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1 Notation

(A0, ®,0)
(V,®m,0)
AZ

A3

]PZ

[51, b, 53]

HERT @ @
i

<y

X x i
[
%]

the empty set [1]

the set of all subsets of set U [1]
Cartesian product of sets U and V [1]
whole numbers [1]

non-negative Z [2] (i.e. 0,1,2,...)
rational numbers [3]]

real numbers [3]]

imaginary unit [3]

space of geometric scalars

affine space (space of geometric vectors)
space of geometric vectors bound to point o
space of free vectors

real affine plane

three-dimensional real affine space
real projective plane
three-dimensional real projective space
vector

matrix

ij element of A

transpose of A

conjugate transpose of A

determinant of A

identity matrix

rotation matrix

Kronecker product of matrices

basis (an ordered triple of independent generator vectors)
the dual basis to basis

column matrix of coordinates of ¥ w.r.t. the basis
Euclidean scalar product of ¥ and ¥/ (¥ - i = fg yginan
orthonormal basis f3)

cross (vector) product of ¥and i/

the matrix such that [X], = ¥ x

Euclidean norm of ¥ (|¥]| = VX X)

orthogonal vectors mutually perpendicular vectors

equi-orthogonal vectors ... orthogonal vectors of equal length

orthonormal vectors unit orthogonal vectors

orthogonal matrix ... matrix with non-zero equi-orthogonal columns and rows
orthonormal matrix matrix with orthonormal columns and rows

Pol ... point P is incident to line /

PvQ ... line(s) incident to points P and Q

kAl ... point(s) incident to lines k and [



2 Linear algebra

We rely on linear algebra [4,5,16,(7,18,9]. We recommend excellent text books [7, 4] for acquiring basic
as well as more advanced elements of the topic. Monograph [5] provides a number of examples and
applications and provides a link to numerical and computational aspects of linear algebra. We will
next review the most crucial topics needed in this text.

2.1 Change of coordinates induced by the change of basis

Let us discuss the relationship between the coordinates of a vector in a linear space, which is induced
by passing from one basis to another. We shall derive the relationship between the coordinates in a
three-dimensional linear space over real numbers, which is the most important when modeling the
geometry around us. The formulas for all other n-dimensional spaces are obtained by passing from
3ton.

§1 Coordinates Let us consider an ordered basis f = [51 by 53] of a three-dimensional vector

space V? over scalars R. A vector ¥ € V° is uniquely expressed as a linear combination of basic vectors
N = - >

of V3 by its coordinates x,y,z € R, i.e. v = x by + y by + zb3, and can be represented as an ordered

. . . S T
triple of coordinates, i.e.as Ug = [x y z] .
We see that an ordered triple of scalars can be understood as a triple of coordinates of a vector

. . . . T.

in V3 w.rt. a basis of V3. However, at the same time, the set of ordered triples [x y z] is
. . . . . T T

also a three-dimensional coordinate linear space R® over R with [x1 y1 z1] + [x 1 2] =

[x1+% yi+y z1+z] ands[x y z] = [sx sy sz] forse R Moreover, the ordered
triple of the following three particular coordinate vectors

1 0 0
a=110 1 0 (2.1)
0 0 1

) . S T,
forms an ordered basis of R3, the standard basis, and therefore a vector 7 = [x y z] is represented

byd, =[x y z] " w.rt. the standard basis in IR3. It is noticeable that the vector #and the coordinate
vector ¥, of its coordinates w.r.t. the standard basis of R3, are identical.

§2 Two bases Having two ordered bases § = [51 by 53] and g’ = [5{ E}é 55/5] leads to express-

ing one vector X in two ways as X = x b1 + y by +z bz and X = x'b] + y' b} + 2’ b}. The vectors of the
basis f can also be expressed in the basis f’ using their coordinates. Let us introduce

- >, >, >,
by = an bl + an b2 + aszq b3
b = ap b{ + dax bé + asp bé (2.2)
by = a3 b{ + a3 bé + a33 bé
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§3 Change of coordinates We will next use the above equations to relate the coordinates of ¥ w.r.t.
the basis f to the coordinates of X w.r.t. the basis f’

X x by + y by +7zbs

= x(an I;{ + ap l;é + a3 Eé) + v (ar2 l;{ +ax l;é + as l;?/)) + z (a13 l;{ + a3 I;é + a3 53/))

= (anx+any +a132)5{ + (a1 x4+ any + a3 z) Eé + (@31 X +azn y +az32) l;é

= x 1:7{ + v E)é +7 5§ (2.3)

Since coordinates are unique, we get

I = anx+apy+agsz (2.4)
I = A X +ax»y + a3z (2.5)
7 = anx+any+axpz (2.6)

Coordinate vectors X and ¥y are thus related by the following matrix multiplication

X a1 di2 a13 X
/

y = a1 Az a3 Y (2.7)
/

z asz1 asp 4ass z

which we concisely write as
f‘g/ = A 3?‘3 (2.8)

> > o
The columns of matrix A can be viewed as vectors of coordinates of basic vectors, by, b, bz of § in the
basis p’

L
A = blﬁ/ bzﬁ/ b3ﬁ/ (29)

and the matrix multiplication can be interpreted as a linear combination of the columns of A by
coordinates of ¥ w.r.t. 8

fﬁ/ = xblﬁ, + ybzﬁ, + Zbgﬁ, (2.10)

Matrix A plays such an important role here that it deserves its own name. Matrix A is very often called
the change of basis matrix from basis p to ' or the transition matrix from basis p to basis ' [5},[10] since it
can be used to pass from coordinates w.r.t. f to coordinates w.r.t. f’ by Equation

However, literature [6, [11] calls A the change of basis matrix from basis p’ to B, i.e. it (seemingly
illogically) swaps the bases. This choice is motivated by the fact that A relates vectors of § and vectors
of g’ by Equation2.2]as

[51 l_))z 53] = [an E{ + an; l_y)é + azq E)é ap E){ + app EZ + asp Eé

a13 Z_)){ + an3 EZ + as3 Eé] (2.11)
5 55 LS a1 a2 413
[bl by b3] = [b{ b, bé] ax1 axp 423 (2.12)

asz1 asy 4ass

and therefore giving

z?g] A (2.13)
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or equivalently
5 B By = |6 B Bs]a! (2.14)

where the multiplication of a row of column vectors by a matrix from the right in Equation has
the meaning given by Equation 2.1T] above. Yet another variation of the naming appeared in [8, 9]
where A~! was named the change of basis matrix from basis f to f'.

We have to conclude that the meaning associated with the change of basis matrix varies in the literature
and hence we will avoid this confusing name and talk about A as about the matrix transforming
coordinates of a vector from basis p to basis f’.

There is the following interesting variation of Equation[2.13]

b! by
liﬁ = AT liz (2.15)
b! bs

3

where the basic vectors of f and p’ are understood as elements of column vectors. For instance, vector
5
b; is obtained as

b = aj, by +aly by +ajy by (2.16)

where [a],, a7,, a],] is the first row of AT,

*
117

§4 Example We demonstrate the relationship between vectors and bases on a concrete example.
Consider two bases a and f represented by coordinate vectors, which we write into matrices

1 10
a = [ & B|=|011 (2.17)
0 01
1 11
B =[5 B B]=|00 1], (2.18)
011
and a vector ¥ with coordinates w.r.t. the basis o
1
= |1 (2.19)
1

We see that basic vectors of @ can be obtained as the following linear combinations of basic vectors of

p

1/?1 = +1l_7)1+0l_7)2+0l_7)3 (2.20)
B = +1b—1by+1bs (2.21)
gy = —1by+0by+1bs (2.22)
or equivalently
1 1 -1
(@ & @] = |6 b 8|0 -1 0| =[5 B B|a (2.23)
0o 1 1
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Coordinates of ¥ w.r.t. f are hence obtained as

1 1 -1
J?,; = AX,, A=1]0 -1 O (2.24)
0 1 1
1 1 1 -1 1
-1 = 0 -1 0 1 (2.25)
2 0 1 1 1
We see that
a = PA (2.26)
1 10 1 1 1 1 1 -1
011 = 0 01 0 -1 0 (2.27)
0 01 011 0 1 1

The following questions arises: When are the coordinates of a vector ¥ (Equation 2.8) and the basic
vectors themselves (Equation 2.15) transformed in the same way? In other words, when A = A= 7. We
shall give the answer to this question later in paragraph 2.4l

2.2 Determinant

Determinat [4] of a matrix A, denoted by |A|, is a very interesting and useful concept. It can be, for
instance, used to check the linear independence of a set of vectors or to define an orientation of the
space.

2.2.1 Permutations

A permutation [4] 7t on the set [n]= {1,...,n} of integers is a one-to-one function from [n] onto [n].
The identity permutation will be denoted by €, i.e. €(i) = i foralli € [n] .

§1 Composition of permutations Let ¢ and 7 be two permutations on [1]. Then, their composi-
tion, i.e. (o), is also a permutation on [r] since a composition of two one-to-one onto functions is a
one-to-one onto function. We see that if (o (i)) = nt(o(j)), then o(i) = o(j) and therefore i = j since
and ¢ are one-to-one functions. On the other hand, if i = j, then n(0(i)) = ®(o(j)). To simplify the
notation when composing a large number of permutations, we will sometimes write 7 ¢ for the com-
position 7(¢) and 7% for the sequence of k compositions of . For instance nt(r(i)) = nn(i) = 72 (i).
Let us not forget that m o # o 7 in general.

Let us next show that every permutation can be written as a composition of some simple permu-
tations. We first define particularly simple permutations.

§2 Cycles Take i € [n] and look at the values in the sequence [i, 7t(i), 72(i), .. .]. Since the range of
7 has n values, there must be 1 < j < m < n such that 7/(i) = 7" (i). Hence € = (r/(i)) ™' (7" (i)) =
n"~i(i). Let k be the smallest number among all such numbers m — j. Then, the sequence c(i) =
[i, (i), ..., 71(i)] has pairwise distinct elements. We can now define a new permutation Ti(i) as
follows. If j € c(i), then ;) (j) = m(j) and if j € [n] but j ¢ ¢, then 7. ;y(j) = j. Now, if k > 2,
then permutation 7 ;) is called the cycle of 7 generated by i. We could at this point also include the
permutations for k = 1, which are equal to the identity €, but then we would loose the nice property of
unique decomposition of permutations, which are not identities, into a composition of their disjoint
cycles. Notice that when j € c(i), then 7.y = m.(;), i.e. although sequences c(i) and c(j) are not the
same, functions 7t.(;) and 7t.(;) are equal. We say that 7t is a cycle of 7, or in short a cycle, when 7,
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is a cycle of  generated by some i € [n]. A cycle 7. of length k can be represented as a sequence of
numbers ¢ = [i1,1,...,i], such that i jmodk +1) = 7c(ij). To be economical, this representation does
not list the fixed elements of 7., i.e. those for which 7 (i) = i.

§3 Transpositions A shortest cycle, which is of length two, is called a transposition.

It is important to notice that every cycle can be written as a composition of transpositions. All
shortest cycles are transpositions. Consider a cycle of length k + 1 represented by the sequence
Ck+1 = [i1, 2, ..., 1k, ix+1] and the cycle ¢, = [iy, 12, .. ., ix| of length k and the transposition ¢ = [iy, ix41]-
We see that i, = 7;(7, ). Thus, by the principle of mathematical induction [1]], every cycle can be
written as a composition of transpositions.

There are many ways how to write a cycle as a composition of transpositions. A particularly useful
way is as follows. All shortest cycles are transpositions, which can be represented by [i1, ] for some
i1,ip € [n]. Consider a cycle of length k + 1 represented by the sequence cx.1 = [i1,d2, ..., i, ix+1] and
the cycle ¢ = [i1,12,...,i] of length k and the transposition t = [i, ix41]. We see that 7., , = 7o, ().
Thus, by the principle of mathematical induction [1] a cycle 7;, ;... ;,] can be written as a composition

of transpositions 7 = Tiy,in] T ST i, i for every k.

1112,/ ] iiz] "[iz i3] * f—2/0k—1]
§4 Decomposition of a permutation into disjoint cycles Let us now show that every permuta-
tion 7, which is not the identity, can be uniquely written as a composition of cycles of = and thus
also as a composition of permutations of 7. We introduce the equivalence relation [1] = on [n] by
i =n j when 7;) = 7(j)- This equivalence relation partitions [1]] [1z] uniquely into 1 < m < n disjoint
equivalence classes. We distinguish two types of the classes. There are classes of the size equal to
one, which correspond to €, and there are classes of the size larger than one, which are cycles. Let
C be the set of k < m classes c;, i = 1...,k corresponding to cycles of the size |c;| > 2, which are
uniquely represented by increasing sequences c; of integres. The set C is empty when 7 is the identity.

Otherwise C is non-empty and we claim that
TU= T, Tley -~ Tl (2.28)

To prove this, we have to show that the function on the left is equal to the function on the right. First,
j € [n] is exactly in one of the equivalence classes. If it is in the equivalence class corresponding to
€, then it is in no ¢; and therefore it is mapped by all 7, to itself, i.e. 7. (j) = jforall 1 <i < k.
Therefore, m., mt¢, - - 7o, (j) = j = m(j). If jisin a ¢;, then 7t.,(j) = 7(j) and 7., (j) = j for all m # i
Thus, 7t T, - - T (J) = 71e;(j) = 7(j)- Notice that since ¢; N ¢; = &, we have here Tl Tle; = Tie, Tl for
all 1 < i,j < k and thus all 7, commute. We see that every permutation © # € can be written as a
unique composition of disjoint cycles. The term “disjoint” is related to the fact that the sequences
representing the cycles are disjoint.

