 3, 1q´p1, 2, 2q “ p0, 1,´1q.
Figure 3.3 shows a few first monomials in two unknowns labeled by the Lex (a) and GRevLex (b)

orderings. It has been noted that Lex is often harder to use for computation than “graded” orderings,
such as GRevLex ordering. On the other hand, Lex orderings provide us with univariate polynomials.

The main difference between the above two orderings is that ăgrevlex is an archimedean ordering,
which means that for every monomials m1,m2 P Qrx1, . . . , xns, 1 ‰ m1 ăgrevlex m2, there is k P Zě0

such that m2 ăgrevlex mk
1
. It also means that with ăgrevlex, there are always only a finitely many

monomials smaller than any monomial. Lex orderings are not archimedean. Consider, for instance,
ălex with x ălex y. We see that xk ălex y for all k P Zě0 and hence there are infinitely many smaller
monomials than y. Lex orderings are useful for constructing a polynomial in a single unknown
when a system of polynomial equations has a finite number of solutions. Graded orderings, such
as GRevLex, appear to keep total degrees in computations low and often lead to results faster than
when using Lex orderings.

With a fixed monomial ordering ăo, we can talk about the leading monomial, LMp f q, of a polynomial
f , which is the largest monomial of the polynomial w.r.t. ăo. The coefficient at the leading monomial
is leading coefficient, LCp f q, their product is leading term, LTp f q “ LCp f q LMp f q. For instance, consider
polynomial f “ 1 y2 ` 2 x2y ` 3. With x ălex y, we get LMp f q “ y2, LCp f q “ 1 and LTp f q “ 1 y2 but
with x ăgrevlex y we get LMp f q “ x2 y, LCp f q “ 2 and LTp f q “ 2 x2y.

3.5.4 Multivariate and multipolynomial long division

We will now discuss a generalization of the long division of a univariate polynomial by one univariate
polynomial to a long division of a multivariate polynomial by several multivariate polynomials.

Let us first present an algorithm, then show two examples demonstrating an important feature of
the algorithm, and finally state the general fact about the reminder obtained.

Consider a polynomial f P Qrx1, . . . , xns and another s polynomials f1, . . . , fs P Qrx1, . . . , xns. Now,
we want to express f as

f “ a1 f1 ` a2 f2 ` ¨ ¨ ¨ ` as fs ` r (3.21)

with the quotients ai and the remainder r in Qrx1, x2, . . . , xns. To do so, we will rewrite f by the
following algorithm [2].

Long polynomial division algorithm

Input: f1, . . . , fs, f P Qrx1, . . . , xns, monomial ordering ăo

Output: a1, . . . , as, r P Qrx1, . . . , xns
a1 :“ 0; . . . , as :“ 0; r :“ 0
p :“ f
while p ‰ 0 do
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i :“ 1
divisionoccured :“ false
while i ď s and divisionoccured “ false do

if LTp fiq divides p then

ai :“ ai ` LTppq{LTp fiq
p :“ p ´ pLTppq{LTp fiqq fi

divisionoccured :“ true
else

i :“ i ` 1
end if

end while

if divisionoccured “ false then

r :“ r ` LTppq
p :“ p ´ LTppq

end if

end while

The above algorithm is a generalization of the algorithm for long polynomial division in one unknown.
Let us look at some examples that illustrate some of the important features of the algorithm.

Example 1 Let us divide f “ x y2 `x`1 by f1 “ x y`1, f2 “ y`1 with monomial ordering y ălex x.

# f “ a1 f1 ` a2 f2 ` p ` r

0 “ 0 px y ` 1q ` 0 py ` 1q ` x y2 ` x ` 1 ` 0
1 “ y px y ` 1q ` 0 py ` 1q ` x ´ y ` 1 ` 0
2 “ y px y ` 1q ` 0 py ` 1q ` ´y ` 1 ` x
3 “ y px y ` 1q ´ 1 py ` 1q ` 2 ` x
4 “ y px y ` 1q ´ 1 py ` 1q ` 0 ` x ` 2

Symbol # represents the number of executions of the outer while loop above. We initialize at #0 by
setting p to f . Then, at #1, we try to divide LTppq “ x y2 by LTp f1q “ x y. We succeed and update a1 to
y and p to x ´ y ` 1. This resets i to 1 and hence at #2 we again try to divide LTppq “ x by LTp f1q “ x y.
We fail and hence increment i and try to divide LTppq “ x by LTp f2q “ y. We fail again and thus move
LTppq “ x to r, update p and reset i. At #3 we try to divide LTppq “ ´y by LTp f1q “ x y. We fail. Hence
we try to divide LTppq “ ´y by LTp f2q “ y. We succeed, update a2 to ´1, and update p. Finally, at
#4, we fail to divide LTppq “ 2 by LTp f1q as well as by LTp f2q and thus add 2 to r. This terminates the
algorithm with p “ 0.

We can first notice that no monomial of r is divisible by LTp f1q or by LTp f2q. Secondly we also
see that multidegpa1 f1q “ r1, 2s ď r1, 2s “ multidegp f q as well as multidegpa2 f2q “ r0, 1s ď r1, 2s “
multidegp f q. This holds true in general and bring us to the following important general fact about
the long division algorithm.

Fact [2] Consider a fixed monomial ordering ăo and an ordered s-tuple F “ p f1, . . . , fsq of polynomials.
Then, every polynomial f can rewritten using the long division algorithm as

f “ a1 f1 ` a2 f2 ` ¨ ¨ ¨ ` as fs ` r

with polynomials ai and r such that

1. if r ‰ 0, then no monomial of r is divisible by LTp f1q, . . . , LTp fsq and

2. if ai fi ‰ 0, then multidegp f q ě multidegpai fiq.
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Polynomial r is called a remainder of f on division by F, denoted as r “ f
F
.

Now, recall that in order to solve a polynomial f in one unknown with eigenvectors, we have used
that the remainders on division by f were defined by f uniquely. Since the number of coefficients in
r was equal to the degree of f , each r was uniquely determined by its values on the roots of f . We
could thus represent remainders as vectors in a linear space with coordinates being coefficients of r
or values of r on the roots of f . This interplay between coefficients for r and values of r on the roots
of f brought the eigenvector problem with the (companion) matrix composed of the coefficients of f
and its eigenvectors containing evaluations of the standard monomials on the roots of f .

Unfortunately, the remainder on division by more than one polynomial in more than one unknown,
as provided by the long division algorithm above, does not produce unique r. To see this, consider
f “ x y2 ´ x and f1 “ x y ` 1, f2 “ y2 ´ 1 and fix the monomial ordering as y ălex x. Then, for the two
possible orders of f1 and f2, we are getting different r’s:

1. f : p f1, f2q
f “ a11 f1 ` a12 f2 ` r1

x y2 ´ x “ y px y ` 1q ` 0 py2 ´ 1q ` p´x ´ yq

2. f : p f2, f1q
f “ a21 f2 ` a22 f1 ` r2

x y2 ´ x “ x py2 ´ 1q ` 0 px y ` 1q ` 0

Notice that no monomial of r1, r2 is divisible by any LTp fkq as well as that multidegrees of ai j fk are not
larger than the multidegree of LTp f q. We see that the properties in the Fact 3.5.4 does not uniquely
define the remainders in multivariate and multipolynomial case.

Fortunately, we can always replace polynomials F by another set of more convenient polynomials
G such that G generate the same ideal as F, i.e. xGy “ xFy in the standard notation, and the remainder
on division of f by G is unique w.r.t. the change of the order of polynomials in G. The remainder still
depends on ăo chosen. Sets G with the above property are called Gröbner bases of ideal xFy.

Gröbner bases G generate exactly the same set of solutions as polynomials F and can be obtained
as “polynomial combinations” of polynomials F. We will next show how to do it by introducing a
very classical Buchberger algorithm [2] for constructing a Gröbner basis G from given polynomials F.

After constructing a Gröbner basis G of F, we will be able to obtain unique remainders on division
by G and, as in the univariate case, thus obtain a one-to-one mapping from remainders to a fine-
dimensional vector space over C for polynomial systems with a finite number of solutions. We will
thus get an eigenvalue/eigenvector problem providing the desired solutions to a multivariate and
multipolynomial systems with a finite number of solutions.

3.5.5 Gröbner basis construction

Let us now present the most classical algorithm for constructing the reduced Gröbner basis G of an ideal
xFy [2].

3.5.5.1 Gröbner basis construction for linear polynomial systems

To motivate the general algorithm, we will first look at the most familiar systems of polynomial
equations, systems of linear polynomial equations. We have already presented an example above in
paragraph 3.2. Here, we will introduce a more general system to illustrate additional effects related
to the monomial ordering.
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Consider the following system of linear polynomial equations

»

–

2 4 2 1 7
2 4 1 2 8
1 2 3 1 4

fi

fl

»

—

—

—

—

–

x1

x2

x3

x4

x5

fi

ffi

ffi

ffi

ffi

fl

“

»

–

0
0
0

fi

fl

and compute the reduced row echelon form [5] of the matrix of the above system by the Gauss-Jordan
elimination [5] to get

»

–

1 2 0 0 3
0 0 1 0 0
0 0 0 1 1

fi

fl

»

—

—

—

—

–

x1

x2

x3

x4

x5

fi

ffi

ffi

ffi

ffi

fl

“

»

–

0
0
0

fi

fl

The reduced row echelon form is unique for a given order of unknowns. It provides the reduced
Gröbner basis

G1 “ tx1 ` 2 x2 ` 3 x5, x3, x4 ` x5u
of the ideal generated by F “ t2 x1 ` 4 x2 ` 2 x3 ` x4 ` 7 x5, 2 x1 ` 4 x2 ` x3 ` 2 x4 ` 8 x5, x1 ` 2 x2 ` 3 x3 `
x4 ` 4 x5u for monomial ordering ălex1 “ x5 ălex x4 ălex x3 ălex x2 ălex x1. Now, using the monomial
ordering ălex2 “ x2 ălex x1 ălex x5 ălex x4 ălex x3, we reorder the columns of the matrix of the original
system to r3 4 5 1 2s and thus get the corresponding “reordered” system

»

–

2 1 7 2 4
1 2 8 2 4
3 1 4 1 2

fi

fl

»

—

—

—

—

–

x3

x4

x5

x1

x2

fi

ffi

ffi

ffi

ffi

fl

“

»

–

0
0
0

fi

fl

The reduced row echelon form of the reordered system is

»

–

1 0 0 0 0
0 1 0 ´1{3 ´2{3
0 0 1 1{3 2{3

fi

fl

»

—

—

—

—

–

x3

x4

x5

x1

x2

fi

ffi

ffi

ffi

ffi

fl

“

»

–

0
0
0

fi

fl

which is the reduced Gröbner basis of

G2 “ tx3, x4 ´ 1

3
x1 ´ 2

3
x2, x5 ` 1

3
x1 ` 2

3
x2u

of xFy w.r.t. the monomial ordering ălex2.
We see that the matrix of the reduced row echelon form w.r.t. ălex1 is not equal to the matrix of the

reduced row echelon form w.r.t. ălex2 and the corresponding reduced Gröbner bases are also different.
In general, the reduced Gröbner basis obtained depends on the monomial ordering used. On the
other hand, when there is a fininte number of sollutions to a linear system, i.e. one solution, then the
row reduced echelon form is the identity for all orderings of unknowns.

3.5.5.2 Gröbner basis construction for non-linear polynomial systems

Let us now look at sytems of general polynomial equations. We will introduce Buchberger algorithm
on a very simple example. Refer to [2] for complete theory and more examples.
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Figure 3.4: Solution to two conics f1 “ 6 x1x2 ` 3 x2
2

´ 10 x1 ´ 13 x2 ` 10, f2 “ 3 x2
2

´ 2 x1 ´ 5 x2 ` 2 are

r0, 1s, r1, 0s, r2, 2s of multiplicity one.

Consider a polynomial system F “ r f1, f2s with

f1 “ 6 x1x2 ` 3 x2
2 ´ 10 x1 ´ 13 x2 ` 10 (3.22)

f2 “ 3 x2
2 ´ 2 x1 ´ 5 x2 ` 2

Figure 3.4 shows that the system F has three solutions, all of multiplicity one. Ideal xFy is radical. We
will use monomial ordering

ăo” x2 ăgrevlex x1

Monomials of F will be thus ordered as

1 ăo x2 ăo x1 ăo x2
2 ăo x1x2

System 3.22 has three solutions. To get an eigenvalue/eigenvector problem, we need to find a
multiplication matrix for a polynomial w.r.t. three monomials that will generate all remainders on the
division by Gröbner basis of xFy. With GRevLex ordering, we expect these to be the three smallest
monomials 1, x1, x2. Thus, all larger monomials, in particular x2

1
must be reduced by the long division.

However, polynomials in F do not reduce x2
1

since there is no polynomial with leading term dividing

x2
1
. We have to add more polynomials to the basis to be able to get x1 as a remainder on the division

by the basis.
The idea is to multiply f1 and f2 by the smallest monomials w.r.t. ăo to cancel the leading terms

and to construct a new polynomial, S-polynomial of f1, f2, which could potentially be reduceed to
polynomial with leading x2

1
. This is a generalization of one step of Gaussian elimination when a new

polynomial was constructed by canceling the leading unknown, the leading monomial of degree one.
Leading monomials of f1, f2 have the least common multiple LCMpx1x2, x2

2
q “ x1x2

2
. Hence, to cancel

the leading terms, we have to combine f1 and f2 by monomial coefficients as follows

Sp f1, f2q “ x2

6
f1 ´ x1

3
f2 “

x1x2
2

6 x1x2
f1 ´

x1x2
2

2 x2
2

f2 “ LCMpLMp f1, f2qq
LTp f1q f1 ´ LCMpLMp f1, f2qq

LTp f2q f2

“ p3 x3
2 ` 4 x2

1 ´ 13 x2
2 ´ 4 x1 ` 10 x2q{6 (3.23)
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Now, we will simplify Sp f1, f2q by reducing it by long division by f1, f2. This will remove large part
of Sp f1, f2q that is contained in xFy and will guarantee that the LMprq will not be too large, since it can’t
be divided by any LM of any polynomial in F.

f3 “ Sp f1, f2q
F

“ Sp f1, f2q :ăop f1, f2q “ 3 x2
1 ´ 5 x1 ´ 2 x2 ` 2 (3.24)

Next, construct a new set of polynomials G “ r f1, f2, 6 f3s with

f1 “ 6 x1x2 ` 3 x2
2 ´ 10 x1 ´ 13 x2 ` 10

f2 “ 3 x2
2 ´ 2 x1 ´ 5 x2 ` 2

f3 “ 3 x2
1 ´ 5 x1 ´ 2 x2 ` 2

The above procedure has to be iterated further. For every pair of polynomials in G, we construct their
S-polynomial and reduce it by G, add the remainder on division by G, by which we enlarge G, and
so on.

Let us do one more step of the above procedure

Sp f1, f2q
G

“ f3

Sp f1, f3q
G

“ 3 x1x2
2

´ 10 x2
1

´ 3 x1x2 ` 4 x2
2

` 10 x1 ´ 4 x2

G
“ 0

Sp f2, f3q
G

“ ´2 x3
1

´ 5 x2
1
x2 ` 5 x1x2

2
` 2 x3

2
` 2 x2

1
´ 2 x2

2

G
“ 0

We see that no new non-zero remainder has been generated and thus the set G become stable w.r.t. to
generating S-polynomials from G followed by reduction by G. We have obtained a Gröbner basis G
of xFy.

We can still further simplify G to obtain the unique reduced Gröbner basis of xFy. The idea is to
remove all monomials from polynomials of G that can be divided by the leading terms of G. It is a
generalization of Gauss-Jordan elimination. The reduced Gröbner basis is to a Gröbner basis as is the
reduced row echelon form to a mere “Gaussian eliminated” system.

In our example, we see that there is monomial x2
2

in f1 that is divisible by the leading term x2
2

of f2,
hence we can remove it by subtracting f2 from f1 (and then normalizing the resulting polynomial to
get the leading coefficients equal to one) to get the reducer Gröbner basis Gr “ rg1, g2, g3s with

g1 “ x1x2 ´ 4

3
x1 ´ 4

3
x2 ` 4

3

g2 “ x2
2 ´ 2

3
x1 ´ 5

3
x2 ` 2

3
(3.25)

g3 “ x2
1 ´ 5

3
x1 ´ 2

3
x2 ` 2

3

See Figure 3.5.
Notice that leading monomials of Gr, i.e. x1x2, x2

2
, and x2

1
reduce all monomials except for the three

monomials 1, x1, and x2. These are the three desired monomials that will provide the basis of the linear
space to form a multiplication matrix and to obtain an eigenvalue/eigenvector problem providing us
with the solution to the original system F. See Figure 3.6.

3.5.6 Solving general radical systems by eigenvectors of a multiplication matrix

We will now generalize the procedure from paragraph 3.5.1 to ideals xFy generated by multiple
multivariate polynomials F. We will illustrate the generalization on an example in two unknowns
x1, x2.

We consider mappingMg : Qrx1, x2s Ñ Qrx1, x2s by a polynomial g P Qrx1, x2s defined by

Mgphq “ pg hq
G

with a Gröbner basis G of F
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Figure 3.5: Three polynomials g1 “ 3 x1x2 ´ 4 x1 ´ 4 x2 ` 4, g2 “ 3 x2
2

´ 2 x1 ´ 5 x2 ` 2,

g3 “ 3 x2
1

´ 5 x1 ´ 2 x2 ` 2 of the (un-normalized) reduced Gröbner basis G of xFy.

x1

x2

x2
1

x2
1

x2
1

x2
2

x1x2

0

0

1

1

1

2

2

3

3

4

4 degpx1q

degpx2q

Figure 3.6: Standard monomials x1, x2, 1 of G from Equation 3.25 are not divisible by leading mono-
mials x2

1
, x1x2, x2

2
of G. All other monomials, shown in gray, are divisible by at least on of

the leading monomials of G.
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The reduction of g h as well as the computation of G is carried out w.r.t. the same monomial ordering.
Next, consider that for a point pi “ rpi1, pi2sJ, gppiq “ rppiq where r “ a2x2 `a1x1 `a0 is the remainder

of g on division by G, i.e. gG. Thus

gppiq “ rppiq “ a1x1ppiq ` a2x2ppiq ` a01ppiq (3.26)

We can thus write

gppiq

»

–

1ppiq
x1ppiq
x2ppiq

fi

fl “ pa1x1ppiq ` a2x2ppiq ` a01ppiqq

»

–

1ppiq
x1ppiq
x2ppiq

fi

fl

gppiq

»

–

1ppiq
x1ppiq
x2ppiq

fi

fl “
`

a1 M
J
x1

` a2 M
J
x2

` a0I
˘

»

–

1ppiq
x1ppiq
x2ppiq

fi

fl

gppiq

»

–

1
pi1

pi2

fi

fl “
`

a1 M
J
x1

` a2 M
J
x2

` a0I
˘

»

–

1
pi1

pi2

fi

fl

gppiq ~vi “ MJ
g ~vi

showing that pgppiq, ~viq are eigenvalue-eigenvector pairs of MJ
g “ pa1 Mx1

` a2 Mx2 ` a0IqJ.
Let us now see how we can extract matrices Mx1

, Mx2 given by Gr from Equation 3.25. We write Gr in
a matrix form as

g3

g1

g2

»

—

—

—

—

—

–

x2
1

x1x2 x2
2

x1 x2 1

1 0 0 ´ 5
3 ´ 2

3
2
3

0 1 0 ´ 4
3 ´ 4

3
4
3

0 0 1 ´ 2
3 ´ 5

3
2
3

fi

ffi

ffi

ffi

ffi

ffi

fl

(3.27)

We see that

x1

»

–

1
x1

x2

fi

fl

G

“

»

–

x1

x2
1

x1x2

fi

fl

G

“

»

—

—

–

0 1 0

´ 2
3

5
3

2
3

´ 4
3

4
3

4
3

fi

ffi

ffi

fl

»

—

—

–

1

x1

x2

fi

ffi

ffi

fl

and thus Mx1
“

»

—

—

–

0 1 0

´ 2
3

5
3

2
3

´ 4
3

4
3

4
3

fi

ffi

ffi

fl

x2

»

–

1
x1

x2

fi

fl

G

“

»

–

x2

x1x2

x2
2

fi

fl

G

“

»

—

—

–

0 1 0

´ 4
3

4
3

4
3

´ 2
3

2
3

5
3

fi

ffi

ffi

fl

»

—

—

–

1

x1

x2

fi

ffi

ffi

fl

and thus Mx2 “

»

—

—

–

0 1 0

´ 4
3

4
3

4
3

´ 2
3

2
3

5
3

fi

ffi

ffi

fl

Now, since the system F has three solutions with multiplicity one, ideal xFy is radical. Also, since all
three solutions have pairwise distinct x1 (as well as x2) coordinates 0, 1, 2, Figure 3.4, we can choose
g “ x1 and thus Mg “ Mx1

. We calculate eigenvectors of Mx1
and get three one-dimensional bases of the

three respective separated one-dimensional eigenspaces

eigenvectorspMx1
q “

»

–

1 1 1
1 0 2
0 1 2

fi

fl corresponding to evaluation of

»

–

1
x1

x2

fi

fl on solutions pp1, p2, p3q

We thus get three solutions r1, 0s, r0, 1s, r2, 2s to the system F.