§5 Decomposition of a permutation into transpositions Every permutation, which is not the
identity, can be written as a composition of cycles. Every cycle can be written as a composition of
transpositions. Therefore, every permutation, which is not the identity, can be written as a composi-
tion of transpositions. Since € = 77 for every transposition, € can also be written as a composition
of transpositions. Hence, we can say that any permutation can be written as a composition of
transpositions.

There are many ways how to compose a cycle from transpositions and there are many ways how
to write € using transpositions, and therefore the decomposition of a permutation into transpositions
is not unique.

§6 Sign of a permutation We will now introduce another important concept related to permuta-
tions. Sign, sgn(m), of a permutation 7t is defined as

sgn(m) = (—1)N™ (2.29)
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where N(7t) is equal to the number of inversions in 7, i.e. the number of pairs [i, j] such that i, j € [n],
i < jand n(i) > 7(j).

§7 Hierarchy of permutations Consider a partition [1] of [1] into two subsets I, | of [n], i.e.
[n=IuJandIn ] = . Let|l| =kand |]| = m. Thusk + m = n.

Let us next study the set Sy, of all permutations on [n] and its relation to the sets S; of all
permutations of set I and S; of all permutations of set J.

Let us use the following notation 7(I) = {n(i) |i € I} for a permutation 7 and a set of integers I.
We introduce the equivalence relation ~ on Sp,) by © ~ o for 7,0 € S,;) when t(I) = o(I). This
equivalence relation partitions Sj,;j into the set E of (disjoint) equivalence classes.

As designed a permutation 7 € I is a composition of three permutations, = r/(/(n/)), where
n! permutes I, 7/ permutes | and 7!/ maps I onto I;; and ] onto Jj such that for all i,j € I 7/ (i) <
l(j) & i< jandforalli je J 7 (i) < 7 (j).

Let us see that |E| = (}). A member IT of E contains all one-to-one functions from [11] onto [1] that
map I onto a fixed set Iy of size k chosen out of [n]. There are (}) sets Iy of size k. We further claim
that [T1| = k! (n — k)!. An equivalence class IT contains all one-to-one functions that map I onto Iy and
J onto Ji1 = [n]\Ir1. There are k! (n — k)! such functions. Thus, all equivalence classes in E contain the
same number k! (n — k)! of functions and we see that (}) k! (n — k)! = n!, which is the size of S{n)-

exchanges some elements between I and |. Consider that every permutation 7t can be decomposed
into a composition of disjoint cycles

TCU

Nl nl) (2.30)

T = (n{né e né)(nlllng e
for some integers p, g, v = 0 and cycles ch, i=1,...,pthatkeep | fixed, cycles n{ ,i=1,...,qthatkeep
I fixed, and cycles nf] ,1=1,...,r that map at least one element from I to | and at least one element
from | to I.

Now, take a cycle 7!/ which exchanges some elements between I and J. We claim that the number
of exchanges between I and | induced by cycle 7V is always even. Let us write i/ as a sequence of
k transpositions 7t// = Tlivia) Tlinis] * ** Tlir_vi]- Let us start with a singleton set I; = {i}. Then, there are
exactly two transpositions 7[;_1 ;, T[;,i+1] from | to I and back. Now, let there be I; with k exchanges
and add one more element j to I to get I 1. Then, three possibilities may arrise: (1) j—1and j+ 1 are
in I and then two exchanges are removed, (2) exactly one of j — 1, j 4+ 1 is in I; and then on exchage
is added and one removed, i.e. the number of echanges remains the same, (3) noneof j —1, j + 1is
in [ and then two exhanges are added. In all cases, the number of exchanges is changed by an even
number. Since the number of exchanges in I; is even, the number of exchanges in I is even for all
integers k by the principle of mathematical induction [1].

ny(i) = m(i) for all i € I and m7(i) = i fori € | and mj(i) = (i) foralli € [ and 7tj(i) = i fori e I.
Functions 717, m; commute since I and | are disjoint. Clearly, we see that sgn(m) = sgn(m7) sgn(my).

2.2.2 Determinant

Let S, be the set of all permutations on [1] and A be an n x n matrix. Then, determinant |A| of A is
defined by the formula

Al = Z sgn(70) A1 (1) A2 n(2) * * Anr(n) (2.31)

neS,

Notice that for every m € S, and for j € [n] there is exactly one i € [1] such that j = 7t(i). Hence

(L] [2,7@),.... [nnm)]} = {[n(1),1], [77}(2),2],..., [n (1), 1]} (2.32)

and since the multiplication of elements of A is commutative, we get

Al = Z sgn(1) Ar—1(1),1 An-1(2) 2 A1 () (2.33)

neS,
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Next, let 0 € S, then {no|VmeS,} = S, since for every 7 € S, there is © = 101 € S, and
therefore t = o € {no | Vr € S,,}. The other incluson is obvious. An analogical argument shows that
{om|VreS,} =S, too. Thus

2 sgn(ana‘l) Al,anafl(l) A2,ana*1(2) e An,anafl(n) (2~34)
TESy,

= D sgn(0)sgn(m) sgn(o™ ") Agm1 (1) mo-1(1) Ao=1(2)mo-1(2) *** A1 () o1 )
TES,

= Z sgn(70) Ay1(1), 701 (1) Ar1(2)mo—1(2) * " Ao () o1 (n) (2.35)
TEeS,

= Z sgn(7) At (1) A2 n(2) * * * Aur(n) = |Al (2.36)
neS,

Let us next define a submatrix of A and find its determinant. Consider k < n and two one-to-one
monotonic functions p,v: [k] — [n],i < j = p(i) < p(j), v(i) < v(j). We define k x k submatrix A" of
an n x n matrix A by

B = Roya() for i je k] (2.37)
We get the determinant of A" as follows
AP = ) sgn(m APV AP v ) -AZ’;(k) (2.38)
TIESk !
- Z sgn(m w(r(1) Bp@)v(n(2) " Bp(k) v(n (k) (2.39)
neSy

Let us next split the rows of the matrix A into two groups of k and m rows and find the relationship
between |A| and the determinants of certain k x k and m x m submatrices of A. Take 1 < k,m < n such
that k + m = n and define a one-to-one function p: [m] — [k+ 1,n] = {k+1,...,n}, by p(i) = k +i.
Next, let QO < exp [n] be the set of all subsets of [1] of size k. Let w € Q. Then, there is exactly one
one-to-one monotonic function ¢, from [k] onto w since [k] and w are finite sets of integers of the
same size. Let w = [n]\w. Then, there is exactly one one-to-one monotonic function ¢z from [k + 1, 1]
onto w. Let further there be iy € Sy and 7, € S;,. With the notation introduced above, we are getting
a version of the generalized Laplace expansion of the determinant [12,[13]

M= TT  ssnleali) - pa(i) |14 [aooe) (2.40)

weQ \ ie[k],je[k+1,n]

2.3 Vector product

Let us look at an interesting mapping from R® x R? to R3, the vector product in R® [7] (which it also
often called the cross product [5]). Vector product has interesting geometrical properties but we shall
motivate it by its connection to systems of linear equations.

§1 Vector product Assume two hnearly independent coordinate vectors
=[x x X3] andy=[y1 w2 yg] in R®. The following system of linear equations

[’“ 2 xﬂZ:O (2.41)
i Y2 ys

has a one-dimensional subspace V of solutions in R>. The solutions can be written as multiples of
one non-zero vector w0, the basis of V, i.e.

Z=1A@, AeR (2.42)
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Let us see how we can construct @ in a convenient way from vectors ¥, /.
Consider determinants of two matrices constructed from the matrix of the system by adjoining
its first, resp. second, row to the matrix of the system (2.41)

X1 X2 X3 X1 X2 X3
i y2 Y3 || =0 i 2 y3||=0 (2.43)
X1 X2 X3 Vi Y2 Y3
which gives
x1(x2y3 —x3Y2) +x2(x3y1 —x1y3) +x3(x1y2 —x2y1) = O (2.44)
yi(xoys—x3y2) +y2(x3y1 —x1y3) +y3 (x1y2 —x2y1) = 0 (2.45)

and can be rewritten as

X2Y3 —X3lY2
[xl 2 xﬂ —x zs +x3 zl -0 (2.46)
ooy ye X1Y2 —X2 Y1
We see that vector
X2Y3 —X3Y2
W= | —x1y3+x31 (247)
X1Y2 — X2 Y1

solves Equation 2411

Notice that elements of @ are the three two by two minors of the matrix of the system (2.41). The
rank of the matrix is two, which means that at least one of the minors is non-zero, and hence @ is also
non-zero. We see that @ is a basic vector of V. Formula[2.47lis known as the vector product in R® and
@ is also often denoted by ¥ x /.

§2 Vector product under the change of basis Let us next study the behavior of the vector

product under the change of basis in R3. Let us have two bases 8, 8’ in R* and two vectors %, i with

coordinates X5 = [x1 X2 X3]T, s=[n v yg]T and ¥ = [x] X, xé]T, =1y, v, yé]T.

We introduce

L Xo Y3 — X312 } ; xéyé — xéyé
T x g = | —x1ys+ X311 Xpr X Ypr = | —XY3 + x50, (2.48)
X1Y2 — X211 XYy — X3

To find the relationship between ¥ x /s and X3/ x 73/, we will use the following fact. For every three

vectors ¥ = [x1 X2 X3]T,]7= lvi w2 yg]T,Zz [z1 2 23]T in R3 there holds

X2 Y3 — X3 Y2 X1 X2 X3 X7
ZT(J? x i) = [Zl Z2 23] —xiyptxy | =y w2 will=|]|7" (2.49)
X1Y2 —X2 1 Z1 22 Z3 Z"
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We can write

— BN N — [ 2T ST T
L 100 (x> ) i i i
Xgr X Ypr = [010] (Jiﬁ/ X .Zﬁ/) = yﬁ, yﬁ, yﬁ,
[001] (% x ¥pr) 100 1010 001
[ [ %TAT Yy #AT ][] T
= gjﬁTAT gjﬁTAT ygAT
| 100 010 001 |||
rr 2T 2T 2T T
= yﬁ A yﬁ A yﬁ A
| [|[100] AT [010] A°T [001] A°T
[[100] A‘T(i’ﬁ x ;Zﬁ) .
= |[010] A_I(Jiﬁ X zﬁ) AT
| [001]A~ (X < ¥p)
AT
—‘A_T‘ (X/g X y‘g) (250)

§3 Vector product as a linear mapping It is interesting to see that for all ¥, i/ € R there holds

X2 Y3 — X3 Y2 0 —x3 x| |wn
3? X g) = | —X1Y3 + X3 1| = X3 0 —X1 Y2 (251)
X1Y2 — X2 1 —X2  x 0 |y
and thus we can introduce matrix
0 —X3 X2
[JE)]X = X3 0 —X1 (2.52)
—X2 X1 0
and write
Xxy=I[x],¥ (2.53)
Notice also that [?]. = — [¥], and therefore
@xN' =(Fe ' = -7 7 (2.54)

The result of [§2| can also be written in the formalism of this paragraph. We can write for every
X,jeR3

- - - AiT > - AiT > -
(M%), ATs = (A%p) x (ATp) = ] B X 00 = 7 (5], s (2.55)

AN (2.56)

2.4 Dual space and dual basis

Let us start with a three-dimensional linear space L over scalars S and consider the set L* of all linear
functions f: L — S, i.e. the functions on L for which the following holds true

f@aZ+by) =af(®)+bf(y (2.57)

10
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foralla,be Sand all ¥, i/ € L.
Let us next define the addition +*: L* x L* — L* of linear functions f, ¢ € L* and the multiplication
*: S x L* — L* of a linear function f € L* by a scalar a € S such that

(f+ 9 = f(@)+g (2.58)
@) = af® (2.59)

holds true for all a € S and for all ¥ € L. One can verify that (L*, +*,-*) over (S, +, ) is itself a linear
space [4},[7,16]. It makes therefore a good sense to use arrows above symbols for linear functions, e.g.

f_)instead of f.
The linear space L* is derived from, and naturally connected to, the linear space L and hence
deserves a special name. Linear space L* is called [4] the dual (linear) space to L.

Now, consider a basis f = [51, 52, 53] of L. We will construct a basis * of L*, in a certain natural and
useful way. Let us take three linear functions b;, b;, b; € L* such that

bi(br) =1 5;(5) =0 b}(E3) =0
B(b1) =0 By(b) =1 B(B) = 0 (2.60)
B(6) =0 B(B2) =0 B(Bs) =1

where 0 and 1 are the zero and the unit element of S, respectively. First of all, one has to verify [4] that
such an assignment is possible with linear functions over L. Secondly one can show [4] that functions

5’1*, l;é , I;g are determined by this assignment uniquely on all vectors of L. Finally, one can observe [4]

that the triple * = [I;I, l;;, 5;] forms an (ordered) basis of L. The basis B* is called the dual basis of L*,
i.e. it is the basis of L*, which is related in a special (dual) way to the basis 5 of L.