3.5.6.1 Recovering the solutions from the eigenvectors of the multiplication matrix

In the above example, the standard monomial basis r1, x1, x2s contained all unknowns and thus it
was easy to “read off” the solutions from the eigenvectors of Mg. This is not a general behavior.
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For instance, when the number of solutions is smaller than the number of unknowns, the standard
monomial basis can’t include all unknowns.

To recover solutions in a general case, we realize that every unknown xi can be expressed as a linear
combination of the basis B an thus evaluated at a solution p j as

xipp jq “ pxi mod Jqpp jq “ p
ÿ

bPB

ab bqpp jq “
ÿ

bPB

ab bppp jq (3.28)

3.5.6.2 Maple implementation

The following Maple [17] implementation6 of a method for solving polynomial equations works for a
general system of polynomial equations with a finite number of solutions.

The coefficient vector of a polynomial f w.r.t. a monomial basis B

> fB2Coffs:=proc(f,B)

local m, t;

t:=table(zip((a,b)->b=a,[coeffs(f,B,’m’)],[m]));

map(b->‘if‘(assigned(t[b]),t[b],0),B)

end proc:

Take a general (non-radical) polynomial system with a finite number of solutions

> F:=tpx12 ` x22 ` x32 ´ 1q2, p3 ˚ x1 ´ 1q2, p3 ˚ x2 ´ 2q2u:
and compute its radical ideal.

> J:=PolynomialIdeals[Radical](PolynomialIdeals[PolynomialIdeal](F)):

J := ă 3 ˚ x1 ´ 1, 3 ˚ x2 ´ 2, 9 ˚ x32 ´ 4 ą
Use GRevLex monomial ordering

> o:=tdeg(op(indets(F)));

o := tdeg(x1, x2, x3)

Construct the standard monomial basis of QQ[x1,x2,x3]/J for tdeg(x1, x2, x3)

> B:=Groebner[NormalSet](J,o)[1];

B := [1, x3]

Take a random (but accidentally a very nice :-) linear function f

> f:=add(zip((x,y)->x*y,convert(RandomVector(nops(o)),list),[op(o)]));

f := 9*x1+9*x2+9*x3

and find f*B mod J

> fBmJ:=Groebner[NormalForm](map(b->f*b,B),J,o);

fBmJ := [9*x3+9, 9*x3+4]

Construct matrix MJ such that f*B mod J = M*B

> Mt:=Matrix(map(f->fB2Coffs(f,B),fBmJ));

Mt :=

„

9 9
4 9



Eigenvectors of MT

> V:=LinearAlgebra[Eigenvectors](Mt)[2];

V :=

„

3{2 ´3{2
1 1



Normalize V to have ones in the first row

> V:=V.LinearAlgebra[MatrixInverse](LinearAlgebra[DiagonalMatrix](V[1]));

V :=

„

1 1
2{3 ´2{3



Express unknowns x1, x2, x3 in the basis B

> N:=Groebner[NormalForm]([op(o)],J,o);

N := [1/3, 2/3, x3]

6This implementation was obtained in collaboration with Justin Chen.
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Figure 3.7: System F “ rx2
1

` x2
2

´ 1, p5 x1 ´ 4q px2 ´ x1 ´ 1qs generates radical ideal but has higher-

dimensional eigenspace of the multiplication matrix w.r.t. x1.

> C:=map(n->fB2Coffs(n,B),N);

C := [[1/3, 0], [2/3, 0], [0, 1]]

Evaluate unknowns by combining the basis B with coefficients C

> S:=[ListTools[Transpose](map(c->convert(Matrix(c).V,list),C)),[op(o)]];

S := [[[1/3, 2/3, 2/3], [1/3, 2/3, -2/3]], [x1, x2, x3]]

The important step in the above implementation is the construction of a radial ideal of the input
system. This is computationally intensive process in general. Let us next present examples of radical
and non-radical systems to understand what happens when we tried to use the above procedure on
a system that generates a non-radical ideal.

3.5.6.3 General method for radical ideals

Radical ideals still may produce eigenspaces of higher dimension than one. Consider, for instance
the system

F “ rx2
1 ` x2

2 ´ 1, p5 x1 ´ 4q px2 ´ x1 ´ 1qs
see Figure 3.7.

Ideal I “ xFy is radical. The generators for the elimination ideals I X Crx1s, resp. I X Crx2s, are
x1 p1 ` x1q p5 x1 ´ 4q, resp. x2 p´1 ` x2q p5 x2 ´ 3qp5 x2 ` 3q, which are square-free.

When selecting the standard monomials as
“

1 x1 x2 x2
1

‰

, we get the corresponding multiplica-
tion matrix

Mx1
“

»

—

—

—

–

0 1 0 0
0 0 0 1

´ 4
5

1
5

4
5 1

0 4
5 0 ´ 1

5

fi

ffi

ffi

ffi

fl

with e/v ´ 1{
C

»

—

—

–

1
´1

0
1

fi

ffi

ffi

fl

G

, p4

5
q2{

C

»

—

—

—

—

–

1 0
4
5 0

0 1
16
25 0

fi

ffi

ffi

ffi

ffi

fl

G

and 0{
C

»

—

—

–

1
0
1
0

fi

ffi

ffi

fl

G

Hence we can’t read out the two complete solutions for 4
5 directly from the basis of the corresponding

eigenspace.
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However, we can find a suitable polynomial f such that M f has one-dimensional eigenspaces only.
In this case, for instance, we may construct

Mx1`x2 “

»

—

—

—

–

0 1 1 0

´ 4
5

1
5

4
5 2

1
5

1
5

4
5 0

´ 16
25 ´ 24

25
16
25

3
5

fi

ffi

ffi

ffi

fl

with e/v
1

5
{
C

»

—

—

—

–

1
4
5

´ 3
5

16
25

fi

ffi

ffi

ffi

fl

G

, 1{
C

»

—

—

–

1
0
1
0

fi

ffi

ffi

fl

G

,
7

5
{
C

»

—

—

—

–

1
4
5
3
5

16
25

fi

ffi

ffi

ffi

fl

G

, ´1{
C

»

—

—

–

1
´1

0
1

fi

ffi

ffi

fl

G

and thus get complete solutions from the second and third coordinate of the bases of the eigenspaces.

3.5.7 Solving general “non-radical” systems by eigenvectors of a multiplication
matrix

Let us now look at systems that are not radical. This means, for systems with a finite number of
solutions, that some of the solutions have multiplicity greater than one. In this situation, in general,
the multiplication matrices for a general polynomial g may have eigenvalues of greater multiplicities
and thus eigenspaces of dimension greater than one. In such a case, it is not so clear how to extract
solutions from the bases of the eigenspaces.

In principal, there are three approaches how to solve this. The first approach is to obtain a
radical ideal

a

xFy of xFy and proceed as above. The second approach would be to use the fact
that eigenvectors common to all multiplication matrices by all polynomials are in one dimensional
eigenspaces [15], and, third, it would be possible to follow [18] and to get a more general algorithm
for non-radical systems. Let us next show an example of using the first approach.

Consider the system F “ r f1, f2s, Equation 3.2,

f1 “ x2
2 ` x2

1 ´ 1 “ 0

f2 “ 25 x1x2 ´ 20 x2 ´ 15 x1 ` 12 “ 0

This system does not generate a radical ideal since some of the solutions have higher multiplicities.
Let us follow the procedure above. The (up to multiplication by a constant) reduced Gröbner basis

G of F is, w.r.t. x1 ălex x2,

G “ rx2
2 ` x2

1 ´ 1, 25 x1x2 ´ 20 x2 ´ 15 x1 ` 12, 125 x3
1 ´ 100 x2

1 ´ 80 x1 ` 64s

which actually consists of the polynomials f1, f3, f4 from Equation 3.5. The standard monomials w.r.t.
to G are r1, x1, x2

1
, x2s. These are all the monomials smaller than the leading monomials of polynomials

in G, i.e. x2
2
, x1x2, x3

1
, w.r.t. x1 ălex x2.

Also notice that these standard monomials are not all in x1 despite using x1 ălex x2. The reason
is that the four solutions (when counting the multiplicities) project only to two solutions in x1 with
one solution of multiplicity two. The solution r 4

5 ,
3
5 sJ of multiplicity two “masks” the simple solution

r 4
5 ,´ 3

5 sJ.
The matrix representing the multiplication by x1 modulo G is

Mx1
“

»

—

—

—

—

–

0 1 0 0

0 0 1 0

´ 64
125

16
25

4
5 0

´ 12
25

3
5 0 4

5

fi

ffi

ffi

ffi

ffi

fl

with eigenvalue/eigenspace
4

5
{
C

»

—

—

—

—

–

0 1

0 4
5

0 16
25

1 0

fi

ffi

ffi

ffi

ffi

fl

G

and ´ 4

5
{
C

»

—

—

—

—

—

–

1

´ 4
5

16
25

3
5

fi

ffi

ffi

ffi

ffi

ffi

fl

G

The multiplicity of eigenvalue 4
5 is three and it has associated a two-dimensional eigenspace. The

multiplicity of eigenvalue ´ 4
5 is one and thus it has associated a one-dimensional eigenspace. The

basis of the eigenspace associated to eigenvalue 4
5 does not directly provide the two solutions related
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to x1 “ 4
5 . On the other hand the basis of the one-dimensional eigenspace corresponding to the

eigenvalue ´ 4
5 provides the solution r´ 4

5 ,
3
5 sJ.

Let’s try to multiply by another polynomial, e.g. by x2 ´ x1. We keep the same Gröbner basis as
well as monomial ordering x1 ălex x2. So, now we get the multiplication matrix

Mx2´x1
“

»

—

—

—

—

—

–

0 ´1 0 1

´ 12
25

3
5 ´1 4

5

16
125 ´ 16

25 ´ 1
5

16
25

37
25 ´ 3

5 ´1 ´ 4
5

fi

ffi

ffi

ffi

ffi

ffi

fl

with ´ 1

5
{
C

»

—

—

—

—

—

–

1

4
5

16
25

3
5

fi

ffi

ffi

ffi

ffi

ffi

fl

G

, ´ 7

5
{
C

»

—

—

—

—

—

–

1

4
5

16
25

´ 3
5

fi

ffi

ffi

ffi

ffi

ffi

fl

G

and
7

5
{
C

»

—

—

—

—

—

–

1

´ 4
5

16
25

3
5

fi

ffi

ffi

ffi

ffi

ffi

fl

G

and we see that, in this case, we were lucky to find a polynomial x2 ´ x1 that provided three
separated one-dimensional eigenspaces. The reason is that the double eigenvalue ´ 1

5 has a “defective
eigenspace” [5] of dimension only one and hence we do not suffer from having a derogatory matrix
with a higher-dimensional eigenspace.

We can read out the solutions from the second and the third coordinate of the three normalized
eigenvectors above.

In general, unfortunately, there are systems for which the multiplication by no polynomial gives
only one-dimensional eigenspaces for all eigenvalues [15]. To illustrate this, we will consider the
system

F “ rpx1 ´ 1q2, px2 ´ 1q2s
The reduced Gröbner basis G of F is w.r.t. x2 ălex x1

G “ rx2
1 ´ 2 x1 ` 1, x2

2 ´ 2 x2 ` 1s
The standard monomials w.r.t. to G are r1, x2, x1, x1x2s. The matrix representing the multiplication by
x1 modulo G is

Mx1
“

»

—

—

—

—

–

0 0 1 0

0 0 0 1

´1 0 2 0

0 ´1 0 2

fi

ffi

ffi

ffi

ffi

fl

with eigenvalue/eigenspace 1{
C

»

—

—

–

1 0
0 1
1 0
0 1

fi

ffi

ffi

fl

G

The matrix representing the multiplication by x2 ´ x1 modulo G is

Mx2´x1
“

»

—

—

—

—

–

0 1 ´1 0

´1 2 0 ´1

1 0 ´2 1

0 1 ´1 0

fi

ffi

ffi

ffi

ffi

fl

with eigenvalue/eigenspace 1{
C

»

—

—

—

—

–

1 1

0 1
2

0 1
2

´1 0

fi

ffi

ffi

ffi

ffi

fl

G

We see that we always get a two-dimensional eigenspace and it is not possible to just read out the
solutions from the basic vectors of the eigenspaces.

3.5.7.1 General solution

To present a general method, we will consider a system obtained from 3.2 by squaring the first
equation, i.e.

F “ rpx2
2 ` x2

1 ´ 1q2, 25 x1x2 ´ 20 x2 ´ 15 x1 ` 12s
The Gröbner basis (reduced up to a multiplication by a constant) G of F is, w.r.t. x1 ălex x2,

G “ r 3125 x5
1 ´ 1875 x4

1 ´ 2250 x3
1 ` 1350 x2

1 ` 405 x1 ´ 243,

25 x1 x2 ´ 20 x1 ´ 15 x2 ` 12,

625 x4
1 ` 625 x4

2 ´ 450 x2
1 ´ 800 x2

2 ` 337 s
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The standard monomials w.r.t. to G and x1 ălex x2

r1, x1, x
2
1, x

3
1, x

4
1, x2, x

2
2, x

3
2s

The matrix representing the multiplication by a general linear polynomial 3 x1 ` 4 x2 modulo G w.r.t.
x1 ălex x2 is

M 3 x1`4 x2
“

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

0 3 0 0 0 5 0 0

´ 12
5 4 3 0 0 3 0 0

´ 36
25 0 4 3 0 9

5 0 0

´ 108
125 0 0 4 3 27

25 0 0

´ 891
3125 ´ 243

625 ´ 162
125

54
25

29
5

81
125 0 0

´ 36
25

12
5 0 0 0 9

5 5 0

´ 144
125

48
25 0 0 0 0 9

5 5

´ 2261
625

192
125

18
5 0 ´5 0 32

5
9
5

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

The eigenvalue/eigenspace of M 3 x1`4 x2
are as follows

29

5
{
C

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

1 1

19
15

47
45

29
21

67
75

117
125

87
125

441
625

321
625

2
5

8
15

0 16
75

32
125 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

G

,
11

5
{
C

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

1

´ 3
5

9
25

´ 27
125

81
625

4
5

16
25

64
125

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

G

,´11

5
{
C

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

1

3
5

9
25

27
125

81
625

´ 4
5

16
25

´ 64
125

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

G

corresponding to

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

1

x1

x2
1

x3
1

x4
1

x2

x2
2

x3
2

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Eigenvalues 11
5 and ´ 11

5 are of multiplicity two and both have defective eigenspaces of dimension

one. Eigenvalue 29
5 is of multiplicity four and has a defective eigenspace of dimension two.

We see that the solution r 3
5 ,

4
5 s is buried in a two dimensional eigenspace and can’t be directly read

out. Since we were using a random generic polynomial 3 x1 `4 x2, we can’t expect to solve this system
as is by the eigenvector method.

Let us now find the radical system generating
a

xFy and use it to compute the solutions to the
original system F. To do that, we need to generate univariate polynomials in x1 and x2 in xFy and get
their corresponding square-free polynomials, which we then add to F.

One way to get the univariate polynomials is to construct Gröbner bases Gx1
w.r.t. x1 ălex x2 and

Gx2 w.r.t. x2 ălex x1. We get

Gx1
“ r p5 x1 ` 3q2 p5 x1 ´ 3q3, p5 x1 ´ 3q p5 x2 ´ 4q, 625 x4

1 ` 625 x4
2 ´ 450 x2

1 ´ 800 x2
2 ` 337 s

Gx2 “ r p5 x2 ` 4q2 p5 x2 ´ 4q3, p5 x1 ´ 3q p5 x2 ´ 4q, 625 x4
1 ` 625 x4

2 ´ 450 x2
1 ´ 800 x2

2 ` 337 s

The univariate polynomial in Gx1
, resp. Gx2 , is

g1 “ p5 x1 ` 3q2 p5 x1 ´ 3q3 resp. g2 “ p5 x2 ` 4q2 p5 x2 ´ 4q3
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We want to construct square-free polynomials

f3 “ g1

GCD
´

g1,
Bg1

Bx1

¯ “ p5 x1 ` 3q2 p5 x1 ´ 3q3

GCD pp5 x1 ` 3q2 p5 x1 ´ 3q3, 5 p5 x1 ` 3q p5 x1 ´ 3q2p25 x1 ` 3qq

“ p5 x1 ` 3q2 p5 x1 ´ 3q3

p5 x1 ` 3qp5 x1 ´ 3q2
“ p5 x1 ` 3qp5 x1 ´ 3q

f4 “ g2

GCD
´

g2,
Bg2

Bx2

¯ “ p5 x2 ` 4q2 p5 x2 ´ 4q3

GCD pp5 x2 ` 4q2 p5 x2 ´ 4q3, 5 p5 x2 ` 4qp5 x2 ´ 4q2p25 x2 ` 4qq

“ p5 x2 ` 4q2 p5 x2 ´ 4q3

p5 x2 ` 4qp5 x2 ´ 4q2
“ p5 x2 ` 4qp5 x2 ´ 4q

The radical ideal
a

xFy will now be

b

xFy “ xpx2
2 ` x2

1 ´ 1q2, 25 x1x2 ´ 20 x2 ´ 15 x1 ` 12, p5 x1 ` 3qp5 x1 ´ 3q, p5 x2 ` 4qp5 x2 ´ 4qy

giving Gröbner basis
?

G “ r25 x2
1

´ 9, 25 x1x2 ´ 20 x1 ´ 15 x2 ` 12, 25 x2
2

´ 16s w.r.t. x1 ălex x2. The
standard monomials w.r.t. x1 ălex x2 are r1, x1, x2s and the multiplication matrix for 3 x1 ` 4 x2 is

M 3 x1`4 x3
“

»

—

—

–

0 3 5

´ 33
25 4 3

44
25

12
5

9
5

fi

ffi

ffi

fl

with e/v as
11

5
{
C

»

–

1

´ 3
5
4
5

fi

fl

G

,
29

5
{
C

»

–

1
3
5
4
5

fi

fl

G

,´11

5
{
C

»

–

1
3
5

´ 4
5

fi

fl

G

We see that, now, we can directly read out all the solutions to the system.
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4 Affine space

Let us study the affine space, an important structure underlying geometry and its algebraic represen-
tation. The affine space is closely connected to the linear space. The connection is so intimate that the
two spaces are sometimes not even distinguished. Consider, for instance, function f : R Ñ R with
non-zero a, b P R

f pxq “ a x ` b (4.1)

It is often called “linear” but it is not a linear function [6, 7, 5] since for every α P R there holds

f pα xq “ α a x ` b ‰ α pa x ` bq “ α f pxq (4.2)

In fact, f is an affine function, which becomes a linear function only for b “ 0.
In geometry, we need to be very precise and we have to clearly distinguish affine from linear. Let us

therefore first review the very basics of linear spaces, and in particular their relationship to geometry,
and then move to the notion of affine spaces.

4.1 Vectors

Let us start with geometric vectors and study the rules of their manipulation.
Figure 4.1(a) shows the space of points P, which we live in and intuitively understand. We know

what is an oriented line segment, which we also call a marked ruler (or just a ruler). A marked ruler
is oriented from its origin towards its end, which is actually a mark (represented by an arrow in
Figure 4.1(b)) on a thought infinite ruler, Figure 4.1(b). We assume that we are able to align the ruler
with any pair of points x, y, so that the ruler begins in x and a mark is made at the point y. We also
know how to align a marked ruler with any pair of distinct points u, v such that the ruler begins in u
and aligns with the line connecting u and v in the direction towards point v. The mark on so aligned
ruler determines another point, call it z, which is collinear with points u, v. We know how to translate,
Figure 4.1(c), a ruler in this space.

To define geometric vectors, we need to first define geometric scalars.

x

y

z

u

v

(a) (b) (c)

Figure 4.1: (a) The space around us consists of points. Rulers (marked oriented line segments) can be
aligned (b) and translated (c) and thus used to transfer, but not measure, distances.
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a
a

a
a

b

b
b

b
a ` b

a ` b

a

aa

ab

b

1

1
1

´1

´1

a b

´1 a

(a) (b)

Figure 4.2: Scalars are represented by oriented rulers. They can be added (a) and multiplied (b) purely
geometrically by translating and aligning rulers. Notice that we need to single out a unit
scalar “1” to perform geometric multiplication.

4.1.1 Geometric scalars

Geometric scalars S are horizontal oriented rulers. The ruler, which has its origin identical with its
end is called 0. Geometric scalars are equipped with two geometric operations, addition a ` b and
multiplication a b, defined for every two elements a, b P S.

Figure 4.2(a) shows addition a ` b. We translate ruler b to align origin of b with the end of a and
obtain ruler a ` b.

Figure 4.2(b) shows multiplication a b. To perform multiplication, we choose a unit ruler “1” and
construct its additive inverse ´1 using 1 ` p´1q “ 0. This introduces orientation to scalars. Scalars
aiming to the same side as 1 are positive and scalars aiming to the same side as ´1 are negative. Scalar
0 is neither positive, nor negative. Next we define multiplication by ´1 such that ´1 a “ ´a, i.e. ´1
times a equals the additive inverse of a. Finally, we define multiplication of non-negative (i.e. positive
and zero) rulers a, b as follows. We align a with 1 such that origins of 1 and a coincide and such that
the rulers contain an acute non-zero angle. We align b with 1 and construct ruler a b by a translation,
e.g. as shown in Figure 4.2(b)1.

All constructions used were purely geometrical and were performed with real rulers. We can
verify that so defined addition and multiplication of geometric scalars satisfy all rules of addition
and multiplication of real numbers. Geometric scalars form a field [11, 19] w.r.t. to a ` b and a b.

4.1.2 Geometric vectors

Ordered pairs of points, such as px, yq in Figure 4.3(a), are called geometric vectors and denoted as ÝÑxy,
i.e. ÝÑxy “ px, yq. Symbol ÝÑxy is often replaced by a simpler one, e.g. by ~a. The set of all geometric vectors
is denoted by A.

4.1.3 Bound vectors

Let us now choose one point o and consider all pairs po, xq, where x can be any point, Figure 4.3(a).
We obtain a subset Ao of A, which we call geometric vectors bound to o, or just bound vectors when it
is clear to which point they are bound. We will write ~x “ po, xq. Figure 4.3(f) shows another bound

vector ~y. The pair po, oq is special. It will be called the zero bound vector and denoted by ~0. We will
introduce two operations ‘,d with bound vectors.

1Notice that a b is well defined since it is the same for all non-zero angles contained by a and 1.
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o

o o

o
x

xx

y

y

y

~x

~x~x

~y~y

~y

z

zz

z

~x ‘ ~y

~y ‘ ~x

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 4.3: Bound vectors are (ordered) pairs of points po, xq, i.e. arrows ~x “ po, xq. Addition of the
bound vectors ~x, ~y is realized by parallel transport (using a ruler). We see that the result
is the same whether we add ~x to ~y or ~y to ~x. Addition is commutative.

First we define addition of bound vectors ‘ : Ao ˆ Ao Ñ Ao. Let us add vector ~x to ~y as shown on
Figure 4.3(b). We take a ruler and align it with ~x, Figure 4.3(c). Then we translate the ruler to align
its begin with point y, Figure 4.3(d). The end of the ruler determines point z. We define a new
bound vector, which we denote ~x ‘ ~y, as the pair po, zq, Figure 4.3(e). Figures 4.3(f-j) demonstrate
that addition gives the same result when we exchange (commute) vectors ~x and ~y, i.e. ~x ‘ ~y “ ~y ‘ ~x.
We notice that for every point x, there is exactly one point x1 such that po, xq ‘ po, x1q “ po, oq, i.e.

~x ‘ ~x1 “ ~0. Bound vector ~x1 is the inverse to ~x and is denoted as ´~x. Bound vectors are invertible w.r.t.
operation ‘. Finally, we see that po, xq ‘ po, oq “ po, xq, i.e. ~x ‘ ~0 “ ~x. Vector ~0 is the identity element
of the operation ‘. Clearly, operation ‘ behaves exactly as addition of scalars – it is a commutative
group [11, 19].

Secondly, we define the multiplication of a bound vector by a geometric scalar d : S ˆ Ao Ñ Ao, where S
are geometric scalars and Ao are bound vectors. Operation d is a mapping which takes a geometric
scalar (a ruler) and a bound vector and delivers another bound vector.

Figure 4.4 shows that to multiply a bound vector ~x “ po, xq by a geometric scalar a, we consider the
ruler b whose origin can be aligned with o and end with x. We multiply scalars a and b to obtain scalar

o

x

y

~x

~y “ a d ~x

a
b

a b

Figure 4.4: Multiplication of the bound vector ~x by a geometric scalar a is realized by aligning rulers
to vectors and multiplication of geometric scalars.
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o

x

~x

~b1

~b2

x1 d~b1

x2 d~b2

Figure 4.5: Coordinates are the unique scalars that combine independent basic vectors ~b1, ~b2 into ~x.

a b and align a b with ~x such that the origin of a b coincides with o and a b extends along the line passing
through ~x. We obtain end point y of so placed a b and construct the resulting vector ~y “ a d ~x “ po, yq.

We notice that addition ‘ and multiplication d of horizontal bound vectors coincides exactly with
the addition and multiplication of scalars.

4.2 Linear space

We can verify that for every two geometric scalars a, b P S and every three bound vectors ~x, ~y,~z P Ao

with their respective operations, there holds the following eight rules

~x ‘ p~y ‘ ~zq “ p~x ‘ ~yq ‘ ~z (4.3)

~x ‘ ~y “ ~y ‘ ~x (4.4)

~x ‘ ~0 “ ~x (4.5)

~x ‘ ´~x “ ~0 (4.6)

1 d ~x “ ~x (4.7)

pa bq d ~x “ a d pb d ~xq (4.8)

a d p~x ‘ ~yq “ pa d ~xq ‘ pa d ~yq (4.9)

pa ` bq d ~x “ pa d ~xq ‘ pb d ~xq (4.10)

These rules are known as axioms of a linear space [6, 7, 4]. Bound vectors are one particular model of
the linear space. There are many other very useful models, e.g. n-tuples of real or rational numbers for
any natural n, polynomials, series of real numbers and real functions. We will give some particularly
simple examples useful in geometry later.

The next concept we will introduce are coordinates of bound vectors. To illustrate this concept, we

will work in a plane. Figure 4.5 shows two non-collinear bound vectors ~b1, ~b2, which we call basis,
and another bound vector ~x. We see that there is only one way how to choose scalars x1 and x2 such

that vectors x1 d~b1 and x2 d~b2 add to ~x, i.e.

~x “ x1 d~b1 ‘ x2 d~b2 (4.11)

Scalars x1, x2 are coordinates of ~x in (ordered) basis r~b1,~b2s.

4.3 Free vectors

We can choose any point from A to construct bound vectors and all such choices will lead to the same
manipulation of bound vector and to the same axioms of a linear space. Figure 4.6 shows two such
choices for points o and o1.
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o

o1

b1

b1
1

b2

b1
2

x

x1

~x

~x 1

~b1

~b 1
1~b2

~b 1
2

x1 d~b1

x1 d~b 1
1

x2 d~b2

x2 d~b 1
2

Figure 4.6: Two sets of bound vectors Ao and Ao1 . Coordinates of ~x w.r.t. r~b1,~b2s are equal to coordinates

of ~x 1 w.r.t. r~b 1
1
,~b 1

2
s.

We take bound vectors ~b1 “ po, b1q, ~b2 “ po, b2q, ~x “ po, xq at o and construct bound vectors
~b 1

1
“ po1, b1

1
q, ~b 1

2
“ po1, b1

2
q, ~x 1 “ po1, x1q at o1 by translating x to x1, b1 to b1

1
and b2 to b1

2
by the same

translation. Coordinates of ~x w.r.t. r~b1,~b2s are equal to coordinates of ~x 1 w.r.t. r~b 1
1
,~b 1

2
s. This interesting

property allows us to construct another model of a linear space, which plays an important role in
geometry.

Let us now consider the set of all geometric vectors A. Figure 4.7(a) shows an example of a few
points and a few geometric vectors. Let us partition [1] the set A of geometric vectors into disjoint
subsets Apo,xq such that we choose one bound vector po, xq and put to Apo,xq all geometric vectors that
can be obtained by a translation of po, xq. Figure 4.7(b) shows two such partitions Apo,xq, Apo,yq. It is
clear that Apo,xq X Apo,x1q “ H for x ‰ x1 and that every geometric vector is in some (and in exactly one)
subset Apo,xq.

Two geometric vectors po, xq and po1, x1q form two subsets Apo,xq, Apo1,x1q which are equal if and only
if po1, x1q is related by a translation to po, xq.

“To be related by a translation” is an equivalence relation [1]. All geometric vectors in Apo,xq are
equivalent to po, xq.

There are as many sets in the partition as there are bound vectors at a point. We can define the
partition by geometric vectors bound to any point o because if we choose another point o1, then for
every point x, there is exactly one point x1 such that po, xq can be translated to po1, x1q.

We denote the set of subsets Apo,xq by V. Let us see that we can equip set V with a meaningful
addition ‘ : V ˆ V Ñ V and multiplication d : S ˆ V Ñ V by geometric scalars S such that it will
become a model of the linear space. Elements of V will be called free vectors.

We define the sum of ~x “ Apo,xq and ~y “ Apo,yq, i.e. ~z “ ~x ‘ ~y is the set Apo,xq ‘ po,yq. Multiplication of
~x “ Apo,xq by geometrical scalar a is defined analogically, i.e. a d ~x equals the set Aadpo,xq. We see that

ooo

xx
y y

(a) (b)

Figure 4.7: The set A of all geometric vectors (a) can be partitioned into subsets which are called free
vectors. Two free vectors Apo,xq and Apo,yq, i.e. subsets of A, are shown in (b).
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oo

xx

x1

pp

yy

y1

qq

zz

Figure 4.8: Free vector Apo,xq is added to free vector App,yq by translating po, xq to pq, x1q and pp, yq to

pq, y1q, adding bound vectors pq, zq “ pq, x1q ‘ pq, y1q and setting Apo,xq ‘ App,yq “ Apq,zq

the result of ‘ and d does not depend on the choice of o. We have constructed the linear space V of
free vectors.

§1 Why so many vectors? In the literature, e.g. in [4, 5, 8], linear spaces are often treated purely
axiomatically and their geometrical models based on geometrical scalars and vectors are not studied
in detail. This is a good approach for a pure mathematician but in engineering we use the geometrical
model to study the space we live in. In particular, we wish to appreciate that good understanding of
the geometry of the space around us calls for using bound as well as free vectors.

4.4 Affine space

We saw that bound vectors and free vectors were (models of) a linear space. On the other hand, we
see that the set of geometric vectors A is not (a model of) a linear space because we do not know how
to meaningfully add (by translation) geometric vectors which are not bound to the same point. The
set of geometric vectors is an affine space.

The affine space connects points, geometric scalars, bound geometric vectors and free vectors in a
natural way.

Two points x and y, in this order, give one geometric vector px, yq, which determines exactly one
free vector ~v “ Apx,yq. We define function ϕ : A Ñ V, which assigns to two points x, y P P their
corresponding free vector ϕpx, yq “ Apx,yq.

x

y

z

t

~u

~v

~w

Figure 4.9: Free vectors ~u, ~v and ~w defined by three points x, y and z satisfy triangle identity ~u‘~v “ ~w.
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x

y

z “ x#~w

px, yq

py, zq

px, zq

~u “ Apx,yq

~v “ Apy,zq

~w “ ~u ‘ ~v “ Apo,aq‘po,cq

ϕpx, yq

t

o

a

b

c

Figure 4.10: Affine space pP,L, ϕq, its geometric vectors px, yq P A “ P ˆ P and free vector space L and
the canonical assignment of pairs of points px, yq to the free vector Apx,yq. Operations ‘,

‘, combining vectors with vectors, and #, combining points with vectors, are illustrated.

Consider a point a P P and a free vector ~x P V. There is exactly one geometric vector pa, xq, with a
at the first position, in the free vector ~x. Therefore, point a and free vector ~x uniquely define point x.
We define function # : P ˆ V Ñ P, which takes a point and a free vector and delivers another point.
We write a#~x “ x and require ~x “ ϕpa, xq.

Consider three points x, y, z P P, Figure 4.9. We can produce three free vectors ~u “ ϕpx, yq “ Apx,yq,
~v “ ϕpy, zq “ Apy,zq, ~w “ ϕpx, zq “ Apx,zq. Let us investigate the sum ~u ‘ ~v. Chose the representatives
of the free vectors, such that they are all bound to x, i.e. bound vectors px, yq P Ax,y, px, tq P Apy,zq

and px, zq P Apx,zq. Notice that we could choose the pairs of original points to represent the first and
the third free vector but we had to introduce a new pair of points, px, tq, to represent the second free
vector. Clearly, there holds px, yq ‘ px, tq “ px, zq. We now see, Figure 4.9, that py, zq is related to px, tq
by a translation and therefore

~u ‘ ~v “ Apx,yq ‘ Apy,zq “ Apx,yq ‘ Apx,tq “ Apx,yq‘px,tq “ Apx,zq “ ~w (4.12)

Figure 4.10 shows the operations explained above in Figure 4.9 but realized using the vectors bound
to another point o.

The above rules are known as axioms of affine space and can be used to define even more general
affine spaces.

§1 Remark on notation We were carefully distinguishing operations p`, q over scalars, p‘,dq
over bound vectors, p‘,dq over free vectors, and function # combining points and free vectors. This
is very correct but rarely used. Often, only the symbols introduced for geometric scalars are used for
all operations, i.e.

` ” `, ‘, ‘, # (4.13)

” , d, d (4.14)

§2 Affine space Triple pP,L, ϕq with a set of points P, linear space pL,‘,dq (over some field of
scalars) and a function ϕ : P ˆ P Ñ L, is an affine space when

A1 ϕpx, zq “ ϕpx, yq ‘ ϕpy, zq for every three points x, y, z P P

A2 for every o P P, the function ϕo : P Ñ L, defined by ϕopxq “ ϕpo, xq for all x P P is a bijection [1].
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o

o 1

x

~x “ ϕpo, xq
~x 1 “ ϕpo1, xq

~o 1 “ ϕpo, o1q

~b1

~b2

~b 1
1

~b 1
2

Figure 4.11: Point x is represented in two affine coordinate systems.

Axiom A1 calls for an assignment of pairs of point to vectors. Axiom A2 then makes this assignmet
such that it is one-to-one when the first argument of ϕ is fixed.

We can define another function # : PˆL Ñ P, defined by o#~x “ ϕ´1
o p~xq, which meansϕpo, o#~xq “ ~x

for all ~x P L. This function combines points and vectors in a way that is very similar to addition and
hence is sometimes denoted by ` instead of more correct #.

In our geometrical model of A discussed above, function ϕ assigned to a pair of points x, y their
corresponding free vector Apx,yq. Function #, on the other hand, takes a point x and a free vector ~v
and gives another points y such that the bound vector px, yq is a representative of ~v, i.e. Apx,yq “ ~v.

4.5 Coordinate system in affine space

We see that function ϕ assigns the same vector from L to many different pairs of points from P. To
represent uniquely points by vectors, we select a point o, called the origin of affine coordinate system
and represent point x P P by its position vector ~x “ ϕpo, xq. In our geometric model of A discussed
above, we thus represent point x by bound vector po, xq or by point o and free vector Apo,xq.

To be able to compute with points, we now pass to the representation of points in A by coordinate

vectors. We choose a basis β “ p~b1,~b2, . . .q in L. That allows us to represent point x P P by a coordinate
vector

~xβ “

»

—

–

x1

x2
...

fi

ffi

fl
, such that ~x “ x1

~b1 ` x2
~b2 ` ¨ ¨ ¨ (4.15)

The pair po, βq, where o P P and β is a basis of L is called an affine coordinate system (often shortly called
just coordinate system) of affine space pP,L, ϕq.

Let us now study what happens when we choose another point o1 and another basis β1 “ p~b 1
1
,~b 1

2
, . . .q

to represent x P P by coordinate vectors, Figure 4.11. Point x is represented twice: by coordinate
vector ~xβ “ ϕpo, xqβ “ Apo,xqβ and by coordinate vector ~x 1

β 1 “ ϕpo1, xqβ 1 “ Apo1,xqβ 1 .

To get the relationship between the coordinate vectors ~xβ and ~x 1
β 1 , we employ the triangle equality

ϕpo, xq “ ϕpo, o1q ‘ ϕpo1, xq (4.16)

~x “ ~o 1
‘ ~x 1 (4.17)

which we can write in basis β as (notice that we replace ‘ by ` to emphasize that we are adding
coordinate vectors)

~xβ “ ~x 1
β ` ~o 1

β (4.18)
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2

10 2

1 ~x

~y

~b

~u

~o

p
V

Figure 4.12: Affine space pP,V, ϕq of solutions to a linear system is the set of vectors representing
points on line p. In coordinate system p~o, ~uq, vector ~x has coordinate 1. The subspace V of
solutions to the associated homogeneous system is the associated linear space. Function
ϕ assigns to two points ~o, ~x the vector ~u “ ~y ´ ~x.

and use the matrix A transforming coordinates of vectors from basis β1 to β to get the desired relation-
ship

~xβ “ A ~x 1
β 1 ` ~o 1

β (4.19)

Columns of A correspond to coordinate vectors ~b 1
1β,
~b 1

2β, . . .. When presented with a situation in a

real affine space, we can measure those coordinates by a ruler on a particular representation of L by
geometrical vectors bound to, e.g., point o.

4.6 An example of affine space

Let us now present an important example of affine space.

4.6.1 Affine space of solutions of a system of linear equations

When looking at the following system of linear equations in R2

„

1 1
´1 ´1



~x “
„

2
´2



(4.20)

we immediately see that there is an infinite number of solutions. They can be written as

~x “
„

2
0



` τ
„

1
´1



, τ P R (4.21)

or as a sum of a particular solution r2, 0sJ and the set of solutions ~v “ τ r´1, 1sJ of the accompanied
homogeneous system

„

1 1
´1 ´1



~v “
„

0
0



(4.22)

Figure 4.12 shows that the affine space pP,V, ϕq of solutions to the linear system (4.20) is the set of
vectors representing points on line p. The subspace V of solutions to the accompanied homogeneous
system (4.22) is the linear space associated to A by function ϕ, which assigns to two points ~x, ~y P A

the vector ~u “ ~y ´ ~x P V. If we choose ~o “ r2, 0sJ as the origin in A and vector ~b “ ϕp~o, ~xq “ ~x ´ ~o as
the basis of V, vector ~x has coordinate 1.
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We see that, in this example, points of A are actually vectors of R2, which are the solution to
the system (4.20). The vectors of V are the vectors of R2, which are solutions to the associated
homogeneous linear system (4.22).
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5 Motion

Let us introduce a mathematical model of rigid motion in three-dimensional Euclidean space. The
important property of rigid motion is that it only relocates objects without changing their shape.
Distances between points on rigidly moving objects remain unchanged. For brevity, we will use
“motion” for “rigid motion”.