§1 Evaluating linear functions Consider a vector ¥ € L with coordinates X3 = [x1,x2,x3]" w.rt.
a basis = [51, l;z, 53] and a linear function /i € L* with coordinates i_z),g* = [y, h, h3] " wrt. the dual
basis * = [I;;, 5;, 5;] The value ﬁ(f) € S is obtained from the coordinates X and i_z)ﬁ* as

P_l)(f) = ﬁ(xl 51 + X2 52 + X3 53) (2.61)
= (hl B)I + hz l_;; + h3 l;)g)(aq 51 + X2 I;z + X3 53) (2.62)
= B () x + B (B2) xo + I B (B3) xs

+hy 55(51) x1 + hy gz (52) x2 + hy b; (53) X3 (2.63)
+ha 5 (By) x1 + 3 B3(B2) x2 + s B (B3) x3
b)) Bk Bi(B) ] [
= [l ]| B30 Bi(b) (k) | | %2 (2.64)
| D5(b1) Di(b2) D3(bs) | L3
(1 0 0] [x
= [h1 hz ]’13] 010 X2 (265)
(0 0 1|
X1
= [hi,ha,h3] | x (2.66)
X3
= g% (2.67)

The value of /i € L* on % ¢ L is obtained by multiplying X by the transpose of ﬁlg* from the left.

11
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Notice that the middle matrix on the right in Equation evaluates into the identity. This is the
consequence of using the pair of a basis and its dual basis. The formula2.67|can be generalized to the
situation when bases are not dual by evaluating the middle matrix accordingly. In general

R(E) = Iy [Bi(b)] % (2.68)

where matrix [EZ(E ;)] is constructed from the respective bases 8, f of L and L*.

§2 Changing the basis in a linear space and in its dual Let us now look at what happens with
coordinates of vectors of L* when passing from the dual basis f* to the dual basis f’* induced by
passing from a basis f8 to a basis 8’ in L. Consider vector ¥ € L and a linear function I e L* and their
coordinates X, X3/ and ﬁﬁ*, Eﬁ/* w.r.t. the respective bases. Introduce further matrix A transforming

coordinates of vectors in L as
fﬁ/ = Ay?ﬁ (2.69)

when passing from § to f’.
Basis * is the dual basis to f and basis ’* is the dual basis to g’ and therefore

2T S bxd =T N
hﬁ* Xg = h(xX) = hﬁ,* Y (2.70)
forall ¥ e L and all € L*. Hence o S
hﬁ* fﬁ = hﬁ,* Ay?ﬁ (2.71)
for all ¥ € L and therefore o
hﬁ = hﬁ,* A (2.72)
or equivalently
ige = AT Iige (2.73)
Let us now see what is the meaning of the rows of matrix A. It becomes clear from Equationm that
the columns of matrix AT can be viewed as vectors of coordinates of basic vectors of B’ [b{*, bé*, b! *]

in the basis * = [b;, b;, b*] and therefore

b{g*
vl @74)
bég*
which means that the rows of A are coordinates of the dual basis of the primed dual space in the dual
basis of the non-primed dual space.
Finally notice that we can also write
]/_l)l;/* = AiT}_l)ﬁ* (2.75)

which is formally identical with Equation

§3 When do coordinates transform the same way in a basis and in its dual basis It is natural
to ask when it happens that the coordinates of linear functions in L* w.r.t. the dual basis * transform
the same way as the coordinates of vectors of L w.r.t. the original basis §, i.e.

Ty = A% (2.76)
lige = Al (2.77)

12
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forall¥e Land allh e L*. Considering Equation[2.75] we get

A = AT (2.78)
ATA = I (2.79)

Notice that this is, for instance, satisfied when A is a rotation [5]. In such a case, one often does not
anymore distinguish between vectors of L and L* because they behave the same way and it is hence
possible to represent linear functions from L* by vectors of L.

§4 Coordinates of the basis dual to a general basis We denote the standard basis in R® by
o and its dual (standard) basis in R>”" by o*. Now, we can further establish another basis y =

*

[c1 & &]inR®anditsdualbasisy* = [t ¢ ¢3]in R3*. We would like to find the coordinates
yr.o=[¢1. 5. 4] of vectors of y* w.rt. 0* as a function of coordinates y, = [C1s 25 C30 | Of
vectors of y w.r.t. 0.
Considering Equations and [2.67] we are getting
Ei iy = { (1)12 ~ ; fori,j=1,2,3 (2.80)
which can be rewritten in a matrix form as

10 0 Croe
0 0] = (?27:* [C—)lo C—)Za C_)C’»a]:)/;;rya (2.81)
00 1 2T

1
0 C3g*

and therefore
Vor =Vo | (2.82)

§5 Remark on higher dimensions We have introduced the dual space and the dual basis in a
three-dimensional linear space. The definition of the dual space is exactly the same for any linear
space. The definition of the dual basis is the same for all finite-dimensional linear spaces [4]. For any
n-dimensional linear space L and its basis 8, we get the corresponding n-dimensional dual space L*
with the dual basis *.

2.5 Operations with matrices & tensors

Matrices are a powerful tool which can be used in many ways. Here we review a few useful rules for
matrix manipulation. The rules are often studied in multi-linear algebra and tensor calculus. We shall
not review the theory of multi-linear algebra but will look at the rules from a phenomenological point
of view. They are useful identities making an effective manipulation and concise notation possible.
See [14] for additional material.

§1 Kronecker product LetAbeak x [ matrix and B be a m x n matrix

ann di - 4]
a1 4az -+ 4y
A= 7 T ]eR"™ and BeR™" (2.83)
a1 Gr2 - Ay
then km x I n matrix
a11B apB -+ ayB
a1B apB -+ ayB
C=A®B= . . ) ) (2.84)
ag B apB .- ayB

13
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is the matrix of the Kronecker product of matrices A, B (in this order).
Notice that this product is associative, i.e. (A®Q B) ® C = A® (B® C), but it is not commutative, i.e.
A®B # B® A in general. There holds a useful identity (A®B)" = AT® BT,

§2 Matrix vectorization Let A be an m x n matrix

a1 a4 A1n
a1 dp - d2pn

A = . . . . e R™*" (2.85)
Anl Am2 - Amn

We define operator v(.): R"*" — R™" which reshapes an m x n matrix A into a m#n x 1 matrix (i.e.

into a vector) by stacking columns of A one above another

oy ]
az1

Am1
a2

o(a) = afz _ (2.86)

Am2
A1n
an

amn

Let us study the relationship between v(A) and v(AT). We see that vector v(A") contains permuted
elements of v(A) and therefore we can construct permutation matrices [5] T,.x, and T« such that

o(AT) = Tuxnv(A)
v(A) = Tuxmo(AT)
We see that there holds
Toxm Tmxn0(A) = Tuxm (&) = 0v(A) (2.87)
for every m x n matrix A. Hence
Tuxm =T, L (2.88)

Consider a permutation T. It has exactly one unit element in each row and in each column.
Consider the i-th row with 1 in the j-th column. This row sends the j-th element of an input vector
to the i-th element of the output vector. The i-the column of the transpose of T has 1 in the j-th row.
It is the only non-zero element in that row and therefore the j-th row of T sends the i-th element
of an input vector to the j-th element of the output vector. We see that T is the inverse of T, i.e.
permutation matrices are orthogonal. We see that

T =T hsn (2.89)
and hence conclude
Toxm = T (2.90)

We also write v(A) = T o(AT).

mxn

14
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§3 From matrix equations to linear systems Kronecker product of matrices and matrix vector-
ization can be used to manipulate matrix equations in order to get systems of linear equations in the
standard matrix form Ax = b. Consider, for instance, matrix equation

AXB=C (2.91)
with matrices A € R"*% X e RF*! B e R™*", C € R™*", It can be verified by direct computation that
v(AXB) = (B'® A)v(X) (2.92)

This is useful when matrices A, B and C are known and we use Equation to compute X. Notice
that matrix Equation2.91]is actually equivalent to m n scalar linear equations in kI unknown elements
of X. Therefore, we should be able to write it in the standard form, e.g., as

Mou(X) = v(C) (2.93)
with some M € R(""* () We can use Equation2.92]to get M = B ® A which yields the linear system

v(AXB) = 9(Q) (2.94)
B'® A)v(X) = v(C) (2.95)

for unknown v(X), which is in the standard form.
Let us next consider two variations of Equation[2.91] First consider matrix equation

AXB =X (2.96)
Here unknowns X appear on both sides but we are still getting a linear system of the form
B'"®A-I)v(X)=0 (2.97)

where I is the (mn) x (kI) identity matrix.
Next, we add yet another constraints: X" =X, i.e. matrix X is symmetric, to get

AXB=X and X' =X (2.98)
which can be rewritten in the vectorized form as
B'®@A-T)v(X)=0 and (Tuxy—I)v(X)=0 (2.99)
and combined it into a single linear system

|: men_I

R ECEL (2100
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3 Algebraic geometry for solving polynomial equations

We will explain some elements of algebraic geometry in order to understand how to solve systems of
polynomial (algebraic) equations in several unknowns that have a finite number of solutions. We will
follow the nomenclature in [2]]. See [2] for more complete exposition of algebraic geometry and [15]
for more on how to solve systems of polynomial equations in several unknowns.

3.1 Polynomials

We will consider polynomials in n unknowns xi,xy,...,x, with rational coefficients ag,ay,...,a,.

Polynomials are linear combinations of a finite number of monomials x{"x5* - - - x;," where non-negative

integers a; € Z are exponents. To simplify the notation, we will write x* instead of x{"x5? - - - x;"

an for n-tuple a = (a1, ay, ..., a,) of exponents. N-tuple «a is called the multidergree of monomial x“.
2,0,1 2

For instance, for « = (2,0,1) we get x* = XXX, = x7x3. We define the total degree d of a non-zero

monomial with exponent @ = (a1, a2, ..., a,) asd = a1 + a2 + - - - + a,. Hence, x(201) has total degree
equal to three. The total degree, deg(f), of a polynomial f is the maximum of the total degrees of its
monomials. The zero polynomial has no degree.

With this notation, polynomials with rational coefficients can be written in the form

f=>lasx", a,€Q @3.1)

where the sum is over a finite set of n-tuples & € ZZ . The set of all polynomials in unknowns
X1,X2,...,X, with rational coefficients will be denoted by Q[x1, x2, ..., x,].

There is an infinite (countable) number of monomials. If we totally order monomiald] such that 1
is the smallest monomial in some way (and we will discuss some useful orderings later), we can also
understand polynomials as infinite sequences of rational numbers with a finite number of non-zero
elements. For instance, polynomial x; x% +2 x% + 3x1 + 4 can be understood as infinite sequence

(4 3 0 0 O 0 0 2 1 0 ... )
1 x x% x? X2 X1Xp x%xp_ x% X1 x% xg

with exactly four non-zero elements 1,2, 3, 4.
Polynomials with rational coefficients can be also understood as complex functions. We evaluate
polynomial f on a point 7€ C" as

f(ﬁ) _ (Z aaxa> (}7) _ Eaaxa(ﬁ) _ Zaaﬁa _ Zaaﬁlmﬁzaz .. .ﬁnﬂln

which reflects that the evaluated polynomial is a linear combination of the evaluated monomials. For
instance, we may write (x; x5+2x5+3x1+4)([1,2]T) = x1 x5([1,2] ") +2x9x5([1,2] ) +3x129([1,2] ") +
4x99([1,2]T) =4 +8+3+4=19.

3.1.1 Univariate polynomials

Polynomials in single unknown are often called univariate polynomials. In this case a becomes a trivial
sequence containing a single number. The total degree deg( f) of f is then called degree.

Total (linear) ordering of a set S is an ordering when every two elements of S are comparable.
This can allways be done by finding a bijection from integrers to the monomials.

16
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3.1.2 Long division of univariate polynomials

The set of all polynomials in a single unknown x over rational numbers, Q|[x], forms a ring. Polyno-
mials are almost as real numbers except for the division. Polynomials can’t be in general divided. In
fact, polynomials behave in many aspects as whole numbers Z.

In particular, it is easy to introduce long polynomial division in the same way as it is used with whole
numbers. Consider polynomials f, g € Q[x], ¢ # 0. Then, there are [2] unique polynomials g, € Q[x]
such that

f=qg+r with deg(r) <deg(g) or r=0

where g is the quotient and r is the remainder (of f on division by g). Equivalently, one also often writes
f=r (mod g)andr = f mod g.

Word “division” in “long polynomial division” is indeed somewhat misleading when r # 0 since
there is no real division in that case. We could perhaps better name it “expressing f using g in the
most efficient way”.

3.2 Systems of linear polynomial equations in several unknowns

Solving systems of linear polynomial equations is well understood. Let us give a typical example.
Consider the following system of three linear polynomial equations in three unknowns

2x1+1x+3x3 = 0
4x1 +3x+2x3 = 0
2x1+1xp+1x3 = 2

and write it in the standard matrix form

213 X1 0
4 3 2 X2 =10
211 X3 2

Using the Gaussian elimination [5], we obtain an equivalent system

21 3 X1 0
01 —4 X2 | = 0
00 1 X3 -1

We see that the system has exactly one solution x; = 7/2, xo = —4, x3 = —1.

We notice that the key point of this method is to produce a system in a “triangular shape” such that
there is an equation f3(x3) = 0 in single unknown x3, an equation in two unknowns f>(x2,x3), and
so on. We can thus solve for x3 and then transform f, by a substitution into an equation in a single
unknown and solve for x», and so on.

3.3 One non-linear polynomial equation in one unknown

Solving one (non-linear) polynomial equation in one unknown is also well understood. The problem
can be formulated as computation of eigenvalues of a matrix. Let us illustrate the approach on a
simple example. Consider the following polynomial equation

f=x>-6x*+11x-6=0

We can construct a companion matrix [5]

17
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x 2 0.579

Figure 3.1: Solution to (32) is the intersection of a circle and a pair of lines. Solution at [2, 2] has
multiplicity two.

of polynomial f and compute the characteristic polynomial of My

x 0 —6
I—M|=||-1 x 11||=x-6x2+11x-6
0 -1 x—6

to see that we are getting polynomial f. Hence, eigenvalues of My, 1, 2, 3, are the solutions to equation
f=0.

This procedure applies in general when the coefficient at the monomial of f with the highest degree
is equal to one [5], i.e. when we normalize the equation. Obviously, such a normalization, which
amounts to division by a non-zero coefficient at the monomial of the highest degree, produces an
equivalent equation with the same solutions.

The general rule for constructing the companion matrix M, for polynomial f = x" + a, 1x"~1 +
An_oX"2 4 - 4 a1x +ag is [5]

00 --- 0 —ag

1 0 0 —aq
M, =

o0 --- 1 —0p—1

Notice that eigenvalue computation must be in general approximate. In general, roots of polynomials
of degrees higher than four can’t be expressed as finite formulas in coefficients a; using addition,
multiplication and radicals [11].

3.4 Several non-linear polynomial equations in several unknowns

Let us now present a technique for transforming a system of polynomial equations with a finite
number of solutions into a system that will contain a polynomial in the “last” unknown, say x;, only.
Achieving that will allow for solving for x,, and reducing the problem from 7 to n — 1 unknowns and
so on until we solve for all unknowns. Let us illustrate the technique on an example.

18
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Consider the following system

i = 5+x3-1=0 (3.2)
f2 = 25x1x%p —20x, —15x1+12 = 0
and rewrite it in a matrix form
_ x% _
X1X2 2

2onx  x o x¥ ox 1
_ 2 1
{é 205 _28 (1) _1g 1;} x% :[8] orinshortas [ 1 0 0 1 0 —1{ (3.3)
0 25 -20 0 -15 12

Now, itis clear that f = 0 implies gf = 0 for any g € Q[xy, ..., x;,]. For instance x% +x§ —1 = Oimplies,
e.g., x1(x] + x5 — 1) = 0 and 25x1x; — 15x1 — 20 x + 12 implies x2(25x1x2 — 15x1 — 20x2 + 12).

Hence, adding such “new” equations to the original system produces a new system with the same
solutions. On the other hand, polynomials f, xf are certainly linearly independent when f # 0 since
then xf has degree strictly greater than is the degree of f. Thus, by adding xf, we have a chance to
add another independent row to the matrix (3.3).

Let us now, e.g., add equations xl(x% + x% —1) = 0and x2(25x1xp — 15x1 — 20x2 + 12) to system
(3.2) and write it in the matrix form as

xix5 x5 xxy X X ox ox 1
Alo 1 o o001 o0 -1
Hl o 0 25 —20 0 0 -15 12 (3.4)
wfil1 0o 0o 010 -1 0
X212 25 =20 -15 12 0 O 0 0

We have marked each row of the coefficients with its corresponding equation. We see that two more
rows have been added but also two new monomials, x1x§ and x?, emerged. The next step will be to
eliminate (3.4) by the Gaussian eliminations to get

x1x3 X2 xxz x oo o 1

il 1 0 0o o 1 0 -1 o0
Al o 1 o0 0o 0 1 0 -1 (3.5)

f3 0 0 25 =20 0 0 -15 12

fa 0 0 0 0 —125 100 80 —-64

We see that the last row of coefficients gives an equation in single unknown x;
fa=—125x3 +100x3 + 80x; — 64 =0

Notice that we have been ordering the monomials corresponding to the columns of the matrix such
that we have all monomials in sole x; at the end.

It can be shown [2] that the above procedure works for every system of polynomial equations
{fi, fa, ..., fi} from Q[xq,...,x,] with a finite number of solutions. In particular, there always are k
finite sets M;,i = 1,..., k of monomials such that the extended system

{fl,fQ,...,fk} U {mf]\m EM]',j = 1,...,k}

obtained by adding for each f; its multiples by all monomials in M;, has matrix A with the following
nice property. If the last columns of A correspond to all monomials in a single unknown x; (including
1, which is x0), then the last non-zero row of matrix B, obtained by Gaussian elimination of A, produces

a polynomials in single unknown x;.
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This is a very powerful technique. It gives us a tool how to solve all systems of polynomial
equations with a finite number of solutions. In practice, the main problem is how to find small sets M;
in acceptable time. Consider that the number of monomials of total degree at most d in n unknowns
is given by the combination number (”;d). Hence, in general, the size of the matrix is growing very
quickly as a function of 7 and d needed to get the result. Practical algorithms, e.g. F4 [2], use many
tricks how to select small sets of monomials and how to efficiently compute in exact arithmetic over
rational numbers.

Let us now return to our example above. We can solve the f; = 0 for x; and substitute all solutions

to f3 = 0 from the third row, which, for known x1, is an equation in single unknown x,
f3=25x1%0 —20xp —15x; +12 = (25x1 —20)xp — 15x; +12 =10

That gives us solutions for x,.

3.5 Solving a polynomial system as an eigenvector problem

Solving polynomial systems for one unknown after another by the procedure given in the previous
paragraph calls for back-substitution that may be non-trivial to implement in general. Also notice
that in the example above, we did not really see that there are four solutions since one, [%, %] in
Figure[3.1] had multiplicity two but that was “masked” by other solution that we aligned with it.
Let us now present an alternative approach often allowing to compute all solutions at once as an
eigenvector problem. We will first illustrate the technique on an example in a single unknown given

in paragraph

3.5.1 Solving a univariate polynomial equation by eigenvectors

Consider a polynomial system consisting of a single equation
f=x-6x+1lx—6=(x—1)(x—2)(x—-3)=0

in one unknown x with roots 1, 2, 3. We have seen how to solve this system by computing eigenvalues
of the companion matrix M, of polynomial f. Let us now see how to do the same by computing
eigenvectors of M .

Let us first consider remainders of all polynomials ¢ in Q[x] on division by f. It is the set of all
polynomials r of degree at most two. All polynomials of degrees at most two are left unchanged by
the long division by f and all monomials of a higher degree will get rewritten using f in terms of
polynomials of degree at most two. We can thus write

r=mx*+mx+ay for ag,a,a€Q ie. r=|a | eQ®

and hence identify each remainder with a three-dimensional vector from Q®. We see that the set of
all such remainders is in one-to-one correspondence with Q.
Secondly, consider the mapping M,: Q[x] — Q[x] on polynomials given by

M (h) = (xh) mod f
It maps monomials of degree at most two back to polynomials of degree at most two, i.e.

M:(1) = x1 mod f=x mod f =x
My(x) = xx mod f =x* mod f = x* (3.6)
Mi(x*) = xx¥*mod f=xmod f=6x*—11x+6
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We see that M is a linear mapping since for all g,/ € Q[x], a € Q we have

M(g+h) = (xg+xh)mod f = (xg) mod f + (xh) mod f = M,(g) + My(h)
Mi(ag) = (axg)mod f=a(xg) mod f =aM(g)

Every linear mapping has a matrix of the mapping w.r.t. a basis [4]. We can write

M(ax® + aix +a9) = axMy(x*) + ag My(x) + ag M (1) 3.7)
[ M (1)
= [ao, ;1, a2] | Mx(x) ] (3.8)
B Mx(xz
[ x
= lao, a1, a2] X ] (3.9)
6x2—11x+6

and thus

” 00 6] [a
M |1, %, 22] | &y — [Lx |1 0 —11 a (3.10)
0 01 6| |m

We can interpret the above as choosing the standard monomial basis [1,x,x?] in the linear space of
Q[x] of degree at most two, and writing the above represented by vectors in Q3. Then, expressing
monomials as vectors using basis [1, x, xz] we get

1 0
Mx(l) =M, 0 = 1
_0_ _0_
0 0
M) =M | |1 = 10
[0 ] [ 6
M) =M | o] = |-11
| 1] | 6

We see that the matrix of the mapping M, is obtained by

100 00 6
M Alo1ol]l=|10 —-11|=nm,
00 1 01 6

and observe that M, is the matrix of M, w.r.t. the standard monomial basis B = [1,x, xz], is the
companion matrix of f, i.e.

Mi(fs) = M fo (3.11)

Now, let us evaluate polynomials ¢ € Q[x] on the roots of f. Consider a root p of f, i.e. a solution
to equation f = 0, and evaluate g on p using its remainder r on division by f

g(p) =4q(p) f(p) +r(p) =q(p)0 +r(p) = r(p)

since f(p) = 0. We see that polynomials evaluate on roots of f to the values of their remainders on

division by f. Let us now evaluate polynomials x, x2, x3 on roots 7= [p1,p2, pg]T of f.
xgpz') = P= pil = pilpi) = x(pi)1(p:)
x“(pi) = P = PiPi = pix(pi) = x(pi)x(pi) (3.12)
i) = p; = pipr = pp) = x(p) ¥ (pi)
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Now, since
) = =62 +11x—6+ (6x> —11x +6) (3.13)
= f(pi) + Mu(x)(pi) (3.14)
= 0+ (6x* —11x+6)(p;) (3.15)
we get
x(pi) X (pi) = (6%% —11x + 6)(p;) (3.16)

We can rewrite identities (3.12) and (3.16) as the following sequence of matrix identities

[ 1(pi) ] x(pi) x(pi) 0
x(pi) | x(pi) | = xz(Pz‘)] = [ xz(Pz‘)] + { 0 ]
| *(pi) | (i) (6x* —11x +6)(pi) f(pi)
i 1(pi) ] [0 1 0] 1(pi) 0
x(pi) | x(pi) | = |0 01 x(pi) ] + [0]
_xz(pi)_ |6 —11 6| xz(pi) 0
17 0 1 0][1
x(pi) [Pi = |0 01 Pi]
p? | |6 —11 6| [p7
piti = M7

showing that (p;, ;) are eigenvalue-eigenvector pairs of M]. Eigenvalues p; are evaluations of x on
roots of f and eigenvectors d; are evaluations of the monomials of the standard basis [1,x, ¥*] on the
roots of f. The above observation holds true in general [15]. For a polynomial f of degree 1, we are
getting an n x n matrix with n eigenvalues, counting the multiplicities.

When matrix M, has separated one-dimensional eigenspaces, which, e.g., happens always when
eigenvalues are pairwise distinct, i.e. when f has all roots of multiplicity one, we can (numerically)
compute basis @; of each eigenspacd] and get 7 as

5)1‘2_)—7/(_)), i=1,...,7’l
Wil

We see that solutions to f are obtained from @; as p; = x(p;) = Up.
It is possible to generalize the above to a more general mapping M,: Q[x] — Q[x] by replacing

unknown x by a general polynomial g € Q[x] to get
Mg (h) = (gh) mod f

Now, consider that g(p;) = r(p;) where r = axx* + a1x + ag is the remainder of g on division by f.
Thus

8(pi) = r(pi) = axx*(py) + arx(pi) + aol(ps) (3.17)

Further, considering that

U = AU
AAT = A%T
A2G = A%7

SMany algorithms, e.g. in Matlab, deliver @;’s with ||@;] = 1.
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8(x) + f(x)

Figure 3.2: Polynomial f(x) and its roots 1,2, 3. All remainders on division by f, e.g. g(x), , which
are of degree not larger than two, are uniquely determined by their values on the roots
1,2,3 of f. See the text for more detailed explanation.

we can write

1(p:) 1(pi)
gp)) | x(pi) | = (a2P(p) +arx(pi) + aol(ps)) | x(pi)
| (i) | x*(py)
1(pi) 1(pi)
i) | x(pi) | = (a2(M})*+m My +aol) | x(p)
| (i) | | 2 (pi)
1] [ 1
gpi) | pi| = (20))*+aM +al) | p; ]
p7 ¥
gp) ¥ = MG (3.18)

showing that (¢(p;), 7;) are eigenvalue-eigenvector pairs of M; = (a2 M2 +ay My +apI)T.

We saw that remainders r on division by f could be identified with Q> via their coefficients. Let us
now present another representation of r by vectors from C>. FigureB.2lshows f(x) = (x—1)(x—2)(x—3)
and its roots p; = 1,p» = 1,p3 = 3. Each remainder on division by f, e.g. ¢ and h, which has degree
not larger than two, is uniquely defined by its values on the roots p; = 1,p» = 1,p3 = 3 of f. In
general, roots of f are from C and hence their polynomial evaluations are from C as well. This
way, every remainder r on division by f is on one to one correspondence with a vector from C3, i.e.
r(x) = [r(pr), r(p2), r(pa)]

All polynomials can be written as g(x) f(x) + r(x), and thus every polynomial can be assigned its
reminder on division by f. This way, the set of polynomials is partitioned into equivalence classes
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and a bijection between the sets of the equivalence classes and the remainders on division by f is
obtained.

Eigenvalue problem [3.18 thus can be seen as expressing the representative of g(x) f(x) by multipli-
cation by of the representative of f(x) by Mg.

3.5.2 Solving systems of multivariate polynomial equations by eigenvectors

To generalize the procedure above to systems of polynomial equations in several unknowns, we
have to generalize the concept of “remainder on division by a single polynomial in one unknown”
to more polynomials in more unknowns. It will require to address several issues. Let us first lay
down a general strategy, then deal with particular issues, and, finally, provide a method for finding
the solutions to a polynomial system with a finite number of solutions by computing eigenvectors.

We have seen that the key concept for deriving the relationship between the solutions to f = 0 and
the eigenvectors of M in the univariate case was that the remainder r of 1 on division by f gave the
values of  on the roots of f.