5.1 Change of position vector coordinates induced by motion

o’

X

~x

~x 1

O

O 1

~b1

~b2

~b 1
1

~b 1
2

o’

X Y

~x
~y

~y 1

O

O 1

~b1

~b2

~b 1
1

~b 1
2

(a) (b)

Figure 5.1: Representation of motion. (a) Alias representation: Point X is represented in two coordi-
nate systems. (b) Alibi representation: Point X move together with the coordinate system
into point Y.

§1 Alias representation of motion1. Figure 5.1(a) illustrates a model of motion using coordinate
systems, points and their position vectors. A coordinate system pO, βq with origin O and basis β is
attached to a moving rigid body. As the body moves to a new position, a new coordinate system
pO 1, β 1q is constructed. Assume a point X in a general position w.r.t. the body, which is represented in
the coordinate system pO, βq by its position vector ~x. The same point X is represented in the coordinate
system pO 1, β 1q by its position vector ~x 1. The motion induces a mapping ~x 1

β 1 ÞÑ ~xβ. Such a mapping

also determines the motion itself and provides its convenient mathematical model.
Let us derive the formula for the mapping ~x 1

β 1 ÞÑ ~xβ between the coordinates ~x 1
β 1 of vector ~x 1 and

coordinates ~xβ of vector ~x. Consider the following equations:

~x “ ~x 1 ` ~o 1 (5.1)

~xβ “ ~x 1
β ` ~o 1

β (5.2)

~xβ “
”

~b 1
1β
~b 1

2β
~b 1

3β

ı

~x 1
β 1 ` ~o 1

β (5.3)

~xβ “ R ~x 1
β 1 ` ~o 1

β (5.4)

1The terms alias and alibi were introduced in the classical monograph [19].
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eplacements

~b1
~b1

~b2
~b2

~b 1
1

~b 1
2 a11

a11

a21

´a21O O

(a) (b)

Figure 5.2: Rotation in two-dimensional space.

Vector ~x is the sum of vectors ~x 1 and ~o 1, Equation 5.1. We can express all vectors in (the same) basis β,

Equation 5.2. To pass to the basis β 1 we introduce matrix R “
”

~b 1
1β
~b 1

2β
~b 1

3β

ı

, which transforms the

coordinates of vectors from β 1 to β, Equation 5.4. Columns of matrix R are coordinates ~b 1
1β
,~b 1

2β
,~b 1

3β
of

basic vectors ~b 1
1
,~b 1

2
,~b 1

3
of basis β 1 in basis β.

§2 Alibi representation of motion. An alternative model of motion can be developed from the
relationship between the points X and Y and their position vectors in Figure 5.1(b). The point Y is
obtained by moving point X altogether with the moving object. It means that the coordinates ~y 1

β 1 of

the position vector ~y 1 of Y in the coordinate system pO 1, β 1q equal the coordinates ~xβ of the position
vector ~x of X in the coordinate system pO, βq, i.e.

~y 1
β 1 “ ~xβ

~yβ 1 ´ ~o 1
β 1 “ ~xβ

R´1
´

~yβ ´ ~o 1
β

¯

“ ~xβ

~yβ “ R ~xβ ` ~o 1
β (5.5)

Equation 5.5 describes how is the point X moved to point Y w.r.t. the coordinate system pO, βq.

5.2 Rotation matrix

Motion that leaves at least one point fixed is called rotation. Choosing such a fixed point as the origin

leads to O “ O 1 and hence to ~o “ ~0. The motion is then fully described by matrix R, which is called
rotation matrix.

§1 Two-dimensional rotation. To understand the matrix R, we shall start with an experiment in
two-dimensional plane. Imagine a right-angled triangle ruler as shown in Figure 5.2(a) with arms
of equal length and let us define a coordinate system as in the figure. Next, rotate the triangle ruler
around its tip, i.e. around the origin O of the coordinate system. We know, and we can verify it
by direct physical measurement, that, thanks to the symmetry of the situation, the parallelograms

through the tips of ~b 1
1

and ~b 1
2

and along ~b1 and ~b2 will be rotated by 90 degrees. We see that

~b 1
1 “ a11

~b1 ` a21
~b2 (5.6)

~b 1
2 “ ´a21

~b1 ` a11
~b2 (5.7)
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Figure 5.3: A three-dimensional coordinate system.

for some real numbers a11 and a21. By comparing it with Equation 5.3, we conclude that

R “
„

a11 ´a21

a21 a11



(5.8)

We immediately see that

RJR “
„

a11 a21

´a21 a11

 „

a11 ´a21

a21 a11



“
„

a2
11

` a2
21

0
0 a2

11
` a2

21



“
„

1 0
0 1



(5.9)

since pa2
11

` a2
21

q is the squared length of the basic vector of b1, which is one. We derived an interesting
result

R´1 “ RJ (5.10)

R “ R´J (5.11)

Next important observation is that for coordinates ~xβ and ~xβ 1 , related by a rotation R, i.e. ~xβ 1 “ R ~xβ,
there holds true

px1q2 ` py1q2 “ ~xβ 1
J~xβ 1 “

`

R ~xβ
˘J
R ~xβ “ ~xJ

β

`

RJR
˘

~xβ “ ~xJ
β ~xβ “ x2 ` y2 (5.12)

Now, if the basis β was constructed as in Figure 5.2, in which case it is called an orthonormal basis,
then the parallelogram used to measure coordinates x, y of ~x is a rectangle, and hence x2 ` y2 is the
squared length of ~x by the Pythagoras theorem. If β 1 is related by rotation ro β, then also px1q2 ` py1q2

is the squared length of ~x, again thanks to the Pythagoras theorem.
We see that ~xJ

β
~xβ is the squared length of ~x when β is orthonormal and that this length is preserved

by computing it in the same way from the new coordinates of ~x in the new coordinate system after
motion. The change of coordinates induced by motion is modeled by rotation matrix R, which has
the desired property RJR “ I when the bases β, β 1 are both orthonormal.

§2 Three-dimensional rotation. Let us now consider three dimensions. It would be possible to
generalize Figure 5.2 to three dimensions, construct orthonormal bases, and use rectangular parallel-
ograms to establish the relationship between elements of R in three dimensions. However, the figure
and the derivations would become much more complicated.

We shall follow a more intuitive path instead. Consider that we have found that with two-
dimensional orthonormal bases, the lengths of vectors could be computed by the Pythagoras theorem
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since the parallelograms determining the coordinates were rectangular. To achieve this in three
dimensions, we need (and can!) use bases consisting of three orthogonal vectors. Then, again, the
parallelograms will be rectangular and hence the Pythagoras theorem for three dimensions can be
used analogically as in two dimensions, Figure 5.3.

Considering orthonormal bases β, β 1, we require the following to hold true for all vectors ~x with

~xβ “
“

x y z
‰J

and ~xβ 1 “
“

x1 y1 z1
‰J

px1q2 ` py1q2 ` pz1q2 “ x2 ` y2 ` z2

~xβ 1
J~xβ 1 “ ~xJ

β ~xβ
`

R ~xβ
˘J
R ~xβ “ ~xJ

β ~xβ

~xJ
β

`

RJR
˘

~xβ “ ~xJ
β ~xβ

~xJ
β C ~xβ “ ~xJ

β ~xβ (5.13)

Equation 5.13 must hold true for all vectors ~x and hence also for special vectors such as those with
coordinates

»

–

1
0
0

fi

fl ,

»

–

0
1
0

fi

fl ,

»

–

0
0
1

fi

fl ,

»

–

1
1
0

fi

fl ,

»

–

1
0
1

fi

fl ,

»

–

0
1
1

fi

fl (5.14)

Let us see what that implies, e.g., for the first vector

“

1 0 0
‰

C

»

–

1
0
0

fi

fl “ 1 (5.15)

c11 “ 1 (5.16)

Taking the second and the third vector leads similarly to c22 “ c33 “ 1. Now, let’s try the fourth vector

“

1 1 0
‰

C

»

–

1
1
0

fi

fl “ 2 (5.17)

1 ` c12 ` c21 ` 1 “ 2 (5.18)

c12 ` c21 “ 0 (5.19)

Again, taking the fifth and the sixth vector leads to c13 ` c31 “ c23 ` c32 “ 0. This brings us to the
following form of C

C “

»

–

1 c12 c13

´c12 1 c23

´c13 ´c23 1

fi

fl (5.20)

Moreover, we see that C is symmetric since

CJ “
`

RJR
˘J “ RJR “ C (5.21)

which leads to ´c12 “ c12, ´c13 “ c13 and ´c23 “ c23, i.e. c12 “ c13 “ c23 “ 0 and allows us to conclude
that

RJR “ C “ I (5.22)

Interestingly, not all matrices R satisfying Equation 5.22 represent motions in three-dimensional space.
Consider, e.g., matrix

S “

»

–

1 0 0
0 1 0
0 0 ´1

fi

fl (5.23)
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Matrix S does not correspond to any rotation of the space since it keeps the plane xy fixed and reflects
all other points w.r.t. this xy plane. We see that some matrices satisfying Equation 5.22 are rotations
but there are also some such matrices that are not rotations. Can we somehow distinguish them?

Notice that |S| “ ´1 while |I| “ 1. It might be therefore interesting to study the determinant of C
in general. Consider that

1 “ |I| “
ˇ

ˇpRJRq
ˇ

ˇ “
ˇ

ˇRJ
ˇ

ˇ |R| “ |R| |R| “ p|R|q2 (5.24)

which gives that |R| “ ˘1. We see that the sign of the determinant splits all matrices satisfying
Equation 5.22 into two groups – rotations, which have a positive determinant, and reflections, which
have a negative determinant. The product of any two rotations will again be a rotation, the product
of a rotation and a reflection will be a reflection and the product of two reflections will be a rotation.

To summarize, rotation in three-dimensional space is represented by a 3 ˆ 3 matrix Rwith RJR “ I
and |R| “ 1. The set of all such matrices, and at the same time also the corresponding rotations,
will be called SOp3q, for special orthonormal three-dimensional group. Two-dimensional rotations will be
analogically denoted as SOp2q.

5.3 Coordinate vectors

We see that the matrix R induced by motion has the property that coordinates and the basic vectors
are transformed in the same way. This is particularly useful observation when β is formed by the
standard basis, i.e.

β “

¨

˝

»

–

1
0
0

fi

fl ,

»

–

0
1
0

fi

fl ,

»

–

0
0
1

fi

fl

˛

‚ (5.25)

For a rotation matrix R, Equation 2.15 becomes

»

—

–

~b 1
1
~b 1

2
~b 1

3

fi

ffi

fl
“ R

»

—

–

~b1

~b2

~b3

fi

ffi

fl
“

»

–

r11 r12 r13

r21 r22 r23

r31 r32 r33

fi

fl

»

—

–

~b1

~b2

~b3

fi

ffi

fl
“

»

—

–

r11
~b1 ` r12

~b2 ` r13
~b3

r21
~b1 ` r22

~b2 ` r23
~b3

r31
~b1 ` r32

~b2 ` r33
~b3

fi

ffi

fl
(5.26)

and hence

~b 1
1 “ r11

~b1 ` r12
~b2 ` r13

~b3 “ r11

»

–

1
0
0

fi

fl ` r12

»

–

0
1
0

fi

fl ` r13

»

–

0
0
1

fi

fl “

»

–

r11

r12

r13

fi

fl (5.27)

and similarly for ~b 1
2

and ~b 1
3
. We conclude that

”

~b 1
1
~b 1

2
~b 1

3

ı

“

»

–

r11 r21 r31

r12 r22 r32

r13 r23 r33

fi

fl “ RJ (5.28)

This also corresponds to solving for R in Equation 2.13 with A “ R
»

–

1 0 0
0 1 0
0 0 1

fi

fl “
”

~b 1
1
~b 1

2
~b 1

3

ı

R (5.29)
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6 Rotation

6.1 Properties of rotation matrix

Let us study additional properties of the rotation matrix in three-dimensional space.

6.1.1 Inverse of R

Let

R “

»

–

r11 r12 r13

r21 r22 r23

r31 r32 r33

fi

fl “
“

r1 r2 r3

‰

(6.1)

be a rotation matrix with columns r1, r2, r3. We can find the inverse of R by evaluating its adjugate
matrix [5] and use R´1 “ RJ and |R| “ 1

R´1 “ 1

|R| AdjpRq (6.2)

RJ “ AdjpRq (6.3)

“
“

r2 ˆ r3 r3 ˆ r1 r1 ˆ r2

‰J
(6.4)

“

»

–

r22 r33 ´ r23 r32 r13 r32 ´ r12 r33 r12 r23 ´ r13 r22

r23 r31 ´ r21 r33 r11 r33 ´ r13 r31 r13 r21 ´ r11 r23

r21 r32 ´ r22 r31 r12 r31 ´ r11 r32 r11 r22 ´ r12 r21

fi

fl (6.5)

which also gives an alternative expression of

R “

»

–

r11 r12 r13

r21 r22 r23

r31 r32 r33

fi

fl “

»

–

r22 r33 ´ r23 r32 r23 r31 ´ r21 r33 r21 r32 ´ r22 r31

r13 r32 ´ r12 r33 r11 r33 ´ r13 r31 r12 r31 ´ r11 r32

r12 r23 ´ r13 r22 r13 r21 ´ r11 r23 r11 r22 ´ r12 r21

fi

fl (6.6)

6.1.2 Eigenvalues of R

Let R be a rotation matrix. Then for every ~v P C3

pR ~vq:R ~v “ ~v:RJR ~v “ ~v:pRJRq ~v “ ~v:~v (6.7)

where : is the conjugate transpose1. We see that for all ~v P C3 and λ P C such that

R ~v “ λ~v (6.8)

1Conjugate transpose [5] on vectors with complex coordinates means, e.g., that

„

a11 ` b11 i a12 ` b12 i
a21 ` b21 i a22 ` b22 i

:

“
„

a11 ´ b11 i a21 ´ b21 i
a12 ´ b12 i a22 ´ b22 i



for all a11, a12, a21, a22, b11, b12, b21, b22 P R. Also recall [3] that a b “ a b for all a, b P C, : becomes J for real matrices and
λ: “ λ for scalar λ P C. Conjugate transpose is a natural generalization of the Euclidean scalar product in real vector
spaces to complex vector spaces. As ~xJ~x “ }~x}2 gives the squared Euclidean norm for real vectors, ~x:~x “ }~x}2 gives
the squared “Euclidean” norm for complex vectors. It therefore also makes a good sense to extend the notion of angle

between complex vectors to ~x, ~y as cos =p~x, ~yq “ Rep~x:~yq?
~x:~x

?
~y:~y

.
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there holds true

pλ~vq:pλ~vq “ p~v:~vq (6.9)

λλ p~v:~vq “ p~v:~vq (6.10)

|λ|2p~v:~vq “ p~v:~vq (6.11)

and hence |λ|2 “ 1 for all ~v ‰ ~0. We conclude that the absolute value of eigenvalues of R is one.
Next, by looking at the characteristic polynomial of R

ppλq “ |pλ I´ Rq| “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

¨

˝

»

–

λ´ r11 ´r12 ´r13

´r21 λ´ r22 ´r23

´r31 ´r32 λ´ r33

fi

fl

˛

‚

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

(6.12)

“ λ3 ´ pr11 ` r22 ` r33qλ2

`pr11 r22 ´ r21 r12 ` r11 r33 ´ r31 r13 ` r22 r33 ´ r23 r32qλ (6.13)

`r11 pr23 r32 ´ r22 r33q ´ r21 pr32 r13 ´ r12 r33q ` r31 pr13 r22 ´ r12 r23q
“ λ3 ´ pr11 ` r22 ` r33qλ2 ` pr33 ` r22 ` r11qλ´ |R| (6.14)

“ λ3 ´ trace R pλ2 ´ λq ´ 1 (6.15)

“ pλ´ 1q
`

λ2 ` p1 ´ trace Rqλ` 1
˘

(6.16)

we conclude that 1 is always an eigenvalue of R. Notice that we have used identities in Equation 6.6
to pass from Equation 6.13 to Equation 6.142.

Let us denote the eigenvalues as λ1 “ 1, λ2 “ x ` yi and λ3 “ x ´ yi with real x, y. It follows from
the above that x2 ` y2 “ 1. We see that there is either one real or three real solutions since if y “ 0,
then x2 “ 1 and hence λ2 “ λ3 “ ˘1. We conclude that we encounter only two situations when all
eigenvalues are real. Either λ1 “ λ2 “ λ3 “ 1, or λ1 “ 1 and λ2 “ λ3 “ ´1.

6.1.3 Eigenvectors of R

Let us now look at eigenvectors of R and let’s first investigate the situation when all eigenvalues of R
are real.

§1 λ1 “ λ2 “ λ3 “ 1: Let λ1 “ λ2 “ λ3 “ 1. Then ppλq “ pλ´ 1q3 “ λ3 ´ 3λ2 ` 3λ´ 1. It means
that r11 ` r22 ` r33 “ 3 and since r11 ď 1, r22 ď 1, r33 ď 1, it leads to r11 “ r22 “ r33 “ 1, which implies
R “ I. Then I´ R “ 0 and all non-zero vectors of R3 are eigenvectors of R. Notice that rank of R´ I
is zero in this case.

Next, consider λ1 “ 1 and λ2 “ λ3 “ ´1. The eigenvectors ~v corresponding to λ2 “ λ3 “ ´1 are
solutions to

R ~v “ ´~v (6.17)

There is always at least one one-dimensional space of such vectors. We also see that there is a rotation
matrix

R “

»

–

1 0 0
0 ´1 0
0 0 ´1

fi

fl (6.18)

2Alternatively, it follows from the Fundamental theorem of algebra [7] the ppλq “ 0 has always a solution in C and since
coefficients of ppλq are all real, the solutions must come in complex conjugated pairs. The degree of ppλq is three and
thus at least one solution must be real and hence equal to ˘1. Now, since pp0q “ ´ |pRq| “ ´1, limλÑ8 ppλq “ 8, and
ppλq is a continuous function, it must (by the mean value theorem [3]) cross the positive side of the real axis and hence
one of its eigenvalues has to be equal to one.
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with real eigenvectors

r

»

–

1
0
0

fi

fl , r ‰ 0, and s

»

–

0
1
0

fi

fl ` t

»

–

0
0
1

fi

fl , s2 ` t2 ‰ 0, (6.19)

which means that there is a one-dimensional space of real eigenvectors corresponding to 1 and a
two-dimensional space of real eigenvectors corresponding to ´1. Notice that rank of R ´ I is two
here.

§2 λ1 “ 1, λ2 “ λ3 “ ´1: How does the situation look for a general R with eigenvalues 1,´1,´1?
Consider an eigenvector ~v1 corresponding to 1 and an eigenvector ~v2 corresponding to ´1. They are
linearly independent. Otherwise there has to be s P R such that ~v2 “ s ~v1 ‰ 0 and then

~v2 “ s ~v1 (6.20)

R ~v2 “ s R ~v1 (6.21)

´~v2 “ s ~v1 (6.22)

leading to s “ ´s and therefore s “ 0 which contradicts ~v2 ‰ 0. Now, let us look at vectors ~v3 P R3

defined by

„

~vJ
1
~vJ

2



~v3 “ 0 (6.23)

The above linear system has a one-dimensional space of solutions since the rows of its matrix are
independent. Chose a fixed solution ~v3 ‰ 0. Then

„

~vJ
1
~vJ

2



RJ ~v3 “
„

~vJ
1
RJ

~vJ
2
RJ



~v3 “
„

~vJ
1

´~vJ
2



~v3 “ 0 (6.24)

We see that RJ~v3 and ~v3 are in the same one-dimensional space, i.e. they are linearly dependent and
we can write

RJ~v3 “ s ~v3 (6.25)

for some non-zero s P C. Multiplying equation 6.25 by R from the left and dividing both sides by s
gives

1

s
~v3 “ R ~v3 (6.26)

Clearly, ~v3 is an eigenvector of R. Since it is not a multiple of ~v1, it must correspond to eigenvalue
´1. Moreover, ~vJ

2
~v3 “ 0 and hence they are linearly independent. We have shown that if ´1 is an

eigenvalue of R, then there are always at least two linearly independent vectors corresponding to the
eigenvalue ´1, and therefore there is a two-dimensional space of eigenvectors corresponding to ´1.
Notice that the rank of R´ I is two in this case since the two-dimensional subspace corresponding to
´1 can be complemented only by a one-dimensional subspace corresponding to 1 to avoid intersecting
the subspaces in a non-zero vector.