Long division produced r = h — g f such that r was “the simplest” polynomial evaluating on roots
of f to the same values as 1. We could also see this as removing from / all what can be generated by
f,ie. all whatis in (f) = {h f|h € Q[x]}. We can also say that r is equivalenl@ to f, writing h = 7,
whenh—r=gqfel={f).

In the multivariate case, this motivates introducing ideal I generated by polynomials fi,..., fi,
denoted by (fi, ..., f¢), as

k
I={fie fo =D, 8ifil g€ Qlxn, ., 3]}
i=1
Ideal I is the set of all polynomials that can be generated from fi, ..., fy by polynomial combinations.
All polynomials in I evaluate to zero (are satisfied) on the solutions of the system fi, ..., fi.

In the univariate case, monomials were naturally ordered by their degree. The total degrees of
univariate monomials, i.e. the powers of the unknown, provided a total ordering [1] of the monomials
in one unknowrfl. In the multivariate case, however, total degrees do not provide a total ordering.
For instance, consider that deg(x*y) = 3 = deg(x ) but x?y # xy?, which means that x?y, x y* are
not comparable when ordered by the total degree. We see that the total degree makes only a partial
ordering of monomials. Hence, we need to introduce another way of ordering the monomials to get
a total ordering. We will discuss this in more detail in paragraph[3.5.3]

From the point of view of the eigenvector method in the univariate case, the remainders r on the
long division by f had the good property that all monomials of » were strictly smaller (when ordered
by the degree) than the largest (leading) monomial of f. The maximal degree of r was equal to the
number m of solutions minus one and hence r was a linear combination of exactly m monomials. That
gave m x m multiplication matrices M, and thus m one-dimensional sub-spaces of eigenvectors. This
was thanks to the fact that ideal (f) was in one-to-one correspondence with its generator f.

Now, in the multivariate case, when ideals are generated by more generators F = {fi,..., f¢},
I = (F) can be generated by infinitely many different sets of generators and, in general, there is no
direct connection between the multidegrees of the leading monomials of a particular generator set
and the number of solutions. Further, with a general set of generators F of I, there is no good way
of defining the remainder on division by F because when algorithmically writing a polynomial g as
a polynomial combination g = q1f1 + - - - + qufu + 1, different 7’s can be obtained when changing the
order in which f;’s are used in the rewriting of g.

“Equivalence = is a relation on a set S, i.e. a subset of S x S, satisfying three axioms: Va,b,c € S: (reflexivity) a = a,
(transitivity) a = b and b = c implies a = ¢, (symmetry) a = b implies b = a [1].

5Ordering <, is a relation on a set S, i.e. a subset of S x S, satisfying three axioms: Va,b,c € R < S: (reflexivity) a <, a,
(transitivity) a <, band b <, c implies a <, ¢, (antisymmetry) a <, b and b <, a, then a = b. Ordering that is defined for
all members of S, i.e. when R = S is called total ordering (or linear ordering). An ordering is called partial ordering when
R < S[1].
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Fortunately, one can always find a “good set” G of generators of I, called reduced Grobner basis of
I, that “behaves well”. It is possible to generalize the univariate long division to a multivariate long
division by several polynomials such that it, for every ¢ € Q[xy, ..., n,], produces a unique reminder
r on division by G independently on the order in which the generators G are used in the division
process. Remainder r = ¢ mod., G is thus defined uniquely by the ideal I and monomial ordering
<, used. Further, r becomes a linear combination of monomials that are not divisible by any leading
monomial of the generators G. The actual monomials may be different depending on the monomial
ordering used but their number [ will always be the same.

The relationship of I to the number of solutions m is more intricate. In general / > m. The equality
occurs exactly when [ is a radical ideal, which means that I is such that f* € I for some k implies f € I.
Intuitively, radicality is connected to multiplicity of solutions. Fix an unknown x; and look at all
polynomials in I that are only in x;. They form an ideal I;. The ideal I; is univariate and hence is
generated by a single polynomial e;(x;). Roots of ¢; are the projections on the solutions of F on the
x; axis. Now, if the roots of e;(x;) are of multiplicity one for all unknowns, then I is radical. Radical
ideals have no multiplicities in any coordinate.

For ideals I = (F) with a finite number of solutions, we can construct its radical ideal /I by
removing all multiplicities from each e;(x;). This can be done [15] by constructing polynomials

e;

_ 1
Pired = Ged(e;, ¢))

where ¢ is the derivative of ¢; w.r.t. x; and GCD is the greatest common divisor of two polynomials.
Radical ideal of I is obtained as

\/I = <f1/ cee rfk/pl,redr cee /pn,red>

A generalization of the long division for the multi-variate and multi-polynomial case will be
described in paragraph [3.5.4 and an algorithm for finding Grébner basis of I will be given in para-
graph

We are now ready to generalize the eigenvector-method to polynomial systems F = {fi, ..., fi} in
multiple unknowns x1, ..., x,:

1. Fix a particular monomial ordering <,.
2. Construct the reduced Grobner basis G of I = (F) for <,.

3. Construct the set B of all monomials that are divisible by no leading monomial of all polynomial
in G.

4. Fix a polynomial g € Q[xy, ..., x,] such that g has different values on different solutions, e.g.
take a random linear polynomial. This, guarantees isolated one-dimensional eigenspaces for
radical ideals (F).

5. Construct the multiplication matrix Mg by finding remainders of g b for all g € B on division by
G w.rt. <,.

6. Find eigenvalues and eigenvectors of M. Check if all eigenspaces are one-dimensional. If not,
extend F by setting F := F U {pl,red/ ey, pn,mi} and start again from the beginning with extended
F.

7. Recover the solutions from the eigenvalues, eigenvectors and G.

We will illustrate the above procedure in paragraph/3.5.6}
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Figure 3.3: (a) Lex monomial ordering x{y* with x <j, y orders monomials as
1,x,x%,...,y,xy,x%y,...,y%,xy%,... while (b) the GRevLex monomial ordering orders
monomials as 1, y, x, y2,xy, X2, y3,xy2,x2y, x3,.... We see that y=a=(0,1) <grevlex X =
B = (1,0) since they both have total degree equal tooneand f—a = (1,0)—(0,1) = (1,-1),
i.e. the last non-zero coordinate of f — « is negative.

3.5.3 Monomial ordering

We saw that a useful total ordering of monomials in single unknown was obtained by ordering the
monomials by their degree, giving
[xo, xt K2, J (3.19)

Unfortunately, ordering monomials in more unknowns by their total degree produces only a partial
ordering, i.e. we can’t compare all monomials. Consider, e.g., monomials x> y, x y*>. They both have
total degree equal to three

deg(x*y) = 3 = deg(xy?) but x*y#xy’ (3.20)

and hence we see that the total degree does not define ordering of this two monomials. For multi-
variate polynomials, we have to introduce another way how to order them.

Every set can be totally ordered such that it has the least element [1] but we have to satisfy additional
constraints to make the ordering useful for our case. The ordering by the degree in the univariate
case had two important properties we have to preserve. First, (i) constant 1 was the smallest element.
Secondly, (ii) the ordering “worked nicely” together with the multiplication by monomials, i.e.

deg(my) < deg(my) = deg(mm;) < deg(mmy)

for all monomials m € Q[x1, ..., xy].

To get a useful ordering for the multivariate case, we have to preserve the above two properties.
Since monomials are in one-to-ne correspondece with their multidegrees, literature talks about mono-
mial ordering <, as any total ordering of ZZ ; satisfying properties (i) and (ii) above. There are infinitely
many ways how to construct a monomial ordering [16]. Let us now present two classical orderings
that, in a way, represent all different monomial orderings.
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Lex Monomial Ordering (Lex) <j., orders monomials as words in a dictionary. An important param-
eter of <., order (i.e. ordering of words) is the order of the unknowns (i.e. ordering of letters). For
instance, monomial X 42z = XY Yz <jey Xy2zZ = xyz> When x <jp; ¥ <jy z (i.e. x y y z is before x yzz
in a standard dictionary). However, when z <j,, y <jx X, then x y22 =XYZZ <ppx XYYZ =X yzz. We
see that there are n! possible <j,, orderings when dealing with n unknowns.

Formally, we say that monomial x* <, xP, as well as & <y, f for exponents, when either f —a = 0
or the first non-zero element of § — a is positive.

For instance (0, 3,4) < (1,2,0) since (1,2,0) — (0,3,4) = (1,—1,—4) and (3,2,1) <j.x (3,2,4) since
(3,2,4) — (3,2,1) = (0,0,3).

Graded Reverse Lex Monomial Ordering (GRevLex) <gelx is an extension of the partial ordering by
the total degree to a total monomial ordering.

Formally, we say that monomial x% <gepjex xP, as well as a < grevlex B for exponents, when either
deg(a) < deg(p) or deg(a) = deg(p) and the last non-zero element of § — « is negative.

For instance y°z ~ (0,3,1) <greoex (1,2,2) ~ xy*z? since 0 +3 +1 =4 <5 =1+ 2+ 2 but
xy*2% ~ (1,2,2) <grevtex (1,3,1) ~ xyP zsince 14+2+2 =5 = 1+3+1and (1,3,1)—(1,2,2) = (0,1, -1).

Figure shows a few first monomials in two unknowns labeled by the Lex (a) and GRevLex (b)
orderings. It has been noted that Lex is often harder to use for computation than “graded” orderings,
such as GRevLex ordering. On the other hand, Lex orderings provide us with univariate polynomials.

The main difference between the above two orderings is that <geey is an archimedean ordering,
which means that for every monomials mq,my € Q[x1,...,x,], 1 # m <grevlex M2, there is k € Z>¢
such that my <greplex m’{ . It also means that with <g.py, there are always only a finitely many
monomials smaller than any monomial. Lex orderings are not archimedean. Consider, for instance,
<pex With x <z y. We see that XK <oy y for all k € Z~( and hence there are infinitely many smaller
monomials than y. Lex orderings are useful for constructing a polynomial in a single unknown
when a system of polynomial equations has a finite number of solutions. Graded orderings, such
as GRevLex, appear to keep total degrees in computations low and often lead to results faster than
when using Lex orderings.

With a fixed monomial ordering <,, we can talk about the leading monomial, LM(f), of a polynomial
f, which is the largest monomial of the polynomial w.r.t. <,. The coefficient at the leading monomial
is leading coefficient, LC(f), their product is leading term, LT(f) = LC(f)LM(f). For instance, consider
polynomial f = 1y? + 2x%y + 3. With x <j, y, we get LM(f) = y?, LC(f) = 1 and LT(f) = 1y but
With X <greoer ¥ We get LU(f) = x? y, LC(f) = 2 and LT(f) = 2x%y.

3.5.4 Multivariate and multipolynomial long division

We will now discuss a generalization of the long division of a univariate polynomial by one univariate
polynomial to a long division of a multivariate polynomial by several multivariate polynomials.
Let us first present an algorithm, then show two examples demonstrating an important feature of
the algorithm, and finally state the general fact about the reminder obtained.
Consider a polynomial f € Q[x1,...,x,]| and another s polynomials fi,..., f; € Q[x1,...,x,]. Now,
we want to express f as
f=mh+ah+- - +asfs+r (3.21)

with the quotients a; and the remainder 7 in Q[x1,x2,...,x,]. To do so, we will rewrite f by the
following algorithm [2].

Long polynomial division algorithm
Input: fi,..., fs, f € Q[xy,...,x,], monomial ordering <,
Output: ay,...,a5,7 € Q[x1, ..., %]
m:=0...,a,:=0,r:=0
p=f
whilep # 0 do
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i:=1
divisionoccured := false
while i < s and divisionoccured = false do
if LT(f;) divides p then
aj = a;+LT(p)/LT(f})
p = p— LTR)LI(A) f
divisionoccured := true
else
i=1+1
end if
end while
if divisionoccured = false then
r:=r+LT(p)
p:=p—LI(p)
end if
end while

The above algorithm is a generalization of the algorithm for long polynomial division in one unknown.
Let us look at some examples that illustrate some of the important features of the algorithm.

Example1 Letusdivide f = xy?*+x+1by fi = xy+1, o = y+1 with monomial ordering y <, x.

# f = 111f1 + a2f2 + p + r
0 = 0(xy+1) + 0(y+1) + xy’+x+1 + 0
1 = y(kxy+1) + O0(y+1) + x—y+1 + 0
2 = yxy+1) + 0(y+1) + -y +1 + x
3 = yxy+1l) — 1(y+1) + 2 + x
4 yxy+1) — 1(y+1) + 0 + x+2

Symbol # represents the number of executions of the outer while loop above. We initialize at #0 by
setting p to f. Then, at #1, we try to divide LT(p) = x y*> by LT(f1) = xy. We succeed and update a; to
yand ptox —y + 1. This resets i to 1 and hence at #2 we again try to divide LT(p) = xby LT(f1) = xy.
We fail and hence increment i and try to divide LT(p) = x by LT(f2) = y. We fail again and thus move
LT(p) = x tor, update p and reset i. At#3 we try to divide LT(p) = —y by LT(f1) = xy. We fail. Hence
we try to divide LT(p) = —y by LT(f2) = y. We succeed, update a, to —1, and update p. Finally, at
#4, we fail to divide LT(p) = 2 by LT(f1) as well as by LT(f,) and thus add 2 to r. This terminates the
algorithm with p = 0.

We can first notice that no monomial of r is divisible by LT(f;) or by LT(f2). Secondly we also
see that multideg (a1 f1) = [1,2] < [1,2] = multideg(f) as well as multideg(azf>) = [0,1] < [1,2] =
multideg(f). This holds true in general and bring us to the following important general fact about
the long division algorithm.