§3 General λ1, λ2, λ3: Finally, let us look at arbitrary (even non-real) eigenvalues. Assume λ “
x ` yi for real x, y. Then we have

R ~v “ px ` yiq ~v (6.27)

If y ‰ 0, vector ~v must be non-real since otherwise we would have a real vector on the left and a
non-real vector on the right.
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Now, we also see that for y ‰ 0, we have three pairwise distinct eigenvalues 1, x ` yi, and x ´ yi
since the characteristic polynomial ppλq has real coefficients.

Let us next see that with pairwise distinct eigenvalues λ1 ‰ λ2 ‰ λ3 ‰ λ1, the set V “ t~v1, ~v2, ~v3u,
of eigenvectors ~vi corresponding to λi for i “ 1, 2, 3, is linearly independent. To show that, let us
look at the sequence of nested sets Vk “ tv1, . . . , ~vku for k “ 1, 2, 3. First, we see that the singleton set
V1 “ t~v1u is linearly independent since ~v1 is non-zero. Now, assuming linearly dependent V “ V3,
there is k P t2, 3u such that Vk´1 is linearly independent and Vk is linearly dependent. Hence, we can
write

vk “ a1v1 ` ¨ ¨ ¨ ` akvk´1 (6.28)

and multiply both sides by R to get

R vk “ a1R v1 ` ¨ ¨ ¨ ` akR vk´1 (6.29)

λkvk “ a1λ1v1 ` ¨ ¨ ¨ ` ak´1λk´1vk´1 (6.30)

However, we can also get

λkvk “ a1λkv1 ` ¨ ¨ ¨ ` akλkvk´1 (6.31)

by multiplying both Equation 6.28 by λk. Now, we subtract Equation 6.31 from Equation 6.30 to get

0 “ a1pλ1 ´ λkqv1 ` ¨ ¨ ¨ ` akpλk´1 ´ λkqvk´1 (6.32)

We see that coefficients aipλi ´λkq for i “ 1, . . . , k ´ 1 must be zero since Vk´1 is linearly independent.
However, since λi ´ λk are all non-zero, we conclude that all ai must be equal to zero. However, this
is in contradiction with Equation 6.28 and non-zero vk. We see that V is linearly independent since
there is no k where linearly independent Vk´1 could turn into a linearly dependent Vk.

Thus, for a rotation R, there are in this case three one-dimensional subspaces of eigenvectors (we
now understand the space as C3 over C). In particular, there is exactly one one-dimensional subspace
corresponding to the eigenvalue 1. The rank of R´ I is two.

Let ~v be an eigenvector of a rotation matrix R. Then

R ~v “ px ` yiq ~v (6.33)

RJR ~v “ px ` yiq RJ~v (6.34)

~v “ px ` yiq RJ~v (6.35)

1

px ` yiq ~v “ RJ~v (6.36)

px ´ yiq ~v “ RJ~v (6.37)

We see that the eigenvector ~v of R corresponding to eigenvalue x ` yi is the eigenvector of RJ corre-
sponding to eigenvalue x ´ yi and vice versa. Thus, there is the following interesting correspondence
between eigenvalues and eigenvectors of R and RJ. Considering eigenvalue-eigenvector pairs p1, ~v1q,
px ` yi, ~v2q, px ´ yi, ~v3q of R we have p1, ~v1q, px ´ yi, ~v2q, px ` yi, ~v3q pairs of RJ, respectively.

§4 Orthogonality of eigenvectors The next question to ask is what are the angles between eign-
evectors of R? We will considers pairs pλ1 “ 1, ~v1q, pλ2 “ x ` yi, ~v2q, pλ3 “ x ´ yi, ~v3q of eigenvectors
associated with their respective eigenvalues. For instance, vector ~v1 denotes an eigenvector associated
with egenvalue 1.

If all eigenvalues are equal to 1, i.e. R “ I, then all non-zero vectors of R3 are eigenvectors of R
and hence we can alway find two eignevectors containing a given angle. In particular, we can choose
three mutually orthogonal eignevectors.
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If λ1 “ 1 and λ2 “ λ3 “ ´1, then we have seen that every ~v1 is perpendicular to ~v2 and ~v3 and that
~v2 and ~v3 can be any two non-zero vectors in a two-dimensional subspace of R3, which is orthogonal
to ~v1. Therefore, for every angle, there are ~v2 and ~v3 which contain it. In particular, it is possible to
choose ~v2 to be orthogonal to ~v3 and hence there are three mutually orthogonal eigenvectors.

Finally, if λ2, λ3 are non-real, i.e. y ‰ 0, we have three mutually distinct eigenvalues and hence there
are exactly three one-dimensional subspaces (each without the zero vector) of eigenvectors. If two
eigenvectors are from the same subspace, then they are linearly dependent and hence they contain
the zero angle.

Let us now evaluate ~v:
1
~v2

~v:
1
~v2 “ ~vJ

1
~v2 “ ~vJ

1 R
JR ~v2 “ ~vJ

1 px ` yiq ~v2 “ px ` yiq ~vJ
1
~v2 (6.38)

We conclude that either px ` yiq “ 1 or ~vJ
1
~v2 “ 0. Since the latter can’t be the case as y ‰ 0, the former

must hold true. We see that ~v1 is orthogonal to ~v2. We can show that ~v1 is orthogonal to ~v3 exactly in
the same way.

Let us next consider the angle between eigenvectors ~v2 and ~v3

~v:
3
~v2 “ ~v:

3
RJR ~v2 “ pR ~v3q:R ~v2 “ ppx ´ yiq ~v3q:px ` yiq ~v2 (6.39)

“ ~v:
3

px ` yiq px ` yiq ~v2 (6.40)

~v:
3
~v2 “ px2 ` 2 xyi ´ y2q ~v:

3
~v2 (6.41)

We conclude that either px2 ` 2xyi ´ y2q “ 1 or ~v:
3
~v2 “ 0. The former implies xy “ 0 and threfore x “ 0

since y ‰ 0 but then ´y2 “ 1, which is, for a real y, impossible. We see that ~v:
3
~v2 “ 0, i.e. vectors ~v2

are orthogonal to vectors ~v3.
Clearly, it is always possible to choose three mutually orhogonal eigenvectors. We can further

normalize them to unit legth and thus obtain an orthonormal basis as non-zero orthogonal vectors
are linearly independent. Therefore

R
“

~v1 ~v2 ~v3

‰

“
“

~v1 ~v2 ~v3

‰

»

–

λ1

λ2

λ3

fi

fl (6.42)

“

~v1 ~v2 ~v3

‰:
R
“

~v1 ~v2 ~v3

‰

“

»

–

λ1

λ2

λ3

fi

fl (6.43)

Let us further investigate the structure of eigenvectors ~v2, ~v3. We shall show that they are “conju-
gated”. Let’s write ~v2 “ ~u ` ~wi with real vectors ~u, ~w. There holds true

R ~v2 “ R p~u ` ~wiq “ R ~u ` R ~w i (6.44)

px ` yiq ~v2 “ px ` yiq p~u ` ~wiq “ x ~u ´ y ~w ` px~w ` y~uqi (6.45)

which implies
R ~u “ x ~u ´ y ~w and R ~w “ x ~w ` y ~u (6.46)

Now, let us compare two expressions: R p~u ´ ~wiq and px ´ yiq p~u ´ ~wiq

R p~u ´ ~wiq “ R ~u ´ R ~wi “ x ~u ´ y ~w ´ px ~w ` y ~uq i (6.47)

px ´ yiq p~u ´ ~wiq “ x ~u ´ y ~w ´ px ~w ` y ~uq i (6.48)

We see that
R p~u ´ ~wiq “ px ´ yiq p~u ´ ~wiq (6.49)
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which means that px ´ yi, ~u ´ ~wiq are an eigenvalue-eigenvector pair of R. It is importatnt to under-
stand what has been shown. We have shown that if ~u ` ~wi is an eigenvector of R corresponding to an
eigenvalue λ, then the conjugated vector ~u ´ ~wi is an eignevector of R corresponding to eigenvalue,
which is conjugated to λ (This does not mean that every two eigenvectors corresponding to x ` yi
and x ´ yi must be conjugated).

The conclusion from the previous analysis is that the both non-real eigenvectors of R are generated
by the same two real vectors ~u and ~w. Let us look at the angle between ~u and ~w. Consider that

0 “ ~v:
3
~v2 “ p~u ´ ~wiq:p~u ` ~wiq “ p~uJ ` ~wJiqp~u ` ~wiq (6.50)

“ p~uJ~u ´ ~wJ~wq ` p~uJ~w ` ~wJ~uq i (6.51)

“ p~uJ~u ´ ~wJ~wq ` 2 ~wJ~u i (6.52)

and therefore
~uJ~u “ ~wJ~w and ~wJ~u “ 0 (6.53)

which means that vectors ~u and ~w are orthogonal.
Finally, let us consider

0 “ ~vJ
1
~v2 “ ~vJ

1
~u ` ~vJ

1
~wi (6.54)

and hence
~vJ

1
~u “ 0 and ~vJ

1
~w “ 0 (6.55)

which means that ~u and ~w are also orthogonal to ~v1.

6.1.4 Rotation axis

A one-dimensional subspace generated by an eigenvector ~v1 of R corresponding to λ “ 1, is called
the rotation axis (or axis of rotation) of R. If R “ I, then there is an infinite number of rotation axes,
otherwise there is exactly one. Vectors ~v, which are in a rotation axis of rotation R, remain unchanged
by R, i.e. R ~v “ ~v.

Consider that the eigenvector of R corresponding to 1 is also an eigenvector of RJ since

R ~v1 “ ~v1 (6.56)

RJR ~v1 “ RJ~v1 (6.57)

~v1 “ RJ~v1 (6.58)

It implies

pR´ RJq ~v1 “ 0 (6.59)
»

–

0 r12 ´ r21 r13 ´ r31

r21 ´ r12 0 r23 ´ r32

r31 ´ r13 r32 ´ r23 0

fi

fl ~v1 “ 0 (6.60)

and we see that
»

–

0 r12 ´ r21 r13 ´ r31

r21 ´ r12 0 r23 ´ r32

r31 ´ r13 r32 ´ r23 0

fi

fl

»

–

r32 ´ r23

r13 ´ r31

r21 ´ r12

fi

fl “

»

–

0
0
0

fi

fl (6.61)

Clearly, we have a nice formula for an eigenvector corresponding toλ1 “ 1, when vector
“

r32 ´ r23 r13 ´ r31 r21 ´
is non-zero. That is when R´ RJ is a non-zero matrix, which is exactly when R is not symmetric.

Let us now investigate the situation when R is symmetric. Then, R “ RJ “ R´1 and therefore

R pR` Iq “ R R` R “ I` R “ R` I (6.62)

which shows that the non-zero columns of the matrix R ` I are eigenvectors corresponding to the
unit eigenvalue. Clearly, at least one of the columns must be non-zero since otherwise, R “ ´I and
|R| would be minus one, which is impossible for a rotation.
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6.1.5 Rotation angle

Rotation angle θ of rotation R is the angle between a non-zero real vector ~x which is orthogonal to ~v1

and its image R ~x. There holds

cosθ “ ~x
JR ~x

~xJ~x
(6.63)

Let us set
~x “ ~u ` ~w (6.64)

Clearly, ~x is a real vector which is orthogonal to ~v1 since both ~u and ~w are. Let’s see that it is non-zero.
Vector ~v2 is an eigenvector and thus

0 ‰ ~vJ
2 ~v2 “ ~uJ~u ` ~wJ~w (6.65)

and therefore ~u ‰ ~0 or ~w ‰ ~0. Vectors ~u, ~w are orthogonal and therefore their sum can be zero only if
they both are zero since otherwise for, e.g., a non-zero ~u we get the following contradiction

0 “ ~uJ~0 “ ~uJp~u ` ~vq “ ~uJ~u ` ~uJ~v “ ~uJ~u ‰ 0 (6.66)

Let us now evaluate

cosθ “ ~xJR ~x

~xJ~x
“ p~u ` ~wqJR p~u ` ~wq

p~u ` ~wqJp~u ` ~wq “ p~u ` ~wqJpx ~u ´ y ~w ` x ~w ` y ~uq
~uJ~u ` ~wJ~w

“ x p~uJ~u ` ~wJ~wq ` y p~uJ~u ´ ~wJ~wq
~uJ~u ` ~wJ~w

(6.67)

“ x (6.68)

We have used equation 6.46 and equation 6.53. We see that the rotation angle is given by the real part
of λ2 (or λ3). Consider the characteristic equation of R, Equation 6.13

0 “ λ3 ´ trace Rλ2 ` pR11 ` R22 ` R33qλ´ |R| (6.69)

“ pλ´ 1qpλ´ x ´ yiqpλ´ x ` yiq (6.70)

“ λ3 ´ p2 x ` 1qλ2 ` px2 ` 2 x ` y2qλ´ px2 ` y2q (6.71)

We see that trace R “ 2 x ` 1 and thus

cosθ “ 1

2
ptrace R´ 1q (6.72)

6.1.6 Matrix pR´ Iq

§1 The range and the null space of pR ´ Iq. We have seen that rank pR ´ Iq “ 0 for R “ I and
rank pR ´ Iq “ 2 for all rotation matrices R ‰ I. Notice also that rank pRJ ´ Iq “ rank pRJ ´ IqJ “
rank pR´ Iq since rank of a matrix equals the rank of its transpose [6, 7].

Let us next investigate the relationship between the range and the null space of pR ´ Iq. The null
space of pR ´ Iq is generated by eigenvectors corresponding to 1 since pR ´ Iq ~v “ 0 implies R ~v “ ~v.
Now assume that vector ~v is also in the range of pR ´ Iq. Then, there is a vector ~a P R3 such that
~v “ pR´ Iq~a. Let us evaluate the square of the length of ~v

~vJ~v “ ~vJpR´ Iq~a “ p~vJR´ ~vJq~a “ p~vJ ´ ~vJq~a “ 0 (6.73)

which implies ~v “ ~0. We have used result 6.37 with x “ 1 and y “ 0. Hence, the range of R ´ I
intersects the null space of R´ I in the zero vector.

We can show even more. Consider ~v in the null space of pR´ Iq and a vector pR´ Iq~a in the range
of pR´ Iq. Then, using 6.58,

~vJpR´ Iq~a “ 0~a “ ~0 (6.74)

shows that the range of pR´ Iq is orthogonal to the null space of 3 pR´ Iq.

3In fact this also follows from pR´ Iq being a normal matrix [5], i.e., pR´ IqJpR´ Iq “ 2I´ R´ RJ “ pR´ Iq pR´ IqJ.
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~v
~x σ

~0 R

R

R ~x

I´ ~v ~vJ

I´ ~v ~vJ

(I´ ~v ~vJq ~x

R pI´ ~v ~vJq ~x

Figure 6.1: pR´ Iq ~v is the difference between the rotated projection of ~x to the range of pR´ Iq and the
projection of ~x to the range of pR´ Iq.

§2 Geometry of pR´Iq. Let us now interpret pR´Iq geometrically. The range of pR´Iq is orthogonal

to its null space. The null space of pR ´ Iq is generated either by ~v “ ~0, when its rank is zero, or by
a unit vector ~v, when its rank is two. In either case, the matrix of the projection onto the range of
σ “ pR´Iq~a, ~a P R3 can be written as I´~v ~vJ[5]. Now, let us look at a projection ~xσ of a general vector
~x onto the range of pR´ Iq, i.e. at ~xσ “ pI´ ~v ~vJq ~x. We can rotate it to R ~xσ and take their difference as

R ~xσ ´ ~xσ “ R pI´ ~v ~vJq ~x ´ pI´ ~v ~vJq ~x “ pR´ ~v ~vJq ~x ´ pI´ ~v ~vJq ~x “ R ~x ´ I ~x “ pR´ Iq ~x. (6.75)

We see that pR´ Iq gives the difference between the rotated projection of ~x to the range of pR´ Iq and
the projection of ~x to the range of pR´ Iq, see Figure 6.1.

6.1.7 Tangent space to rotations

The set of rotation matrices
R “

 

R P R3ˆ3 | RJR “ I, |R| “ 1
(

(6.76)

can be understood as a subset of R9 with

r “
“

r11 r21 r31 r12 r22 r32 r12 r23 r3

‰J
representing R “

»

–

r11 r12 r13

r21 r22 r23

r31 r32 r33

fi

fl (6.77)

Rotation constraints in definition 6.76 are algebraic and thusR is a an affine variety.4. Let us investigate
how does look the tangent space to R.

To get the tangent space to R, we will first find the normal NR to R at rotation R and then take its
orthogonal complement TR, which is tangent to R at R. In the end, we will write it all down in a
convenient matrix form.

The space NR, normal to R, is generated by columns of the Jacobian matrix [3] of constraints in 6.76,
written in a matrix form as

C “

»

—

—

—

—

—

—

—

—

–

r11 r12 ` r21 r22 ` r31 r32

r11 r13 ` r21 r23 ` r31 r33

r12 r13 ` r22 r23 ` r32 r33

r2
11

` r2
21

` r2
31

´ 1

r2
12

` r2
22

` r2
32

´ 1
r2

13
` r2

23
` r2

33
´ 1

r11 r22 r33 ´ r11 r23 r32 ´ r12 r21 r33 ` r12 r23 r31 ` r13 r21 r32 ´ r13 r22 r31 ´ 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(6.78)

4An affine variety is a subset of a linear space defined by algebraic constraints.
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The Jacobian matrix of C is obtained as

Ji j “ BCi

Br j
, J “

»

—

—

—

—

—

—

—

—

–

r12 r22 r32 r11 r21 r31 0 0 0
r13 r23 r33 0 0 0 r11 r21 r31

0 0 0 r13 r23 r33 r12 r22 r32

2 r11 2 r21 2 r31 0 0 0 0 0 0
0 0 0 2 r12 2 r22 2 r32 0 0 0
0 0 0 0 0 0 2 r13 2 r23 2 r33

J71 J72 J73 J74 J75 J76 J77 J78 J79

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

with

J71 “ r22 r33 ´ r23 r32

J72 “ ´r12 r33 ` r13 r32

J73 “ r12 r23 ´ r13 r22

J74 “ ´r21 r33 ` r23 r31

J75 “ r11 r33 ´ r13 r31

J76 “ ´r11 r23 ` r13 r21

J77 “ r21 r32 ´ r22 r31

J78 “ ´r11 r32 ` r12 r31

J79 “ r11 r22 ´ r12 r21

Jacobian matrix J is a 7 ˆ 9 matrix. Rows 1, 2, 3 of J have the property that each row contains elements
of just two columns of R. Rows 4, 5, 6 of J have the property that each row contains elements of just
one column of R. It thus suggests to construct a basis T of the tangent space TR to R from columns of
R. We can check that

J T “ 0 with T “

»

—

—

—

—

—

—

—

—

—

—

—

—

–

0 ´r13 r12

0 ´r23 r22

0 ´r33 r32

r13 0 ´r11

r23 0 ´r21

r33 0 ´r31

´r12 r11 0
´r22 r21 0
´r32 r31 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (6.79)

Next, we can see that each column of T contains two different columns of R and hence T x “ 0
for a non-zero x implies that every two columns of R are linearly dependent, which is impossible.
Therefore, T has the rank equal to three.

Finally, the first six rows of J contain columns of R. We see that
“

xJ 0
‰

J “ 0 for a non-zero x
implies that columns of R are linearly dependent, which is impossible. Therefore, the rank of NR is
not smaller than six. Hence, the dimension of the tangent space TR is exactly three at every R P R and
T is indeed a basis of TR.

Let us now rewrite the above back into a matrix form by inverting the matrix vectorization used
in 6.77. We rewrite columns of T into three matrices

T1 “

»

–

0 r13 ´r12

0 r23 ´r22

0 r33 ´r32

fi

fl , T2 “

»

–

´r13 0 r11

´r23 0 r21

´r33 0 r31

fi

fl , T3 “

»

–

r12 ´r11 0
r22 ´r21 0
r32 ´r31 0

fi

fl (6.80)
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and then can write the reformated tangent space of rotations at R for some real vector s “
“

s1 s2 s3

‰

as

TRpsq “ T1 s1 ` T2 s2 ` T3 s3 (6.81)

“

»

–´s2

»

–

r13

r23

r33

fi

fl ` s3

»

–

r12

r22

r32

fi

fl , s1

»

–

r13

r23

r33

fi

fl ´ s3

»

–

r11

r21

r31

fi

fl , ´s1

»

–

r12

r22

r32

fi

fl ` s2

»

–

r11

r21

r31

fi

fl

fi

fl

“

»

–

r11 r12 r13

r21 r22 r23

r31 r32 r33

fi

fl

»

–

0 ´s3 s2

s3 0 ´s1

´s2 s1 0

fi

fl (6.82)

“ R rssˆ (6.83)

The first order approximation of rotations around R is then obtained as

R` TRpsq “ R` R rssˆ “ R pI` rssˆq (6.84)

In particular, vectors in the tangent spaces to the space of rotations at the identity, which are called
infinitesimal rotations, are

TIpsq “ rssˆ (6.85)

and the first order approximation of rotations at the identity is

I` TIpsq “ I` rssˆ (6.86)
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7 Rotation representation and parameterization

We have seen Chapter 6 that rotation can be represented by an orthonormal matrix R. Matrix R has
nine elements and there are six constraints RJR “ I and one constratint |R| “ 1. Hence, we can view
the space of all rotation matrices as a subset of R9. This subset1 is determined by seven polynomial
equations in nine variables. We will next investigate how to describe, i.e. parameterize, this set with
fewer parameters and fewer constraints.

7.1 Angle-axis representation of rotation

~v
~x

~y

~xˆ “ ~v ˆ ~x

~x‖ “ p~vJ
σ ~xσq ~v

~xK “ ~x ´ p~vJ
σ ~xσq ~v

sinθ~xˆ

cosθ~xK

Figure 7.1: Vector ~y is obtained by rotating vector ~x by angle θ around the rotation axis given by
unit vector ~v. Vector ~y can be written as a linear combination of an orthogonal basis
r~x ´ p~vJ

σ ~xσq ~v, ~v ˆ ~x, p~vJ
σ ~xσq ~vs.

We know, Paragraph 6.1.4, that every rotation is etermined by a rotation axis and a rotation angle.
Let us next give a classical construction of the rotation matrix from an axis and angle.

Figure 7.1 shows how the vector ~x rotates by angle θ around an axis given by a unit vector ~v into
vector ~y. To find the relationship between ~x and ~y, we shall construct a special basis of R3. Vector
~x either is, or it is not a multiple of ~v. If it is, than ~y “ ~x and R “ I. Let us alternatively consider ~x,
which is not a multiple of ~v (an hence is not the zero vector!). Futher, let us consider the standard
basis σ of R3 and coordinates of vectors ~xσ and ~vσ. We construct three non-zero vectors

~x‖σ “ p~vJ
σ ~xσq ~vσ (7.1)

~xKσ “ ~x ´ p~vJ
σ ~xσq ~vσ (7.2)

~xˆσ “ ~vσ ˆ ~xσ (7.3)

1It is often called algebraic variaty in specialized literature [2].
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which are mutually orthogonal and hence form a basis of R3. We may notice that cooridate vectors
~x P R3, are actually equal to their coordinates w.r.t. the standard basis σ. Hence we can drop σ index
and write

~x‖ “ p~vJ~xq ~v “ ~v p~vJ~xq “ p~v ~vJq ~x “ r~vs‖ ~x (7.4)

~xK “ ~x ´ p~vJ~xq ~v “ ~x ´ p~v ~vJq ~x “ pI´ ~v ~vJq ~x “ r~vsK ~x (7.5)

~xˆ “ ~v ˆ ~x “ r~vsˆ ~x (7.6)

We have introduced two new matrices

r~vs‖ “ ~v ~vJ and r~vsK “ I´ ~v ~vJ (7.7)

Let us next study how the three matrices r~vs‖, r~vsK, r~vsˆ behave under the transposition and mutual
multiplication. We see that the following indentities

r~vsJ
‖ “ r~vs‖ , r~vs‖ r~vs‖ “ r~vs‖ , r~vs‖ r~vsK “ 0, r~vs‖ r~vsˆ “ 0,

r~vsJ
K “ r~vsK , r~vsK r~vs‖ “ 0, r~vsK r~vsK “ r~vsK , r~vsK r~vsˆ “ r~vsˆ ,

r~vsJ
ˆ “ ´ r~vsˆ , r~vsˆ r~vs‖ “ 0, r~vsˆ r~vsK “ r~vsˆ , r~vsˆ r~vsˆ “ ´ r~vsK

(7.8)

hold true. The last identity is obtained as follows

r~vsˆ r~vsˆ “

»

–

0 ´v3 v2

v3 0 ´v1

´v2 v1 0

fi

fl

»

–

0 ´v3 v2

v3 0 ´v1

´v2 v1 0

fi

fl (7.9)

“

»

–

´v2
2

´ v2
3

v1v2 v1v3

v1v2 ´v2
1

´ v2
3

v2v3

v1v3 v2v3 ´v2
1

´ v2
2

fi

fl (7.10)

“

»

–

v2
1

´ 1 v1v2 v1v3

v1v2 v2
2

´ 1 v2v3

v1v3 v2v3 v2
3

´ 1

fi

fl “ r~vs‖ ´ I “ ´ r~vsK (7.11)

It is also interesting to investigate the norms of vectors ~xK and ~xˆ. Consider

}~xˆ}2 “ ~xJ
ˆ~xˆ “ ~xJ r~vsJ

ˆ r~vsˆ ~x “ ~xJp´ r~vs2
ˆq~x “ ~xJ r~vsK ~x (7.12)

}~xK}2 “ ~xJ
K~xK “ ~xJ r~vsJ

K r~vsK ~x “ ~xJ r~vs2
K ~x “ ~xJ r~vsK ~x (7.13)

Since norms are non-negaive, we conclude that }~xK} “ }~xˆ}.
We can now write ~y in the basis r~x‖, ~xK, ~xˆs as

~y “ ~x‖ ` ||~xK|| cosθ
~xK

||~xK|| ` ||~xK|| sinθ
~xˆ

||~xˆ|| (7.14)

“ ~x‖ ` cosθ~xK ` sinθ~xˆ (7.15)

“ r~vs‖ ~x ` cosθ r~vsK ~x ` sinθ r~vsˆ ~x (7.16)

“ pr~vs‖ ` cosθ r~vsK ` sinθ r~vsˆq ~x “ R ~x (7.17)

We obtained matrix
R “ r~vs‖ ` cosθ r~vsK ` sinθ r~vsˆ (7.18)

Let us check that this indeed is a rotation matrix

RJR “
`

r~vs‖ ` cosθ r~vsK ` sinθ r~vsˆ

˘J `

r~vs‖ ` cosθ r~vsK ` sinθ r~vsˆ

˘

“
`

r~vs‖ ` cosθ r~vsK ´ sinθ r~vsˆ

˘ `

r~vs‖ ` cosθ r~vsK ` sinθ r~vsˆ

˘

“ r~vs‖ ` cos2 θ r~vsK ` sinθ cosθ r~vsˆ ´ sinθ cosθ r~vsˆ ` sin2 θ r~vsK

“ r~vs‖ ` r~vsK “ I (7.19)
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R can be written in many variations, which are useful in different situations when simplifying for-
mulas. Let us provide the most common of them using r~vs‖ “ ~v ~vJ, r~vsK “ I ´ r~vs‖ “ I ´ ~v ~vJ and
r~vsˆ

R “ r~vs‖ ` cosθ r~vsK ` sinθ r~vsˆ (7.20)

“ ~v ~vJ ` cosθ pI´ ~v ~vJq ` sinθ r~vsˆ (7.21)

“ cosθ I` p1 ´ cosθq ~v ~vJ ` sinθ r~vsˆ (7.22)

“ cosθ I` p1 ´ cosθq r~vs‖ ` sinθ r~vsˆ (7.23)

“ cosθ I` p1 ´ cosθq pI` r~vs2
ˆq ` sinθ r~vsˆ (7.24)

“ I` p1 ´ cosθq r~vs2
ˆ ` sinθ r~vsˆ (7.25)

7.1.1 Angle-axis parameterization

Let us write R in more detail

R “ cosθ I` p1 ´ cosθq ~v ~vJ ` sinθ r~vsˆ (7.26)

“ p1 ´ cosθq ~v ~vJ ` cosθ I` sinθ r~vsˆ (7.27)

“ p1 ´ cosθq

»

–

v1v1 v1v2 v1v3

v2v1 v2v2 v2v3

v3v1 v3v2 v3v3

fi

fl ` cosθ

»

–

1 0 0
0 1 0
0 0 1

fi

fl ` sinθ

»

–

0 ´v3 v2

v3 0 ´v1

´v2 v1 0

fi

fl

“

»

–

v1v1p1 ´ cosθq ` cosθ v1v2p1 ´ cosθq ´ v3 sinθ v1v3p1 ´ cosθq ` v2 sinθ
v2v1p1 ´ cosθq ` v3 sinθ v2v2p1 ´ cosθq ` cosθ v2v3p1 ´ cosθq ´ v1 sinθ
v3v1p1 ´ cosθq ´ v2 sinθ v3v2p1 ´ cosθq ` v1 sinθ v3v3p1 ´ cosθq ` cosθ

fi

fl

(7.28)

which allows us to parameterize rotation by four numbers

“

θ v1 v2 v3

‰J
with v2

1 ` v2
2 ` v2

3 “ 1 (7.29)

The parameterization uses goniometric functions.

7.1.2 Computing the axis and the angle of rotation from R

Let us now discuss how to get a unit vector ~v of the axis and the corresponding angleθ of rotation from
a rotation matrix R, such that the pair rθ, ~vs gives R by Equation 7.28. To avoid multiple representations
due to periodicity of θ, we will confine θ to real interval p´π, πs.

We can get cospθq from Equation 6.72.
If cosθ “ 1, then sinθ “ 0, and thus θ “ 0. Then, R “ I and any unit vector can be taken as ~v, i.e.

all paris r0, ~vs for unit vector ~v P R3 represent I.
If cosθ “ ´1, then sinθ “ 0, and thus θ “ π. Then R is a symmetrical matrix and we use

Equation 6.62 to get ~v1, a non-zero multiple of ~v, i.e. ~v “ α~v1, with real non-zero α, and therefore
~v1{||~v1|| “ s ~v with s “ ˘1. We are getting

R “ 2 r~vs‖ ´ I “ 2 ~v ~vJ ´ I “ 2 s2~v ~vJ ´ I “ 2 ps ~v q ps ~v qJ ´ I (7.30)

“ 2

ˆ

~v1

}~v1}

˙ˆ

~v1

}~v1}

˙J

´ I “ 2

ˆ

´ ~v1

}~v1}

˙ˆ

´ ~v1

}~v1}

˙J

´ I (7.31)

from Equation 7.27 and hence we can form two pairs

„

π,` ~v1

}~v1}



,

„

π,´ ~v1

}~v1}



(7.32)
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representing this rotation.
Let’s now move to ´1 ă cosθ ă 1. We construct matrix

R´ RJ “ p1 ´ cosθq r~vs‖ ` cosθ I` sinθ r~vsˆ

´
`

p1 ´ cosθq r~vs‖ ` cosθ I` sinθ r~vsˆ

˘J
(7.33)

“ p1 ´ cosθq r~vs‖ ` cosθ I` sinθ r~vsˆ

´
`

p1 ´ cosθq r~vs‖ ` cosθ I´ sinθ r~vsˆ

˘

(7.34)

“ 2 sinθ r~vsˆ (7.35)

which gives
»

–

0 r12 ´ r21 r13 ´ r31

r21 ´ r12 0 r23 ´ r32

r31 ´ r13 r32 ´ r23 0

fi

fl “ 2 sinθ

»

–

0 ´v3 v2

v3 0 ´v1

´v2 v1 0

fi

fl (7.36)

and thus

sinθ~v “ 1

2

»

–

r32 ´ r23

r13 ´ r31

r21 ´ r12

fi

fl (7.37)

We thus get

| sinθ| ||~v|| “ | sinθ| “ 1

2

b

pr23 ´ r32q2 ` pr31 ´ r13q2 ` pr12 ´ r21q2 (7.38)

There holds
sinθ~v “ sinp´θq p´~vq (7.39)

true and hence we define

θ “ arccos

ˆ

1

2
ptrace pRq ´ 1q

˙

, ~r “ 1

2

»

–

r32 ´ r23

r13 ´ r31

r21 ´ r12

fi

fl (7.40)

and write two pairs
„

`θ,` ~r

sinθ



,

„

´θ,´ ~r

sinθ



(7.41)

representing rotation R.
We see that all rotations are represented by two pairs of rθ, ~vs except for the identity, which is

represented by an infinite number of pairs.

7.2 Euler vector representation and the exponential map

Let us now discuss another classical and natural representation of rotations. It may seem as only
a slight variation of the angle-axis representation but it leads to several interesting connections and
properties.

Let us consider the euler vector defined as

~e “ θ~v (7.42)

where θ is the rotation angle and ~v is the unit vector representing the rotation axis in the angle-axis
representation as in Equation 7.27.
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Next, let us recall the very fundamental real functions [3] and their related power series

exp x “
8
ÿ

n“0

xn

n!
(7.43)

sin x “
8
ÿ

n“0

p´1qn

p2n ` 1q!
x2n`1 (7.44)

cos x “
8
ÿ

n“0

p´1qn

p2nq!
x2n (7.45)

It makes sense to define the exponential function of an m ˆ m real matrix A P Rmˆm as

exp A “
8
ÿ

n“0

An

n!
(7.46)

We will now show that the rotation matrix R corresponding to the angle-axis parameterization rθ, ~vs
can be obtained as

Rprθ, ~vsq “ exp r~esˆ “ exp rθ~vsˆ (7.47)

The basic tool we have to employ is the relationship between r~es3
ˆ and r~esˆ. It will allow us to pass

form the ifinite summantion of matrix powers to the infinite summation of the powers of θ and hence
to sinθ and cosθ, which will, at the end, give the Rodrigues formula. We write, Equation 7.11,

rθ~vs2
ˆ “ θ2 p~v ~vJ ´ Iq

rθ~vs3
ˆ “ ´θ2 rθ~vsˆ

rθ~vs4
ˆ “ ´θ2 rθ~vs2

ˆ (7.48)

rθ~vs5
ˆ “ θ4 rθ~vsˆ

rθ~vs6
ˆ “ θ4 rθ~vs2

ˆ

...

and substitute into Equation 7.46 to get

exp rθ~vsˆ “
8
ÿ

n“0

rθ~vsn
ˆ

n!
(7.49)

“
8
ÿ

n“0

rθ~vs2n
ˆ

p2nq!
`

8
ÿ

n“0

rθ~vs2n`1
ˆ

p2n ` 1q!
(7.50)

Let us notice the identities, which are obtained by generalizing Equations 7.48 to an arbitrary power n

rθ~vs0
ˆ “ I (7.51)

rθ~vs2n
ˆ “ p´1qn´1 θ2pn´1q rθ~vs2

ˆ for n “ 1, . . . (7.52)

rθ~vs2n`1
ˆ “ p´1qn θ2n rθ~vsˆ for n “ 0, . . . (7.53)
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and substitute them into Equation 7.50 to get

exp rθ~vsˆ “ I`
˜

8
ÿ

n“1

p´1qn´1θ2pn´1q

p2nq!

¸

rθ~vs2
ˆ `

˜

8
ÿ

n“0

p´1qnθ2n

p2n ` 1q!

¸

rθ~vsˆ

“ I`
˜

8
ÿ

n“1

p´1qn´1θ2n

p2nq!

¸

r~vs2
ˆ `

˜

8
ÿ

n“0

p´1qnθ2n`1

p2n ` 1q!

¸

r~vsˆ

“ I´
˜

8
ÿ

n“0

p´1qnθ2n

p2nq!
´ 1

¸

r~vs2
ˆ ` sinθ r~vsˆ

“ I´ pcosθ´ 1q r~vs2
ˆ ` sinθ r~vsˆ

“ I` sinθ r~vsˆ ` p1 ´ cosθq r~vs2
ˆ

“ I` sin }~e}
„

~e

}~e}



ˆ

` p1 ´ cos }~e}q
„

~e

}~e}

2

ˆ

“ Rprθ, ~vsq (7.54)

by the comparison with Equation 7.25.

7.3 Quaternion representation of rotation

7.3.1 Quaternion parameterization

We shall now introdude another parameterization of R by four numbers but this time we will not use
goniometric functions but polynomials only. We shall see later that this parameterization has other
useful properties.

This paramterization is known as unit quaternion parameterization of rotations since rotations
are represented by unit vectors from R4. In general, it may sense to talk even about non-unit
quaternions and we will see how to use them later when applying rotations represented by unit
quaternions on points represented by non-unit quaternions. To simplify our notation, we will often
write “quaternions” insted of more correct “unit quaternions”.

Let us do a seemingly unnecessary trick. We will pass from θ to θ2 and introduce

~q “
„

cos θ2
~v sin θ2



“

»

—

—

–

q1

q2

q3

q4

fi

ffi

ffi

fl

“

»

—

—

–

cos θ2
v1 sin θ2
v2 sin θ2
v3 sin θ2

fi

ffi

ffi

fl

(7.55)

There still holds

}~q} “ q2
1 ` q2

2 ` q2
3 ` q2

4 “ cos2 θ

2
` sin2 θ

2
v2

1 ` sin2 θ

2
v2

2 ` sin2 θ

2
v2

3 “ cos2 θ

2
` sin2 θ

2
“ 1 (7.56)

true. We can verify that the following identities

cosθ “ 2 cos2 θ

2
´ 1 “ 2 q2

1 ´ 1 (7.57)

sinθ “ 2 cos
θ

2
sin
θ

2
(7.58)

sinθ~v “ 2 cos
θ

2
sin
θ

2
~v “ 2 q1

“

q2 q3 q4

‰J
(7.59)

cosθ “ 1 ´ 2 sin2 θ

2
“ 1 ´ 2 pq2

2 ` q2
3 ` q2

4q “ q2
1 ´ q2

2 ´ q2
3 ´ q2

4 (7.60)

1 ´ cosθ “ 2 sin2 θ

2
“ 2 pq2

2 ` q2
3 ` q2

4q (7.61)
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hold true. We can now substitute the above into Equation 7.23 to get

R “ I` sinθ r~vsˆ ` p1 ´ cosθq r~vs2
ˆ (7.62)

“ I` 2 cos
θ

2
sin
θ

2
r~vsˆ ` 2 sin2 θ

2
r~vs2

ˆ (7.63)

“ I` 2 cos
θ

2

„

sin
θ

2
~v



ˆ

` 2

„

sin
θ

2
~v

2

ˆ

(7.64)

“ I` 2 q1

»

–

»

–

q2

q3

q4

fi

fl

fi

fl

ˆ

` 2

»

–

»

–

q2

q3

q4

fi

fl

fi

fl

2

ˆ

(7.65)

“

»

–

1 ´2 q1q4 2 q1q3

2 q1q4 1 ´2 q1q2

´2 q1q3 2 q1q2 1

fi

fl ` 2

»

–

´q2
3

´ q2
4

q2q3 q2q4

q2q3 ´q2
2

´ q2
4

q3q4

q2q4 q3q4 ´q2
2

´ q2
3

fi

fl (7.66)

“

»

–

q2
1

` q2
2

´ q2
3

´ q2
4

2 pq2q3 ´ q1q4q 2 pq2q4 ` q1q3q
2 pq2q3 ` q1q4q q2

1
´ q2

2
` q2

3
´ q2

4
2 pq3q4 ´ q1q2q

2 pq2q4 ´ q1q3q 2 pq3q4 ` q1q2q q2
1

´ q2
2

´ q2
3

` q2
4

fi

fl (7.67)

which uses only second order polynomials in elements of ~q.

7.3.2 Computing quaternions from R

To get the quaternions representing a rotation matrix R, we start with Equation 7.64. Let us first
confine θ to the real interval p´π, πs as we did for the angle-axis parameterization.

Matrix R either is or it is not symmetric.