Fact [2] Consider a fixed monomial ordering <, and an ordered s-tuple F = (fi, ..., f;) of polynomials.
Then, every polynomial f can rewritten using the long division algorithm as

f=mfhtafat+ - +asfstr
with polynomials a; and r such that
1. if r # 0, then no monomial of r is divisible by LT(f),...,LT(f;) and

2. if a;f; # 0, then multideg(f) > multideg(a;f;).
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Polynomial  is called a remainder of f on division by F, denoted as r = ?F.

Now, recall that in order to solve a polynomial f in one unknown with eigenvectors, we have used
that the remainders on division by f were defined by f uniquely. Since the number of coefficients in
r was equal to the degree of f, each r was uniquely determined by its values on the roots of f. We
could thus represent remainders as vectors in a linear space with coordinates being coefficients of r
or values of r on the roots of f. This interplay between coefficients for » and values of r on the roots
of f brought the eigenvector problem with the (companion) matrix composed of the coefficients of f
and its eigenvectors containing evaluations of the standard monomials on the roots of f.

Unfortunately, the remainder on division by more than one polynomial in more than one unknown,
as provided by the long division algorithm above, does not produce unique r. To see this, consider
f=xy*—xand f; = xy+1, fo = y¥> — 1 and fix the monomial ordering as y <j, x. Then, for the two
possible orders of f; and f,, we are getting different r’s:

L f: (fi. f2)

f = anh + apf + n
Xy —x|[= yy+l) + 0" —-1) + (—x—y)

2. f:(f fr)

f = mih + anfi + n
xyr—x|= x(¥*—1) + O(xy+1) + 0

Notice that no monomial of 71, 7, is divisible by any LT(f;) as well as that multidegrees of a;; f are not
larger than the multidegree of LT(f). We see that the properties in the Fact does not uniquely
define the remainders in multivariate and multipolynomial case.

Fortunately, we can always replace polynomials F by another set of more convenient polynomials
G such that G generate the same ideal as F, i.e. (G) = (F) in the standard notation, and the remainder
on division of f by G is unique w.r.t. the change of the order of polynomials in G. The remainder still
depends on <, chosen. Sets G with the above property are called Grobner bases of ideal (F).

Grobner bases G generate exactly the same set of solutions as polynomials F and can be obtained
as “polynomial combinations” of polynomials F. We will next show how to do it by introducing a
very classical Buchberger algorithm [2] for constructing a Grobner basis G from given polynomials F.

After constructing a Grobner basis G of F, we will be able to obtain unique remainders on division
by G and, as in the univariate case, thus obtain a one-to-one mapping from remainders to a fine-
dimensional vector space over C for polynomial systems with a finite number of solutions. We will
thus get an eigenvalue/eigenvector problem providing the desired solutions to a multivariate and
multipolynomial systems with a finite number of solutions.

3.5.5 Grobner basis construction

Let us now present the most classical algorithm for constructing the reduced Grobner basis G of an ideal
) 2]

3.5.5.1 Grobner basis construction for linear polynomial systems

To motivate the general algorithm, we will first look at the most familiar systems of polynomial
equations, systems of linear polynomial equations. We have already presented an example above in
paragraph Here, we will introduce a more general system to illustrate additional effects related
to the monomial ordering.
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Consider the following system of linear polynomial equations

X1
2 4 2 17 X 0
2 41 2 8 x3| =10
1 2 3 1 4 X4 0
X5

and compute the reduced row echelon form [5] of the matrix of the above system by the Gauss-Jordan
elimination [5] to get

X1
1 200 3 X 0
00100 x3[ =10
00 011 X4 0
X5

The reduced row echelon form is unique for a given order of unknowns. It provides the reduced
Grobner basis
G1 = {x1 +2x + 3X5,X3,x4 + x5}

of the ideal generated by F = {2x7 +4xp +2x3+ X4 +7x5,2x1 +4x2 +x3+2x4 +8x5,x1 +2x2 +3x3 +
x4 + 4 x5} for monomial ordering <jex1 = X5 <jex X4 <jex X3 <jex X2 <fex X1. Now, using the monomial
ordering <jyo = X2 <jox X1 <jex X5 <lex X4 <lex X3, We reorder the columns of the matrix of the original
system to [34 51 2] and thus get the corresponding “reordered” system

X3
217 2 4 X4 0
1 2 8 2 4 x5 | =10
31 4 1 2 X1 0
X2

The reduced row echelon form of the reordered system is

X3
1 00 0 0 X4 0
010 -1/3 -2/3 x5 [ =10
0 0 1 13 2/3 X1 0

X2

which is the reduced Grobner basis of
1 2 1 2
G2 = {X3,X4 - gxl — §x2,X5 + gxl + §x2}

of (F) w.r.t. the monomial ordering <jy,.

We see that the matrix of the reduced row echelon form w.r.t. <j.,; is not equal to the matrix of the
reduced row echelon form w.r.t. <j,x, and the corresponding reduced Grobner bases are also different.
In general, the reduced Grobner basis obtained depends on the monomial ordering used. On the
other hand, when there is a fininte number of sollutions to a linear system, i.e. one solution, then the
row reduced echelon form is the identity for all orderings of unknowns.

3.5.5.2 Grobner basis construction for non-linear polynomial systems

Let us now look at sytems of general polynomial equations. We will introduce Buchberger algorithm
on a very simple example. Refer to [2] for complete theory and more examples.
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Figure 3.4: Solution to two conics f; = 6 x1x2 + 3x§ —10x; —13x2 + 10, fo = 3x§ —2x1 —b5xp + 2are
[0,1],[1,0], [2,2] of multiplicity one.

Consider a polynomial system F = [f1, fo] with

1 = 6x1x2+3x3—10x; —13x, + 10 (3.22)
2
fo = 3x%5—2x1-5x+2

Figure[3.4shows that the system F has three solutions, all of multiplicity one. Ideal (F) is radical. We
will use monomial ordering

<o= X2 <grevlex X1

Monomials of F will be thus ordered as
1 <o X2 <o X1 <o x% <, X1X2

System [3.22] has three solutions. To get an eigenvalue/eigenvector problem, we need to find a
multiplication matrix for a polynomial w.r.t. three monomials that will generate all remainders on the
division by Groébner basis of (F). With GRevLex ordering, we expect these to be the three smallest
monomials 1, x1, x2. Thus, all larger monomials, in particular x% must be reduced by the long division.
However, polynomials in F do not reduce x% since there is no polynomial with leading term dividing
x%. We have to add more polynomials to the basis to be able to get x; as a remainder on the division
by the basis.

The idea is to multiply f; and f, by the smallest monomials w.r.t. <, to cancel the leading terms
and to construct a new polynomial, S-polynomial of fi, f», which could potentially be reduceed to
polynomial with leading x%. This is a generalization of one step of Gaussian elimination when a new
polynomial was constructed by canceling the leading unknown, the leading monomial of degree one.

Leading monomials of fi, f> have the least common multiple LCM(x1x2, x%) = xlxg. Hence, to cancel
the leading terms, we have to combine f; and f, by monomial coefficients as follows

X X g onxy o LCM(LM(f, f) o LCM(LM(A, f))
S(fif) = Gh-Fh=gh- zxg2 T R L ¥ T S RS
= (33 +4x7—13x3 —4x; +10x2)/6 (3.23)
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Now, we will simplify S(f1, f2) by reducing it by long division by fi, f. This will remove large part
of 5(f1, f2) that is contained in (F) and will guarantee that the LM() will not be too large, since it can’t
be divided by any LM of any polynomial in F.

——F— F

f3=5(f1,f2) =S(fi,f)i<,(fi, fo) =3x] —5x1 —2x, +2 (3.24)
Next, construct a new set of polynomials G = [fi, f2,6 f3] with
fi = 6x1x2+3x5—10x; — 13x, + 10
fo = 3x5—2x1—5x+2
fs = 3x—5x—2x+2

The above procedure has to be iterated further. For every pair of polynomials in G, we construct their
S-polynomial and reduce it by G, add the remainder on division by G, by which we enlarge G, and
SO on.

Let us do one more step of the above procedure

—G

Sthf2) = f
G G
S(fi, f5) = 3x1x3—10xF —3xxp +4x5+10x; —4x, =0
G G
S(fa, f3) = —2x5 —5x3x2+5x1x5 +2x;, +2x3 —2x3 =0

We see that no new non-zero remainder has been generated and thus the set G become stable w.r.t. to
generating S-polynomials from G followed by reduction by G. We have obtained a Grobner basis G
of (F).

We can still further simplify G to obtain the unique reduced Grobner basis of (F). The idea is to
remove all monomials from polynomials of G that can be divided by the leading terms of G. Itis a
generalization of Gauss-Jordan elimination. The reduced Grébner basis is to a Grébner basis as is the
reduced row echelon form to a mere “Gaussian eliminated” system.

In our example, we see that there is monomial x% in f; that is divisible by the leading term x% of fo,
hence we can remove it by subtracting f, from f; (and then normalizing the resulting polynomial to
get the leading coefficients equal to one) to get the reducer Grobner basis G, = [g1, 2, 3] with

= xx—éx—éx +é
81 = X1xX2 31 32 3
2 5 2
2
82 = xz—§x1—§3€2+§ (3.25)
_ 222,72
8 = HTzhiTzhTy

See Figure

Notice that leading monomials of G;, i.e. x1x7, x%, and x% reduce all monomials except for the three
monomials 1, x;, and x. These are the three desired monomials that will provide the basis of the linear
space to form a multiplication matrix and to obtain an eigenvalue/eigenvector problem providing us
with the solution to the original system F. See Figure

3.5.6 Solving general radical systems by eigenvectors of a multiplication matrix

We will now generalize the procedure from paragraph B.5.1] to ideals (F) generated by multiple
multivariate polynomials F. We will illustrate the generalization on an example in two unknowns
X1,X2.
We consider mapping M, : Q[x1, x2] — Q[x1, x2] by a polynomial g € Q[x1, x2]| defined by
—-=0G
Mg (h) = (gh)  with a Grobner basis G of F
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x 1

Figure 3.5: Three polynomials , g =3 x% —2x1—5x+2,
3 = 3x% —5x1 — 2x5 + 2 of the (un-normalized) reduced Grobner basis G of (F).
& 1

deg(x2)

4 0O ©) ©) ©) O
30 ©) O ©) O
20 ©) ©) ©) O

X2 X1X2
10 O O O O

1 X1 xi—
00O O O O O
0 1 2 3 4 deg(x1)

Figure 3.6: Standard monomials x1,x,1 of G from Equation are not divisible by leading mono-
mials x7, x1x2, x5 of G. All other monomials, shown in gray, are divisible by at least on of
the leading monomials of G.
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The reduction of gh as well as the computation of G is carried out w.r.t. the same monomial ordering.
Next, consider that for a point p; = [pi1, pi]", g(pi) = r(p;) where r = axxp +ayx; +ap is the remainder
of ¢ on division by G, i.e. §G. Thus

g(pi) = r(pi) = ax1(pi) + axxa(pi) + aol(p;) (3.26)
We can thus write
[ 1(pi) | 1(pi)
glpi) | xi(pi) | = (ax1(pi) + axxa(pi) +aol(pi)) | x1(pi)
x2(pi) | x2(pi)
[ 1(p) ] [ 1(pi)
gp) | )| = (m MII + ap MIZ +aoI) | x1(pi)
x2(pi) | | x2(pi)
1] [ 1
gp) |pn| = (m MI] +ay M;Z +aol) | pa
pi2 | | Pi2
gp) ¥ = MG

showing that (¢(p;), 7;) are eigenvalue-eigenvector pairs of M; = (a1 My, + a2 My, +aoI)’.
Let us now see how we can extract matrices My,, My, given by G, from Equation[3.25l We write G, in
a matrix form as

x% X1Xp x% x1 x 1
g |1 0 0 -3 -3 3
>3 (3.27)
g {0 1 0 -3 -3 3
2 _5 2
g | 0 0 1T -5 =3 3]
We see that
B _ G T 1T B §
1 1 010 1 010
X1 | X1 = x% = *% % % X1 and thus Mx1 = *% g %
X2 X1X2 _4 4 4 _4 4 4
- - - | 73 3 3] [*2] | =73 3 3]
B _ G T 174 B i
1 % 010 1 010
x| x = |nmxe| =|-3 3 3||™ and thus M, = | -% 5 %
2
X2 X 2 2 5 _2 2 5
- - | =3 3 3] [*2] |73 3 3|

Now, since the system F has three solutions with multiplicity one, ideal (F) is radical. Also, since all
three solutions have pairwise distinct x; (as well as x) coordinates 0, 1,2, Figure 3.4, we can choose
¢ = x1 and thus Mg = M,,. We calculate eigenvectors of M,, and get three one-dimensional bases of the
three respective separated one-dimensional eigenspaces

111 1
eigenvectors(My,) = [ 1 0 2 [ corresponding to evaluation of | x; | on solutions (p1,p2, p3)
01 2 X2

We thus get three solutions [1,0], [0, 1], [2, 2] to the system F.

3.5.6.1 Recovering the solutions from the eigenvectors of the multiplication matrix

In the above example, the standard monomial basis [1,x;, x2] contained all unknowns and thus it
was easy to “read off” the solutions from the eigenvectors of M,. This is not a general behavior.
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For instance, when the number of solutions is smaller than the number of unknowns, the standard
monomial basis can’t include all unknowns.