If R is symmetric, then either sinθ{2 ~v “ ~0 or cosθ{2 “ 0. If sinθ{2 ~v “ ~0, then sinθ{2 “ 0 since
}~v} “ 1 and thus cosθ{2 “ ˘1. However, cosθ{2 “ ´1 for no θ P p´π, πs and hence cosθ{2 “ 1.
This corresponds to θ “ 0 and hence to R “ Iwhich is thus represented by quaternion

“

1 0 0 0
‰J

(7.68)

If cosθ{2 “ 0, then sinθ{2 “ ˘1 but sinθ{2 “ ´1 for no θ P p´π, πs and hence sinθ{2 “ 1. This
corresponds to the rotation the by θ “ π around the axis given by unit ~v “ rv1, v2, v3sJ. This rotation
is thus represented by quaternion

“

0 v1 v2 v3

‰J
(7.69)

Notice that ~v and ´~v generate the same rotation matrix R and hence every rotation by θ “ π is
represented by two quaternions.

If R is not symmetric, then R´ RJ ‰ 0 and hence we are geting a useful relationship

R´ RJ “ 4 cos
θ

2

„

sin
θ

2
~v



ˆ

(7.70)

and next continue with writing

cos2 θ

2
“ 1 ´ sin2 θ

2
“ 1 ´ 1

2
p1 ´ cosθq “ 1 ´ 1

2

ˆ

1 ´ 1

2
ptrace R´ 1q

˙

“ 1

4
p1 ` trace Rq (7.71)

using trace R, and thus

q1 “ cos
θ

2
“ s

2

a

trace R` 1 (7.72)

with s “ ˘1. We can form equation
»

–

0 r12 ´ r21 r13 ´ r31

r21 ´ r12 0 r23 ´ r32

r31 ´ r13 r32 ´ r23 0

fi

fl “

»

–

»

–

r32 ´ r23

r13 ´ r31

r21 ´ r12

fi

fl

fi

fl

ˆ

“ s
a

trace R` 1

»

–

»

–

q2

q3

q4

fi

fl

fi

fl

ˆ

(7.73)
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which gives the following two quaternions

`1

2
?

trace R` 1

»

—

—

–

trace R` 1
r32 ´ r23

r13 ´ r31

r21 ´ r12

fi

ffi

ffi

fl

,
´1

2
?

trace R` 1

»

—

—

–

trace R` 1
r32 ´ r23

r13 ´ r31

r21 ´ r12

fi

ffi

ffi

fl

(7.74)

which represent the same rotation as R.
We see that all rotations are represented by the above by two quaternions ~q and ´~q except for the

identity, which is represented by exactly one quaternion.
The quaternion representation of rotation presented above represents every rotation by a finite

number of quaternions whereas angle-axis repesentation allowed for an infinite number of angle-
axis pairs to correspond to the indentity. Yet, even this still has an “aesthetic flaw” at the identity,
which has only one quaternion whereas all other rotations have two quaternions. The “flaw” can be
removed by realizing that ~q “ r´1, 0, 0, 0sJ also maps to the identity. However, if we look for θ that
corresponds to cosθ{2 “ ´1 we see that such θ{2 “ ˘kπ and hence θ “ ˘2 kπ for k “ 1, 2, . . ., which
are points isolated from p´π, πs. Now, if we allow θ to be in interval p´2π,`2πs, then the set

"„

cosθ{2
~v sinθ{2

 ˇ

ˇ

ˇ

ˇ

θ P r´2π, `2πs, ~v P R3, }~v} “ 1

*

(7.75)

of quaternions contains exactly two quaternions for every rotation matrix R and is obtained by a
continuous mapping of a closed interval of angles, which is boundend, times a sphere in R3, which
is also closed and bounded.

7.3.3 Quaternion composition

Consider two rotations represented by ~q1 and ~q2. The respective rotation matrices R1, R2 can be
composed into rotation matrix R21 “ R2 R1, which can be represented by ~q21. Let us investigate how
to obtain ~q21 from ~q1 and ~q2. We shall use Equation 7.76 to relate R1 to ~q1 and R2 to ~q1, then evaluate
R21 “ R2 R1 and recover ~q21 from R21. We use Equation 7.23 to write

R “ 2 sin2 θ

2
~v ~vJ ` p2 cos2 θ

2
´ 1q I` 2 cos

θ

2
sin
θ

2
r~vsˆ (7.76)

and

R1 “ 2 ps1~v1q ps1~v1qJ ` p2 c2
1 ´ 1q I` 2 c1 rs1~v1sˆ (7.77)

R2 “ 2 ps2~v2q ps2~v2qJ ` p2 c2
2 ´ 1q I` 2 c2 rs2~v2sˆ (7.78)

R21 “ 2 ps21~v21q ps21~v21qJ ` p2 c2
21 ´ 1q I` 2 c21 rs21~v21sˆ

with shortcuts

c1 “ cos
θ1

2
, s1 “ sin

θ1

2
, c2 “ cos

θ2

2
, s2 “ sin

θ2

2
, c21 “ cos

θ21

2
, s21 “ sin

θ21

2

Let us next assume that both R1, R2 are not identities. Then θ1 ‰ 0 and θ2 ‰ 0 and rotation axes ~v1 ‰ ~0,
~v2 ‰ ~0 are well defined. We can now distinguish two cases. Either ~v1 “ ˘~v2, and then ~v21 “ ~v1 “ ˘~v2,
or ~v1 ‰ ˘~v2, and then

r~v1, ~v2, ~v2 ˆ ~v1s (7.79)

forms a basis of R3. We also notice that ~v1, ~v2 always appear in R1, R2 in the product with s1, s2.
We can thus write

sin
θ21

2
~v21 “ a1 sin

θ1

2
~v1 ` a2 sin

θ2

2
~v2 ` a3 psin

θ2

2
~v2 ˆ sin

θ1

2
~v1q (7.80)

with coefficients a1, a2, a3 P R. To find coefficients a1, a2, a3, we will consider the following special
situations:

73



T Pajdla. Elements of Geometry for Robotics 2025-9-20 (pajdla@cvut.cz)

1. ~v1 “ ˘~v2 implies ~v21 “ ~v1 “ ˘~v2 and θ21 “ θ1 ˘ θ2 for all real θ1 and θ2.

2. ~vJ
2
~v1 “ 0 and θ1 “ θ2 “ π implies

R1 “ 2 ~v1~v
J
1 ´ I (7.81)

R2 “ 2 ~v2~v
J
2 ´ I (7.82)

R21 “ p2 ~v2~v
J
2 ´ Iqp2 ~v1~v

J
1 ´ Iq “ I´ 2 p~v2~v

J
2 ` ~v1~v

J
1 q (7.83)

We see that in the former case we are getting

sin
θ21

2
~v1 “ pa1 sin

θ1

2
` a2 sin

θ2

2
q ~v1 for allθ1, θ2 P R (7.84)

which for ~v1 ‰ ~0 leads to

sin
θ21

2
“ a1 sin

θ1

2
` a2 sin

θ2

2
(7.85)

sin
θ1 ` θ2

2
“ a1 sin

θ1

2
` a2 sin

θ2

2
(7.86)

sin
θ1

2
cos
θ2

2
` cos

θ1

2
sin
θ2

2
“ a1 sin

θ1

2
` a2 sin

θ2

2
(7.87)

for all θ1, θ2 P R. But that means that

a1 “ cos
θ2

2
and a2 “ cos

θ1

2
(7.88)

In the latter case we find that ~v21 is a non-zero multiple of ~v2 ˆ ~v1 since

R21 p~v2 ˆ ~v1q “ pI´ 2 p~v2~v
J
2 ` ~v1~v

J
1 qq p~v2 ˆ ~v1q (7.89)

“ ~v2 ˆ ~v1 ´ 2 ~v2~v
J
2 p~v2 ˆ ~v1q ´ 2 ~v1~v

J
1 p~v2 ˆ ~v1q (7.90)

“ ~v2 ˆ ~v1 (7.91)

However, that means that

sin
θ21

2
~v21 “ a3 psin

θ2

2
~v2 ˆ ~v1 sin

θ1

2
q (7.92)

We next get θ21 using Equation 6.72 as

cosθ21 “ 1

2
ptrace R´ 1q “ 1

2
p3 ´ 2 p}~v2}2 ` }~v1}2q ´ 1q “ 1

2
p3 ´ 4 ´ 1q “ ´1 (7.93)

and hence θ21 “ ˘π and thus
~v21 “ a3 p~v1 ˆ ~v2q (7.94)

but since ~v1 is perpendicular to ~v2, ~v1 ˆ ~v2 is a unit vector and thus a3 “ 1. We can thus hypothesize
that in general

sin
θ21

2
~v21 “ cos

θ2

2

ˆ

sin
θ1

2
~v1

˙

` cos
θ1

2

ˆ

sin
θ2

2
~v2

˙

`
ˆ

sin
θ2

2
~v2

˙

ˆ
ˆ

sin
θ1

2
~v1

˙

(7.95)

Let’s next find cos θ21

2 consistent with the above hypothesis. We see that

cos2 θ21

2
“ 1 ´ sin2 θ21

2
(7.96)
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and hence we evaluate

sin2 θ21

2
“ sin2 θ21

2
~vJ

21
~v21 “

ˆ

sin
θ21

2
~v21

˙Jˆ

sin
θ21

2
~v21

˙

(7.97)

“ cos2 θ2

2
sin2 θ1

2
` cos2 θ1

2
sin2 θ2

2
(7.98)

` 2 cos
θ2

2
cos
θ1

2

ˆ

sin
θ2

2
~v2

˙Jˆ

sin
θ1

2
~v1

˙

(7.99)

`
„ˆ

sin
θ2

2
~v2

˙

ˆ
ˆ

sin
θ1

2
~v1

˙J„ˆ

sin
θ2

2
~v2

˙

ˆ
ˆ

sin
θ1

2
~v1

˙

(7.100)

We used the fact that ~v1, ~v2 are perpendicular to their vector product.
To move further, we will use that for every two unit vectors ~u, ~v in R3 there holds

p~u ˆ ~vqJp~u ˆ ~vq “ }p~u ˆ ~vq}2 “ }~u}2}~v}2 sin2
=p~u, ~vq (7.101)

“ }~u}2}~v}2p1 ´ cos2
=p~u, ~vqq “ }~u}2}~v}2 ´ p~uJ~vq2 (7.102)

true.
Applying this to the last summand in Equation 7.100, we get

sin2 θ21

2
“ cos2 θ2

2
sin2 θ1

2
` cos2 θ1

2
sin2 θ2

2
(7.103)

` 2 cos
θ2

2
cos
θ1

2

ˆ

sin
θ2

2
~v2

˙Jˆ

sin
θ1

2
~v1

˙

(7.104)

` sin2 θ2

2
sin2 θ1

2
´
«

ˆ

sin
θ2

2
~v2

˙Jˆ

sin
θ1

2
~v1

˙

ff2

(7.105)

“ sin2 θ1

2
` cos2 θ1

2
sin2 θ2

2
(7.106)

` 2 cos
θ2

2
cos
θ1

2

ˆ

sin
θ2

2
~v2

˙Jˆ

sin
θ1

2
~v1

˙

´
«

ˆ

sin
θ2

2
~v2

˙Jˆ

sin
θ1

2
~v1

˙

ff2

“ 1 ´ cos2 θ1

2
cos2 θ2

2
(7.107)

` 2 cos
θ2

2
cos
θ1

2

ˆ

sin
θ2

2
~v2

˙Jˆ

sin
θ1

2
~v1

˙

´
«

ˆ

sin
θ2

2
~v2

˙Jˆ

sin
θ1

2
~v1

˙

ff2

where we used the fact that

sin2 θ1

2
` cos2 θ1

2
sin2 θ2

2
“ 1 ´ cos2 θ1

2
` cos2 θ1

2
sin2 θ2

2
(7.108)

“ 1 ` cos2 θ1

2

ˆ

sin2 θ2

2
´ 1

˙

“ 1 ´ cos2 θ1

2
cos2 θ2

2

We are thus obtaining

cos2 θ21

2
“ 1 ´ sin2 θ21

2
(7.109)

“ cos2 θ1

2
cos2 θ2

2
(7.110)

´ 2 cos
θ2

2
cos
θ1

2

ˆ

sin
θ2

2
~v2

˙Jˆ

sin
θ1

2
~v1

˙

`
«

ˆ

sin
θ2

2
~v2

˙Jˆ

sin
θ1

2
~v1

˙

ff2

“
˜

cos
θ1

2
cos
θ2

2
´
ˆ

sin
θ2

2
~v2

˙Jˆ

sin
θ1

2
~v1

˙

¸2

(7.111)
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Our complete hypothesis will be

sin
θ21

2
~v21 “ cos

θ2

2

ˆ

sin
θ1

2
~v1

˙

` cos
θ1

2

ˆ

sin
θ2

2
~v2

˙

`
ˆ

sin
θ2

2
~v2

˙

ˆ
ˆ

sin
θ1

2
~v1

˙

cos
θ21

2
“ cos

θ1

2
cos
θ2

2
´
ˆ

sin
θ2

2
~v2

˙Jˆ

sin
θ1

2
~v1

˙

(7.112)

To verify this, we will run the following Maple [17] program

> restart:

> with(LinearAlgebra):

> E:=IdentityMatrix(3):

> X :=proc(u) <<0|-u[3]|u[2]>,<u[3]|0|-u[1]>,<-u[2]|u[1]|0>> end proc:

> v1:=<x1,y1,z1>:

> v2:=<x2,y2,z2>:

> R1:=2*(s1*v1).Transpose(s1*v1)+(2*c1ˆ2-1)*E+2*c1*X (s1*v1):

> R2:=2*(s2*v2).Transpose(s2*v2)+(2*c2ˆ2-1)*E+2*c2*X (s2*v2):

> R21:=expand˜(R2.R1):

> c21:=c2*c1-Transpose(s2*v2).(s1*v1);

c21 :“ c2 c1 ´ s1 x1 s2 x2 ´ s1 y1 s2 y2 ´ s1 z1 s2 z2

> s21v21:=c2*s1*v1+s2*c1*v2+X (s2*v2).(s1*v1);

s21v21 :“

»

—

—

–

c2 s1 x1 ` s2 c1 x2 ´ s2 z2 s1 y1 ` s2 y2 s1 z1

c2 s1 y1 ` s2 c1 y2 ` s2 z2 s1 x1 ´ s2 x2 s1 z1

c2 s1 z1 ` s2 c1 z2 ´ s2 y2 s1 x1 ` s2 x2 s1 y1

fi

ffi

ffi

fl

> RR21:=2*s21v21.Transpose(s21v21)+(2*c21ˆ2-1)*E+2*c21*X (s21v21):

> simplify(expand˜(RR21-R21),[x1ˆ2+y1ˆ2+z1ˆ2=1,x2ˆ2+y2ˆ2+z2ˆ2=1,

c1ˆ2+s1ˆ2=1,c2ˆ2+s2ˆ2=1]);

»

—

—

–

0 0 0

0 0 0

0 0 0

fi

ffi

ffi

fl

which verifies that our hypothesis was correct.
Thus we see that

~q21 “ ~q2 ~q1 “
«

cos θ21

2

sin θ21

2
~v21

ff

“
«

cos θ1

2 cos θ2

2 ´ sin θ2

2 sin θ1

2
~vJ

2
~v1

cos θ2

2 sin θ1

2
~v1 ` cos θ1

2 sin θ2

2
~v2 ` sin θ2

2 sin θ1

2
~v2 ˆ ~v1

ff

(7.113)

Considering two unit quaternions

~p “

»

—

—

–

p1

p2

p3

p4

fi

ffi

ffi

fl

, and ~q “

»

—

—

–

q1

q2

q3

q4

fi

ffi

ffi

fl

(7.114)
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we can now give their composition as

~q21 “ ~q ~p “

»

—

—

–

q1 p1 ´ q2 p2 ´ q3 p3 ´ q4 p4

q1 p2 ` q2 p1 ` q3 p4 ´ q4 p3

q1 p3 ` q3 p1 ` q4 p2 ´ q2 p4

q1 p4 ` q4 p1 ` q2 p3 ´ q3 p2

fi

ffi

ffi

fl

(7.115)

“

»

—

—

–

q1 p1 ´ q2 p2 ´ q3 p3 ´ q4 p4

q2 p1 ` q1 p2 ´ q4 p3 ` q3 p4

q3 p1 ` q4 p2 ` q1 p3 ´ q2 p4

q4 p1 ´ q3 p2 ` q2 p3 ` q1 p4

fi

ffi

ffi

fl

(7.116)

“

»

—

—

–

q1 ´q2 ´q3 ´q4

q2 q1 ´q4 q3

q3 q4 q1 ´q2

q4 ´q3 q2 q1

fi

ffi

ffi

fl

»

—

—

–

p1

p2

p3

p4

fi

ffi

ffi

fl

(7.117)

7.3.4 Application of quaternions to vectors

Consider a rotation by angle θ around an axis with direection ~v represented by a unit quaternion
~q “

“

cos θ2 sin θ2 ~v
‰

and a vector ~x P R3. To rotate the vector, we may construct the rotation matrix
Rp~q q and apply it to the vector ~x as Rp~q q ~x.

Interestingly enough, it is possible to accomplish this in somewhat different and more efficient way
by first “embedding” vector ~x into a (non-unit!) quaternion

~pp~xq “
„

0
~x



“

»

—

—

–

0
x1

x2

x3

fi

ffi

ffi

fl

(7.118)

and then composing it with quaternion ~q from both sides

~q ~pp~xq~q´1 “
„

cos θ2
sin θ2 ~v

 „

0
~x

 „

cos θ2
´ sin θ2 ~v



(7.119)

One can verify that the following
„

0
Rp~q q ~x



“ ~q ~pp~xq~q´1 (7.120)

holds true.

7.4 “Cayley transform” parameterization

We see that unit quaternions provide a nice parameterization. It is given as a matrix with polynomial
entries of four parameters. However, unit quaternions still are somewhat redundant since every
rotation is represented twice.

Let us now mention yet another classical rotation parameterization, which is known as “Cayley
transform”. This parameterization uses only three parameters to represent three-dimensional rota-
tions. In a sense, it is as ecconomic as it can be. On the other hand, it can’t represent rotations by
180˝.

Actually, it can be proven [20] that there is no mapping (parameterization), which could be (i)
continuous, (ii) one-to-one, (iii) onto, and (iv) three-dimensional (i.e. mapping a “three-dimensional
box” onto all three-dimensional rotations).
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x

y

c

1

1´1

´1

θθ{2

0

sinθ

cosθ

Figure 7.2: Cayley transform parameterization of two-dimensional rotations.

Axis-angle parameterization is continuous and onto but not one-to-one and not three-dimensional.
Euler vector parameterization is continuous, onto, three-dimensional but not one-to one. Unit quater-
nions are continuous, onto but not three-dimensional and not one-to one (although they are close
to that by being two-to-one). Finally, Cayley transform parameterization is continuous, one-to-one,
three-dimensional but it not onto.

In addition, unit quaternions and Cayley transform parameterizations are “finite” in the sense that
they are polynomial rational functions of their parameters while other above mentioned representa-
tions require some “infinite” process for computing trigonometric functions. This may be no problem
if approximate evaluation of functions is acceptable but, as we will see, it is a fundamental obstacle
to solving interesting engineering problems using computational algebra.

7.4.1 Cayley transform parameterization of two-dimensional rotations

Let us first look at two-dimesional roations. Figure 7.2 shows an illustartion of the relationship
between parameter c and cosθ, sinθ on the unit circle. We see that, using the similarity of triangles,

sinθ
cosθ`1 “ c

1 . Considering that pcosθq2 ` psinθq2 “ 1 we are getting

1 ´ pcosθq2 “ psinθq2 “ c2pcosθ` 1q2 “ c2ppcosθq2 ` 2 cosθ` 1q (7.121)

0 “ pc2 ` 1qpcosθq2 ` 2 c2 cosθ` c2 ´ 1 (7.122)

and thus

cosθ “ ´2 c2 ˘
a

4 c4 ´ 4 pc2 ` 1qpc2 ´ 1q
2pc2 ` 1q “ ´c2 ˘

a

c4 ´ pc4 ´ 1q
c2 ` 1

“ ˘1 ´ c2

1 ` c2
(7.123)

gives either cosθ “ ´1 or

cosθ “ 1 ´ c2

1 ` c2
(7.124)

78



T Pajdla. Elements of Geometry for Robotics 2025-9-20 (pajdla@cvut.cz)

The former case corresponds to point r´1 0sJ. In the latter case, we have

psinθq2 “ 1 ´ pcosθq2 “ 1 ´ p1 ´ c2

1 ` c2
q2 “ p1 ` c2q2 ´ p1 ´ c2q2

p1 ` c2q2
(7.125)

“ p1 ` 2 c2 ` c4q ´ p1 ´ 2 c2 ` c4q
p1 ` c2q2

“ 4 c2

p1 ` c2q2
“
ˆ

2 c

1 ` c2

˙2

(7.126)

and thus sinθ “ ˘ 2 c
1`c2 . Now, we see from Figure 7.2 that we want sinθ to be positive for positive c.

Therefore, we conclude that

sinθ “ 2 c

1 ` c2
(7.127)

It is important to notice that with the parameterization given by Equation 7.124, we can never get
cosθ “ ´1 for a real c since if that was true, we would get ´1 ´ c2 “ 1 ´ c2 and hence ´1 “ 1.
On the other hand, we see that Cayley transform maps every c P R into a point on the unit circle
rcosθ sinθsJ, and hence to the corresponding rotation

Rpcq “
„

cosθ ´ sinθ
sinθ cosθ



“
«

1´c2

1`c2 ´ 2 c
1`c2

2 c
1`c2

1´c2

1`c2

ff

(7.128)

The mapping Rpcq : RÑ R is one-to-one since when two c1, c2 map into the same point, then

2 c1

1 ` c2
1

“ 2 c2

1 ` c2
2

(7.129)

c1p1 ` c2
2q “ c2p1 ` c2

1q (7.130)

c1 ´ c2 “ c1c2pc1 ´ c2q (7.131)

implies that either c1c2 ‰ 0, and then c1 “ c2, or c1c2 “ 0, and then c1 “ 0 “ c2 because both 1 ` c2
1
,

1 ` c2
2

are positive. Next, let us see that the mapping is also onto Rztr´1 0sJu. Consider a point

rcosθ sinθsJ ‰ r´1 0sJ. Its preimage c, is obtained as

c “ sinθ

1 ` cosθ
(7.132)

which is clearly defined for cosθ ‰ ´1.

7.4.1.1 Two-dimensional rational rotations

It is also important to notice that the Rpcq is a rational function of c as well as c is a rational function or
R (e.g. of the two elements in its first column). Hence, every rational number c gives a rational point
ra bsJ on the unit circle as well as every rational point ra bsJ provides a rational c. This way, we can
obtain all rational two-dimensional rotations by going over all rational c’s plus the rotation ´I2ˆ2.

7.4.2 Cayley transform parameterization of three-dimensional rotations

We saw that we have obtained a bijective (one-to-one and onto) mapping between all real numbers
and all two-dimensional rotations other than the rotation by 180˝ degrees. Now, since every three-
dimensional rotation can be actually seen as a two-dimensional rotation after aligning the z-axis with
the rotation axis, we may hint on having an analogous situation in three dimensions after removing
all rotations by 180˝. Let us investigate this further and see that we can indeed establish a bijective
mapping between R3 and all three-dimensional rotations by other than 180˝ angle.
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Let us consider that all rotations by 180˝ are represented by unit quaternions in the form
“

0 q2 q3 q4

‰

.
Hence, to remove them, it is enough to remove from all cases when c1 “ 0. One way to do it, is to
write down the rotation matrix in terms of (non-unit) quaternions ~q

Rp~qq “ 1

q2
1

` q2
2

` q2
3

` q2
4

»

–

q2
1

` q2
2

´ q2
3

´ q2
4

2 pq2q3 ´ q1q4q 2 pq2q4 ` q1q3q
2 pq2q3 ` q1q4q q2

1
´ q2

2
` q2

3
´ q2

4
2 pq3q4 ´ q1q2q

2 pq2q4 ´ q1q3q 2 pq3q4 ` q1q2q q2
1

´ q2
2

´ q2
3

` q2
4

fi

fl (7.133)

and then set q1 “ 1, q2 “ c1, q3 “ c2, q4 “ c3, to get

Rp~cq “ 1

1 ` c2
1

` c2
2

` c2
3

»

–

1 ` c2
1

´ c2
2

´ c2
3

2 pc1c2 ´ c3q 2 pc1c3 ` c2q
2 pc1c2 ` c3q 1 ´ c2

1
` c2

2
´ c2

3
2 pc2c3 ´ c1q

2 pc1c3 ´ c2q 2 pc2c3 ` c1q 1 ´ c2
1

´ c2
2

` c2
3

fi

fl (7.134)

with ~c “
“

c1 c2 c3

‰J P R3.
It can be verified that Rp~cqJRp~cq “ I for all ~c P R3 and hence the mapping Rp~cq : R3 Ñ R maps the

space R3 into rotation matrices R. Let us next see that the mapping is also one-to-one.
First, notice that by setting c1 “ c2 “ 0, we are getting

Rpc3q “ 1

1 ` c2
3

»

–

1 ´ c2
3

´2 c3 0
2 c3 1 ´ c2

3
0

0 0 1 ` c2
3

fi

fl “

»

—

—

—

–

1´c2
3

1`c2
3

´2 c3

1`c2
3

0

2 c3

1`c2
3

1´c2
3

1`c2
3

0

0 0 1

fi

ffi

ffi

ffi

fl

(7.135)

which is exactly the Cayley parameterization for two-dimensional rotation around the z-axis. In the
same way, we get that Rpc1q are rotations around the x-axis and Rpc2q are rotations around the y-axis.

We have seen in Paragraph 7.3.2 that the mapping between the unit quaternions ~q and rotation
matrices Rp~qq was “two-to-one” in the way that there were exactly two quaternions ~q, ´~q mapping
into one R, i.e. Rp~qq “ Rp´~qq. Now, we are forcing the first coordinate of the unit quaternion ~q “
”

1 c1 c2 c3

ıJ

1`c2
1
`c3

2
`c3

be positive. Therefore, the mapping Rp~cq becomes one-to-one.

Now, let us see that by Rp~cq we can represent all rotations that are not by 180˝. ...
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8 Study motion parameterization

We understand, Chapter 5, that rotations can be represented in many ways. In particular, quaternions
provide a very convenient parameterization. They provide a continuous bijection between the subset
of non-isotropic points of the three-dimensional complex projective space P3

C
and the rotation group

SOCp3q of the complex rotations acting on the three-dimensional complex space P3
C

. Our goal is to

construct a nice parameterization of the three-dimensional motions SECp3q, acting on P3
C

, by a subset

of P7
C

.

Let us first look at the two-dimensional complex rotations SOCp2q acting on P2
C

, which can be
parameterized by a subset of the complex projective space PC as

“

c s
‰J

s.t. c2 ` s2 ‰ 0 ÞÑ

»

–

s2 ´ c2 ´2 c s 0
2 c s s2 ´ c2 0

0 0 c2 ` s2

fi

fl (8.1)

We can extend it to SECp2q acting on P2
C

by

“

c s x y
‰J

s.t. c2 ` s2 ‰ 0 ÞÑ

»

–

s2 ´ c2 ´2 c s c x ´ s y
2 c s s2 ´ c2 s x ` c y

0 0 c2 ` s2

fi

fl (8.2)

First of all, we see that α
“

c s x y
‰J

for α P C provides the α2 multiple of the rotation matrix on
the right hand side above, since the map is homogeneous of degree two. Next, we see that for every

representative
“

t1 t2

‰J
of a translation, we have exactly one

„

x
y



“
„

c ´s
s c

´1 „
t1

t2



(8.3)

since we can always do the inversion.
Let us now generalize the above construction to SECp3q. We need to construct a homogeneous

degree-two map acting on P3
C

. SOCp3q, acting on P3
C

, is parameterized by the non-isotropic quater-
nions 7.67 as

q “

»

—

—

–

q1

q2

q3

q4

fi

ffi

ffi

fl

s.t. }q}2 ‰ 0 ÞÑ

»

—

—

–

q2
1

` q2
2

´ q2
3

´ q2
4

2 pq2q3 ´ q1q4q 2 pq2q4 ` q1q3q 0
2 pq2q3 ` q1q4q q2

1
´ q2

2
` q2

3
´ q2

4
2 pq3q4 ´ q1q2q 0

2 pq2q4 ´ q1q3q 2 pq3q4 ` q1q2q q2
1

´ q2
2

´ q2
3

` q2
4

0
0 0 0 q2

1
` q2

2
` q2

3
` q2

4

fi

ffi

ffi

fl

(8.4)
Next, we need to construct a one-to-one homogeneous, degree-two map between the translations and
one-dimensional subspaces of P3. Let us consider the following equation for x “

“

x y z w
‰

»

—

—

–

q1 q2 q3 q4

´q2 q1 q4 ´q3

´q3 ´q4 q1 q2

´q4 q3 ´q2 q1

fi

ffi

ffi

fl

»

—

—

–

x
y
z
w

fi

ffi

ffi

fl

“

»

—

—

–

0
´x q2 ` y q1 ` z q4 ´ w q3

´x q3 ´ y q4 ` z q1 ` w q2

´x q4 ` y q3 ´ z q2 ` w q1

fi

ffi

ffi

fl

“

»

—

—

–

0
t1

t2

t3

fi

ffi

ffi

fl

(8.5)
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For every vector
“

t1 t2 t3

‰J
, we have a unique solution of for

“

x y z w
‰J

since the matrix on
the left is of full rank for any non-zero

“

q1 q2 q3 q4

‰

. Thus, we can construct the map

»

—

—

—

—

—

—

—

—

—

—

–

q1

q2

q3

q4

x
y
z
w

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

s.t.

„

}q}2 ‰ 0
xJq “ 0



ÞÑ

»

—

—

–

q2
1

` q2
2

´ q2
3

´ q2
4

2 pq2q3 ´ q1q4q 2 pq2q4 ` q1q3q ´x q2 ` y q1 ` z q4 ´ w q3

2 pq2q3 ` q1q4q q2
1

´ q2
2

` q2
3

´ q2
4

2 pq3q4 ´ q1q2q ´x q3 ´ y q4 ` z q1 ` w q2

2 pq2q4 ´ q1q3q 2 pq3q4 ` q1q2q q2
1

´ q2
2

´ q2
3

` q2
4

´x q4 ` y q3 ´ z q2 ` w q1

0 0 0 q2
1

` q2
2

` q2
3

` q2
4

fi

ffi

ffi

fl

(8.6)
from a subset to P7

C
to SECp3q, acting on P3

C
. This map is the Study motion parameterization [21, 22].

The key property of the parameterization is that it is given by homogeneous polynomials of
degree two in the coordinates of representatives in P7

C
. Hence, it is well defined since it maps all

representatives of a 1D subspace of P7
C

into the representatives of a single subspace of P16
C

of 4 ˆ 4
complex motion matrices.

The domain of the map is the set difference V1zV2 of two six-dimensional projective varieties in
P7
C

. The variety V1 is given by V1 “ VpxxJqy “ Vpxx1 q1 ` x2 q2 ` x3 q3 ` x4 q4yq. The variety V2 is

given by V2 “ Vpx}q}2yq “ Vpxq2
1

` q2
2

` q2
3

` q2
4
yq. The map is one-to-one and onto.
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9 Axis of Motion

We will study motion and show that every motion in three dimensional space has an axis of motion.
Axis of motion is a line of points that remain in the line after the motion. The existence of such an axis
will allow us to decompose every motion into a sequence of a rotation around the axis followed by a
translation along the axis as shown in Figure 9.1(a).

9.1 Algebraic characterization of the axis of motion.

Consider Equation 5.5 and denote the motion so defined as mp~xβq “ R ~xβ ` ~o 1
β w.r.t. a fixed coordinate

system pO, βq. Now let us study the sets of points that remain fixed by the motion, i.e. sets F such
that for all ~xβ P F motion m leaves the mp~xβq in the set, i.e. mp~xβq P F. Clearly, complete space and the
empty set are fixed sets. How do look other, non-trivial, fixed sets?

A nonempty F contains at least one ~xβ. Then, both ~yβ “ mp~xβq and ~zβ “ mp~yβq must be in F, see
Figure 9.1(b). Let us investigate such fixed points ~xβ for which

~zβ ´ ~yβ “ ~yβ ´ ~xβ (9.1)

holds true. We do not yet know whether such equality has to necessary hold true for points of all
fixed sets F but we see that it holds true for the identity motion id that leaves all points unchanged,
i.e. idp~xβq “ ~xβ. We will find later that it holds true for all motions and all their fixed sets. Consider
the following sequence of equalities

~zβ ´ ~yβ “ ~yβ ´ ~xβ
R pR ~xβ ` ~o 1

βq ` ~o 1
β ´ R~xβ ´ ~o 1

β “ R ~xβ ` ~o 1
β ´ ~xβ

R2~xβ ` R~o 1
β ´ R ~xβ “ R ~xβ ` ~o 1

β ´ ~xβ
R2~xβ ´ 2 R ~xβ ` ~xβ “ ´R~o 1

β ` ~o 1
β

`

R2 ´ 2 R` I
˘

~xβ “ ´pR´ Iq~o 1
β

pR´ IqpR´ Iq ~xβ “ ´pR´ Iq~o 1
β (9.2)

pR´ Iq
´

pR´ Iq ~xβ ` ~o 1
β

¯

“ 0 (9.3)

Equation 9.3 always has a solution. Let us see why.
Recall that rank pR´ Iq is either two or zero. If it is zero, then R´ I “ 0 and (i) Equation 9.3 holds

for every ~xβ.
Let rank pR ´ Iq be two. Vector ~o 1

β either is zero or it is not zero. If it is zero, then Equation 9.3

becomes pR ´ Iq2 ~xβ “ 0, which has (ii) a one-dimensional space of solutions because the null space
and the range of R´ I intersect only in the zero vector.

Let ~o 1
β be non-zero. Vector ~o 1

β either is in the span of R ´ I or it is not. If ~o 1
β is in the span of R ´ I,

then pR´ Iq ~xβ ` ~o 1
β “ 0 has (iii) one-dimensional affine space of solutions.

If ~o 1
β is not in the span of R ´ I, then pR ´ Iq ~xβ ` ~o 1

β for ~xβ P R3 generates a vector in all one-

dimensional subspaces of R3 which are not in the span of R ´ I. Therefore, it generates a non-zero
vector ~zβ “ pR ´ Iq ~yβ ` ~o 1

β in the one-dimensional null space of R ´ I, because the null space and

the span of pR ´ Iq intersect only in the zero vector. Equation pR ´ Iq~zβ “ 0 is satisfied by (iv) a
one-dimensional affine set of vectors.
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~xβ

~yβ “ R ~xβ ` ~o 1
β

~zβ “ R pR ~xβ ` ~o 1
βq ` ~o 1

β

mp~xβq

mp~yβq

(a) (b)

Figure 9.1: Axis of motion.

We can conclude that every motion has a fixed line of points for which Equation 9.1 holds. Therefore,
every motion has a fixed line of points, every motion has an axis.

9.2 Geometrical characterization of the axis of motion

We now understand the algebraic description of motion. Can we also understand the situation
geometrically? Figure 9.2 gives the answer. We shall concentrate on the general situation with R ‰ I
and ~o 1

β ‰ 0. The main idea of the figure is that the axis of motion a consists of points that are first

a

r

σ

O

P
P1

P2

~o 1

~o 1

~o 1
r

~o 1
σ

~o 1
σ

Figure 9.2: Axis a of motion is parallel to the axis of rotation r and intersects the perpendicular plane σ
passing through the origin O at a point P, which is first rotated in σ away from a to P1 and
then returned back to P2 on a by translation ~o 1. Point P is determined by the component
~o 1
σ of ~o 1, which is in the plane σ.
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rotated away from a by the pure rotation R around r and then returned back to a by the pure translation
~o 1
β.

Figure 9.2 shows axis a of motion, which is parallel to the axis of rotation r and intersects the
perpendicular plane σ passing through the origin O at a point P, which is first rotated in σ away from
a to P1 and then returned back to P2 on a by translation ~o 1

β. Point P is determined by the component

~o 1
σβ of ~o 1

β, which is in the plane σ. Notice that every vector ~o 1
β can be written as a sum of its component

~o 1
r β parallel to r and component ~o 1

σβ perpendicular to r.

§1 Motion axis is parallel to rotation axis. Let us verify algebraically that the rotation axis r is
parallel to the motion axis a. Consider Equation 9.2, which we can rewrite as

pR´ Iq2 ~xβ “ ´pR´ Iq~o 1
β (9.4)

Define axis r of motion as the set of points that are left fixed by the pure rotation R, i.e.

pR´ Iq ~xβ “ 0 (9.5)

R ~xβ “ ~xβ (9.6)

These are eigenvectors of R and the zero vector. Take any two solutions ~x1β, ~x2β of Equation 9.4 and
evaluate

pR´ Iq2p~x1β ´ ~x2βq “ ´pR´ Iq~o 1
β ` pR´ Iq~o 1

β “ 0 (9.7)

and thus a non-zero ~x1β ´ ~x2β is an eigenvector of R. We see that the direction vectors of a lie in the
subspace of direction vectors of r.

9.3 Solving for the axis of motion

In Section 9.1, we have shown that every motion has a motion axis. Let us now give an explicit
description of the axis, in the spirit of [21, p.212], by choosing a particularly convenient solution of
Equation 9.2. Let us take a geometric approach. It follows from Section 9.2 that

R ~xσ ´ ~xσ “ ´~o 1
σ (9.8)

Equation 6.75 and ~o 1
σ “ pI´ ~v ~vJq~o 1 give

pR´ Iq ~x “ ´pI´ ~v ~vJq~o 1 (9.9)

Let us now express the projector pI´ ~v ~vJq using matrix R. Considering Equation 7.21, we can write

R “ ~v ~vJ ` cosθ pI´ ~v ~vJq ` sinθ r~vsˆ (9.10)

R` RJ “ 2 ~v ~vJ ` 2 cosθ pI´ ~v ~vJq (9.11)

Now, we can use Equation 6.72 to rewrite cosθ as 2 cosθ “ trace R´ 1 to get

R` RJ “ 2 ~v ~vJ ` ptrace R´ 1q pI´ ~v ~vJq (9.12)

R` RJ “ p3 ´ trace Rq ~v ~vJ ` ptrace R´ 1q I (9.13)

and thus we get

~v ~vJ “ R` RJ ` p1 ´ trace Rq I
3 ´ trace R

(9.14)

I´ ~v ~vJ “ 2 I´ R´ RJ

3 ´ trace R
(9.15)
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Substituting Equation 9.15 into Equation 9.9 yields

pR´ Iq ~x “ ´pI´ ~v ~vJq~o 1 (9.16)

pR´ Iq ~x “ ´2 I´ R´ RJ

3 ´ trace R
~o 1 (9.17)

Now, we will employ another very useful identity

2 I´ R´ RJ “ pR´ Iq pRJ ´ Iq (9.18)

to get pR´ Iq on the right hand side of Equation 9.17

pR´ Iq ~x “ ´pR´ Iq pRJ ´ Iq
3 ´ trace R

~o 1 (9.19)

pR´ Iq ~x “ pR´ Iq pI´ RJq
3 ´ trace R

~o 1 (9.20)

and thus we see that

~x0 “ pI´ RJq
3 ´ trace R

~o 1 (9.21)

is a particular solution of Equation 9.9, i.e. it is a point in the motion axis.
Let us see that it is a particularly interesting point. We shall evaluate

~vJ~x0 “
~vJpI´ RJq
3 ´ trace R

~o 1 “ 0~o 1 “ 0 (9.22)

to see that ~x0 is perpendicular to the rotation axis of R which means that point on the motion axis
represented by ~x0 is the closest point to the origin O and also is the intersection of the motion axis
with the plane perpendicular to the rotation axis and passing through the origin O.

A general point of the motion axis is thus obtained as

~x “ α~v ` pI´ RJq
3 ´ trace R

~o 1 with R ~v “ 0 and ~v ‰ ~0 for α P R. (9.23)
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