To recover solutions in a general case, we realize that every unknown x; can be expressed as a linear
combination of the basis B an thus evaluated at a solution p; as

xi(pj) = (xi mod J)(p;) = O ab)(pj) = > a b((p;) (3.28)

beB beB

3.5.6.2 Maple implementation

The following Maple implementationﬁ of a method for solving polynomial equations works for a
general system of polynomial equations with a finite number of solutions.

The coefficient vector of a polynomial f w.r.t. a monomial basis B
> fB2Coffs:=proc(f,B)
local m, t;
t:=table(zip((a,b)->b=a, [coeffs(f,B,’'m’ )], [m]));
map (b->‘if‘ (assigned(t[b]),t[b],®),B)
end proc:

Take a general (non-radical) polynomial system with a finite number of solutions
> Fi={(x1% + x2% + x3%> — 1)%, (3 + x1 — 1), (3 # x2 — 2)}:
and compute its radical ideal.
> J:=PolynomialIdeals[Radical] (PolynomialIdeals[PolynomialIdeal] (F)):
J = <3%x1-1,3%+x2—-2,9%x3%2 —4>
Use GRevLex monomial ordering
> o:=tdeg(op(indets(F)));
o := tdeg(xl, x2, x3)
Construct the standard monomial basis of QQ[x1,x2,x3]/] for tdeg(xl, x2, x3)
> B:=Groebner[NormalSet] (J,o0)[1];
B := [1, x3]
Take a random (but accidentally a very nice :-) linear function f
> f:=add(zip((x,y)->x*y, convert (RandomVector (nops(o)),list), [op(0)]1));
f = 9*x1+9%x2+9%x3
and find £*B mod J
> fBm]:=Groebner [NormalForm] (map (b->f*b,B),J,0);
fBm] := [9%x3+9, 9*x3+4]
Construct matrix M' such that f*B mod J = M*B
> Mt:=Matrix(map(f->fB2Coffs(f,B),fBml));

9 9
o |2 0]

Eigenvectors of M!
> V::LiqearAlgebr§[Eigenvectors](Mt)[Z];
3/2 -3/)2
1 1
Normalize V to have ones in the first row
> V:=V.LinearAlgebra[MatrixInverse] (LinearAlgebra[DiagonalMatrix](V[1]));
1 1
_2/3 ——2/3_
Express unknowns x1, x2, x3 in the basis B
> N:=Groebner[NormalForm] ([op(0)],],0);
N := [1/3, 2/3, x3]

V :=

V :=

®This implementation was obtained in collaboration with Justin Chen.
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?T L

x2

Figure 3.7: System F = [x% + x% —1,(5x1 —4) (x2 — x1 — 1)] generates radical ideal but has higher-
dimensional eigenspace of the multiplication matrix w.r.t. x;.

> C:=map(n->fB2Coffs(n,B),N);
¢ := [[1/3, 0], [2/3, 0], [0, 1]]
Evaluate unknowns by combining the basis B with coefficients C
> S:=[ListTools[Transpose] (map(c->convert(Matrix(c).V,list),C)),[op(o)]];
S := [[[1/3, 2/3, 2/3]1, [1/3, 2/3, -2/31]1, [x1, x2, x31]
The important step in the above implementation is the construction of a radial ideal of the input
system. This is computationally intensive process in general. Let us next present examples of radical
and non-radical systems to understand what happens when we tried to use the above procedure on
a system that generates a non-radical ideal.

3.5.6.3 General method for radical ideals

Radical ideals still may produce eigenspaces of higher dimension than one. Consider, for instance

the system
F= [x%+x§—1,(5x1 —4) (xp —x1 — 1)]

see Figure[3.7]

Ideal I = (F) is radical. The generators for the elimination ideals I n C[x1], resp. I n C[xz], are
x1 (1 +x1)(5x1 —4), resp. x2 (=1 + x2) (5x2 — 3)(5x2 + 3), which are square-free.

When selecting the standard monomialsas [1 x1 x x% |, we get the corresponding multiplica-

tion matrix
1 0
withe/v—1/< _(1) >,(§)2/< ? >and0/< >
1 0

Hence we can’t read out the two complete solutions for 3 directly from the basis of the corresponding
eigenspace.

Gk Gl O
R T )
|

e =

Ner © ok =
R e e
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However, we can find a suitable polynomial f such that ¥y has one-dimensional eigenspaces only.
In this case, for instance, we may construct

0 1 10 1 1 1 1
-3 5 5 2 1 5 0 7 5 1
o I EE T R H VR P )
_le 24 16 3 16 0 16 1
25 25 25 5 25 25

and thus get complete solutions from the second and third coordinate of the bases of the eigenspaces.

3.5.7 Solving general “non-radical” systems by eigenvectors of a multiplication
matrix

Let us now look at systems that are not radical. This means, for systems with a finite number of
solutions, that some of the solutions have multiplicity greater than one. In this situation, in general,
the multiplication matrices for a general polynomial ¢ may have eigenvalues of greater multiplicities
and thus eigenspaces of dimension greater than one. In such a case, it is not so clear how to extract
solutions from the bases of the eigenspaces.

In principal, there are three approaches how to solve this. The first approach is to obtain a
radical ideal +/(F) of (F) and proceed as above. The second approach would be to use the fact
that eigenvectors common to all multiplication matrices by all polynomials are in one dimensional
eigenspaces [15]], and, third, it would be possible to follow [18] and to get a more general algorithm
for non-radical systems. Let us next show an example of using the first approach.

Consider the system F = [fi, f2], Equation[3.2]

fi = x§+x%—1=0
f2 = 25x1x%p —20x, —15x1+12 = 0

This system does not generate a radical ideal since some of the solutions have higher multiplicities.
Let us follow the procedure above. The (up to multiplication by a constant) reduced Grébner basis
G of Fis, w.r.t. x1 <joy X2,

G=[x3+x7 —1,25x1x —20x, — 15x7 + 12,125x] — 100x3 — 80 x7 + 64]

which actually consists of the polynomials fi, f3, fa from Equation[3.51 The standard monomials w.r.t.
toGare[1,x, x%, x2]. These are all the monomials smaller than the leading monomials of polynomials
in G, i.e. X3, X1X2, X7, W.L.t. X1 <jex X2.

Also notice that these standard monomials are not all in x; despite using x1 <j,x x2. The reason
is that the four solutions (when counting the multiplicities) project only to two solutions in x; with

one solution of multiplicity two. The solution [%, %]T of multiplicity two “masks” the simple solution
[5, 31"

The matrix representing the multiplication by x; modulo G is

0 1 00 0 1 1
0 0 1 o _ 4, /|0 % 4 /|3
My, = e 16 4 g with eigenvalue/eigenspace 5 / 0 1 and — g/ 16
25 25 5 25 25
2 3 4 3
-5 5 0 3 10 L 5

The multiplicity of eigenvalue % is three and it has associated a two-dimensional eigenspace. The

multiplicity of eigenvalue —% is one and thus it has associated a one-dimensional eigenspace. The

basis of the eigenspace associated to eigenvalue % does not directly provide the two solutions related
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tox; = %. On the other hand the basis of the one-dimensional eigenspace corresponding to the
eigenvalue — 32 provides the solution [—%, 2]"
Let’s try to multiply by another polynomial, e.g. by xo — x;. We keep the same Grébner basis as

well as monomial ordering x1 <j., X2. So, now we get the multiplication matrix

0 -1 0 1] 1 1 1
12 3 4 4 4 4
-% 5 —1 3 1 5 7 5 7 -5
25 5 5 . 5 5 5
sz_xl = 16 16 1 16 with —g/< 16 >, —g/< 16 > and g/ 16
125 25 5 25 25 25 25
¥ 3 _q _4 3 _3 3
25 5 5 | | 5 | L 5] | 5 ]

and we see that, in this case, we were lucky to find a polynomial x, — x; that provided three
separated one-dimensional eigenspaces. The reason is that the double eigenvalue —% has a “defective
eigenspace” [5] of dimension only one and hence we do not suffer from having a derogatory matrix
with a higher-dimensional eigenspace.

We can read out the solutions from the second and the third coordinate of the three normalized
eigenvectors above.

In general, unfortunately, there are systems for which the multiplication by no polynomial gives
only one-dimensional eigenspaces for all eigenvalues [15]. To illustrate this, we will consider the
system

F =[x — 12 (2~ 1)?]
The reduced Grobner basis G of F is W.r.t. xp <j.r X1
G= [x% —2x1 + 1,x§ —2x + 1]

The standard monomials w.r.t. to G are [1, x2, x1, x1x2]. The matrix representing the multiplication by
x1 modulo G is

0 010
1 0
0 01| el Ll lo
My, = 1 02 0 with eigenvalue/eigenspace 1/ 1 0
01
0O -1 0 2

The matrix representing the multiplication by x, — x; modulo G is

01 -1 0 11
12 0 -1| ‘ 0 3
Me,—x, = L0 2 1 with eigenvalue/eigenspace 1/ 0 %
01 -1 0 -10

We see that we always get a two-dimensional eigenspace and it is not possible to just read out the
solutions from the basic vectors of the eigenspaces.

3.5.7.1 General solution

To present a general method, we will consider a system obtained from B.2] by squaring the first
equation, i.e.
F = [(x5 +x] — 1)%,25x1x0 — 20x, — 157 + 12]

The Grobner basis (reduced up to a multiplication by a constant) G of F is, w.r.t. X1 <y X2,
G= [ 3125x3 —1875x] —2250x] + 1350 x] + 405x; — 243,
25x1%p —20x1 — 15x + 12,
6257 + 625x; — 450 x5 — 8005 + 337 |
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The standard monomials w.r.t. to G and x| <, X2

[1,x1, %3, %3, %7, %2, %5, %3]
The matrix representing the multiplication by a general linear polynomial 3 x; + 4 x, modulo G w.r.t.
X1 <jex X2 1S

0 3 0 O 0 5 0 0
-2 4 3.0 0 3 00
36 9
% 0 4 3 0 ¢ 00
108 27
. |- o 04 3 Z 00
Sntdw T sl 243 162 54 29 8L g
3125 625 25 25 5 125
36 12 9
% 2 9 0 0 ¢ 50
144 48 9
125 25 0 0 0 0 5 5
2261 192 18 32 9
l~% 1@ 5 0 -5 0 5 7]
The eigenvalue/eigenspace of M3y, +4y, are as follows
[ 1 1 ] [ 1 ] [ 1 ] 1]
19 47 _3 3
5 145 5 5 X1
29 67 9 9 2
21 75 25 25 X1
117 87 27 27 3
2/ 515 E/ 125 —E/ 125 corresponding to g
5 w21 | /5 s | /775 81 P 0| 4
625 625 625 525 1
2 8 4 _4
5 15 5 5 X2
16 16 16 2
0 7 25 25 g
32 64 64 3
| 155 0 [ 15 | | — 125 | [ X5

Eigenvalues X and —% are of multiplicity two and both have defective eigenspaces of dimension
one. Eigenvalue £ is of multiplicity four and has a defective eigenspace of dimension two.

We see that the solution [%, %] is buried in a two dimensional eigenspace and can’t be directly read
out. Since we were using a random generic polynomial 3 x1 +4 x», we can’t expect to solve this system
as is by the eigenvector method.

Let us now find the radical system generating /(F) and use it to compute the solutions to the
original system F. To do that, we need to generate univariate polynomials in x; and x; in (F) and get
their corresponding square-free polynomials, which we then add to F.

One way to get the univariate polynomials is to construct Grobner bases Gy, w.r.t. x; <jx X2 and
Gy, Wort. xp <jpy x1. We get

Gy, = [(B5x1+3)*(5x1—3)%(5x1 —3)(5x2 —4),625x] + 625x; — 450x% — 800 x5 + 337 ]
Gy, = [(Bxa+4)?(5x—4)% (531 —3) (5x2 —4),625x] + 625x; — 450 x7 — 800x3 + 337 |

The univariate polynomial in Gy,, resp. Gy,, is

g1=(5x+3)*5x—3)° resp. g =0x+4)>06x—4)°
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We want to construct square-free polynomials

_ 81 . (5 X1 + 3)2 (5 X1 — 3)3
fa = GCD (gl, %) ~ GCD((5x1 +3)2(5x1 —3)3,5(5x1 +3) (5x1 — 3)2(25x1 + 3))
2 _2)\3
((5592:+ 3?3) ((;ail_ 33))2 = (5x1+3)(5x —3)
_ 82 . (5x + 4.)2 (5x2 — 4)3
ho- GCD (gz, %) ~ GCD((5x2 +4)% (5x2 — 4)%,5(5x2 +4)(532 — 4)2(25x + 4))

2 _4)3
- ((55x;2—i:i—4ll)) ((55;;2_ 44;>2 =(5x+4)(5x —4)

The radical ideal +/(F) will now be
A = (x5 + x5 —1)2,25x1x0 — 2025 — 15x1 + 12, (5x1 + 3)(5x1 — 3), (5x2 + 4)(5x2 — 4))

giving Grobner basis v/G = [25 X2 —9,25x1xp —20x1 — 15x2 + 12,255 — 16] W.rt. x; <jex X2. The
standard monomials w.r.t. x; <j,, X2 are [1,x1,x2] and the multiplication matrix for 3x; + 4 x; is

D 11 ! 29 1 11 1
M3y 443 = —% 4 3 withe/vas€/< —% >,€/< % >,€/< % >

4 12 9 : : 1

25 5 5

We see that, now, we can directly read out all the solutions to the system.
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4 Affine space

Let us study the affine space, an important structure underlying geometry and its algebraic represen-
tation. The affine space is closely connected to the linear space. The connection is so intimate that the
two spaces are sometimes not even distinguished. Consider, for instance, function f: R — R with
non-zero 4,b € R

flx)=ax+b 4.1)

It is often called “linear” but it is not a linear function [6} 7, 5] since for every a € R there holds
flax) =aax+b#aax+b)=af(x) 4.2)

In fact, f is an affine function, which becomes a linear function only for b = 0.

In geometry, we need to be very precise and we have to clearly distinguish affine from linear. Let us
therefore first review the very basics of linear spaces, and in particular their relationship to geometry,
and then move to the notion of affine spaces.

4.1 Vectors

Let us start with geometric vectors and study the rules of their manipulation.

Figure 4.1(a) shows the space of points P, which we live in and intuitively understand. We know
what is an oriented line segment, which we also call a marked ruler (or just a ruler). A marked ruler
is oriented from its origin towards its end, which is actually a mark (represented by an arrow in
Figure 4.1[b)) on a thought infinite ruler, Figure &.1(b). We assume that we are able to align the ruler
with any pair of points x, y, so that the ruler begins in x and a mark is made at the point y. We also
know how to align a marked ruler with any pair of distinct points u, v such that the ruler begins in u
and aligns with the line connecting u and v in the direction towards point v. The mark on so aligned
ruler determines another point, call it z, which is collinear with points u, v. We know how to translate,
Figure[4.1lc), a ruler in this space.

To define geometric vectors, we need to first define geometric scalars.

(a) (b) (c)

Figure 4.1: (a) The space around us consists of points. Rulers (marked oriented line segments) can be
aligned (b) and translated (c) and thus used to transfer, but not measure, distances.
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N —— a ——
) a 11— -1 Fa!
[ —— —— b 13 —la T4
[ T T T T
a+b
a 1
B e — —— a4 T
b L — T 2 e ——"
3 i [ T T T T T
a+b ab
(a) (b)

Figure 4.2: Scalars are represented by oriented rulers. They can be added (a) and multiplied (b) purely
geometrically by translating and aligning rulers. Notice that we need to single out a unit
scalar “1” to perform geometric multiplication.

4.1.1 Geometric scalars

Geometric scalars S are horizontal oriented rulers. The ruler, which has its origin identical with its
end is called 0. Geometric scalars are equipped with two geometric operations, addition a + b and
multiplication a b, defined for every two elements a,b € S.

Figure £.2[a) shows addition a + b. We translate ruler b to align origin of b with the end of a and
obtain ruler a + b.

Figure 4.2(b) shows multiplication ab. To perform multiplication, we choose a unit ruler “1” and
construct its additive inverse —1 using 1 + (—1) = 0. This introduces orientation to scalars. Scalars
aiming to the same side as 1 are positive and scalars aiming to the same side as —1 are negative. Scalar
0 is neither positive, nor negative. Next we define multiplication by —1 such that —1a = —a,i.e. -1
times a equals the additive inverse of a. Finally, we define multiplication of non-negative (i.e. positive
and zero) rulers 4, b as follows. We align a with 1 such that origins of 1 and a coincide and such that
the rulers contain an acute non-zero angle. We align b with 1 and construct ruler ab by a translation,
e.g. as shown in Figure @Kb.

All constructions used were purely geometrical and were performed with real rulers. We can
verify that so defined addition and multiplication of geometric scalars satisfy all rules of addition
and multiplication of real numbers. Geometric scalars form a field [11,[19] w.r.t. toa + band ab.

4.1.2 Geometric vectors

Ordered pairs of points, such as (x, y) in Figure[4.3(a), are called geometric vectors and denoted as x7,
i.e. Xy = (x,y). Symbol X7 is often replaced by a simpler one, e.g. by @. The set of all geometric vectors
is denoted by A.

4.1.3 Bound vectors

Let us now choose one point 0 and consider all pairs (o, x), where x can be any point, Figure 4.3(a).
We obtain a subset A, of A, which we call geometric vectors bound to o, or just bound vectors when it
is clear to which point they are bound. We will write X = (0, x). Figure £.3(f) shows another bound
vector ij. The pair (0,0) is special. It will be called the zero bound vector and denoted by 0. We will
introduce two operations @, © with bound vectors.

!Notice that a b is well defined since it is the same for all non-zero angles contained by a and 1.
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Figure 4.3: Bound vectors are (ordered) pairs of points (0,x), i.e. arrows ¥ = (0,x). Addition of the
bound vectors X, i is realized by parallel transport (using a ruler). We see that the result
is the same whether we add X' to i/ or i/ to X. Addition is commutative.

First we define addition of bound vectors @®: A, x A, — A,. Let us add vector ¥ to i/ as shown on
Figure £.3(b). We take a ruler and align it with X, Figure 4.3(c). Then we translate the ruler to align
its begin with point y, Figure £.3(d). The end of the ruler determines point z. We define a new
bound vector, which we denote ¥ @ 7, as the pair (o,z), Figure £.3(e). Figures H.3|f-j) demonstrate
that addition gives the same result when we exchange (commute) vectors ¥and ¥, i.e. Y@ = J D X.
We notice that for every point x, there is exactly one point x” such that (o,x) ® (0,x") = (0,0), i.e.
@ = 0. Bound vector ¥ is the inverse to ¥ and is denoted as —%. Bound vectors are invertible w.r.t.
operation @®. Finally, we see that (0,x) @ (0,0) = (0,x), i.e. ¥ ® 0 = % Vector 0 is the identity element
of the operation @. Clearly, operation @ behaves exactly as addition of scalars — it is a commutative
group [11,[19].

Secondly, we define the multiplication of a bound vector by a geometric scalar ©: S x A, — Ao, where S
are geometric scalars and A, are bound vectors. Operation © is a mapping which takes a geometric
scalar (a ruler) and a bound vector and delivers another bound vector.

Figure d.4lshows that to multiply a bound vector ¥ = (o, x) by a geometric scalar a, we consider the
ruler b whose origin can be aligned with 0 and end with x. We multiply scalars 2 and b to obtain scalar

Y
Figure 4.4: Multiplication of the bound vector ¥ by a geometric scalar a is realized by aligning rulers
to vectors and multiplication of geometric scalars.

43



T Pajdla. Elements of Geometry for Robotics 2025-9-20 (pajdla@cvut.cz)

Figure 4.5: Coordinates are the unique scalars that combine independent basic vectors by, by into ©.

aband align a b with ¥ such that the origin of a b coincides with 0 and a b extends along the line passing
through X. We obtain end point y of so placed a b and construct the resulting vector j = a® ¥ = (0, y).

We notice that addition @ and multiplication ® of horizontal bound vectors coincides exactly with
the addition and multiplication of scalars.

4.2 Linear space

We can verify that for every two geometric scalars a,b € S and every three bound vectors X, i/, Z € A,
with their respective operations, there holds the following eight rules

0o = Koy ez (4.3)
oy = jor (4.4)
o0 = % (4.5)
i®-3% = 0 (4.6)
108 = ¥ (4.7)

@b)ox = a®(bOX) (4.8)

10 (F@Y) = @OX)® @0y (4.9)

(a+b)OxX = @EX)®DbOX) (4.10)

These rules are known as axioms of a linear space [6}7,'4]. Bound vectors are one particular model of
the linear space. There are many other very useful models, e.g. n-tuples of real or rational numbers for
any natural 7, polynomials, series of real numbers and real functions. We will give some particularly
simple examples useful in geometry later.

The next concept we will introduce are coordinates of bound vectors. To illustrate this concept, we

will work in a plane. Figure 4.5 shows two non-collinear bound vectors b1, by, which we call busis,
and another bound vector ¥. We see that there is only one way how to choose scalars x; and x, such

that vectors x; ® 51 and ¥, © by add to 7, i.e.
—x O ®x0Ob (4.11)

Scalars x1, x; are coordinates of X in (ordered) basis [51, 52].

4.3 Free vectors
We can choose any point from A to construct bound vectors and all such choices will lead to the same

manipulation of bound vector and to the same axioms of a linear space. Figure 4.6l shows two such
choices for points 0 and o’
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Figure 4.6: Two sets of bound vectors A, and A,. Coordinates of ¥ w.r.t. [51, 52] are equal to coordinates
of ¥ w.r.t. [I;{, ZZ]

We take bound vectors 51 = (0,b1), l_;z = (0,bp), ¥ = (0,x) at 0 and construct bound vectors
5{ = (0, b’l), l;)é = (0, 1)), ¥ = (0/,x') at o’ by translating x to ¥/, by to b’1 and b, to U, by the same
translation. Coordinates of ¥ w.r.t. [51, l;z] are equal to coordinates of ¥’ w.r.t. [l;{, I;é] This interesting
property allows us to construct another model of a linear space, which plays an important role in
geometry.

Let us now consider the set of all geometric vectors A. Figure {.7(a) shows an example of a few
points and a few geometric vectors. Let us partition [1] the set A of geometric vectors into disjoint
subsets A,y such that we choose one bound vector (o, x) and put to A, ) all geometric vectors that
can be obtained by a translation of (o, x). Figure 4.7(b) shows two such partitions A,x), Ay It is
clear that A, x) " Aoy = & for x # x" and that every geometric vector is in some (and in exactly one)
subset A )-

Two geometric vectors (0, x) and (o', x’) form two subsets A(, y), A(y /) which are equal if and only
if (o/,x’) is related by a translation to (o, x).

“To be related by a translation” is an equivalence relation [1]. All geometric vectors in A, are
equivalent to (o, x).

There are as many sets in the partition as there are bound vectors at a point. We can define the
partition by geometric vectors bound to any point o because if we choose another point o/, then for
every point x, there is exactly one point x” such that (o, x) can be translated to (o, x’).

We denote the set of subsets A, ) by V. Let us see that we can equip set V with a meaningful
addition H: V x V — V and multiplication []: S x V' — V by geometric scalars S such that it will
become a model of the linear space. Elements of V will be called free vectors.

A We define the sum of X = Ay and g’ = Apy), L& Z= 9? yis ’ihe set A(ox)@ (o,y)- Multiplication of
X = A(yx) by geometrical scalar a is defined analogically, i.e. 4 [[] X equals the set A, (, ). We see that

- N

N - ™
e " ™

(a) (b)

N

Figure 4.7: The set A of all geometric vectors (a) can be partitioned into subsets which are called free
vectors. Two free vectors A, vy and A, ), i.e. subsets of A, are shown in (b).
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o/ x
0 / \ 0 z . > /
~ NN
- ! D\o T O\o q /
P p
Figure 4.8: Free vector A, ) is added to free vector A, ) by translating (o, x) to (g,x') and (p, y) to
(9,y'), adding bound vectors (g,z) = (q,x') ® (q,y) and setting A(, vy HA () = A(yz)

the result of [ and [] does not depend on the choice of 0. We have constructed the linear space V' of
free vectors.

§1 Why so many vectors? In the literature, e.g. in [4} 5, 8], linear spaces are often treated purely
axiomatically and their geometrical models based on geometrical scalars and vectors are not studied
in detail. This is a good approach for a pure mathematician but in engineering we use the geometrical
model to study the space we live in. In particular, we wish to appreciate that good understanding of
the geometry of the space around us calls for using bound as well as free vectors.

4.4 Affine space

We saw that bound vectors and free vectors were (models of) a linear space. On the other hand, we
see that the set of geometric vectors A is not (a model of) a linear space because we do not know how
to meaningfully add (by translation) geometric vectors which are not bound to the same point. The
set of geometric vectors is an affine space.

The affine space connects points, geometric scalars, bound geometric vectors and free vectors in a
natural way:.

Two points x and y, in this order, give one geometric vector (x,y), which determines exactly one
free vector 7 = A(y,). We define function ¢: A — V, which assigns to two points x,y € P their
corresponding free vector ¢(x,y) = A ).

U

=

S

Figure 4.9: Free vectors i/, 7 and @ defined by three points x, y and z satisfy triangle identity #FH7 = @.
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Pl y) ————— il = A

xY)

Figure 4.10: Affine space (P, L, @), its geometric vectors (x,y) € A = P x P and free vector space L and
the canonical assignment of pairs of points (x, y) to the free vector A, ;). Operations @,
[, combining vectors with vectors, and #, combining points with vectors, are illustrated.

Consider a point a € P and a free vector ¥ € V. There is exactly one geometric vector (4, x), with a
at the first position, in the free vector ¥. Therefore, point a and free vector ¥ uniquely define point x.
We define function #: P x V — P, which takes a point and a free vector and delivers another point.
We write a4 = x and require ¥ = ¢(a, x).

Consider three points x, y,z € P, Figure[d.9 We can produce three free vectors il = ¢(x,y) = Alxy)/
T=@y,z) = Az, @ = @(x,2z) = A(yz). Let us investigate the sum i H 7. Chose the representatives
of the free vectors, such that they are all bound to x, i.e. bound vectors (x,y) € Ay, (x,t) € Awz)
and (x,z) € A(y,). Notice that we could choose the pairs of original points to represent the first and
the third free vector but we had to introduce a new pair of points, (x,t), to represent the second free
vector. Clearly, there holds (x, y) @ (x,t) = (x,z). We now see, Figure[4.9] that (y, z) is related to (x, t)
by a translation and therefore

W = Ay BAwz) = Awy) BAxn = Awpon = Aws =@ (4.12)

Figure shows the operations explained above in Figure[d.9but realized using the vectors bound
to another point o.

The above rules are known as axioms of affine space and can be used to define even more general
affine spaces.

§1 Remark on notation We were carefully distinguishing operations (+, ) over scalars, (®,®)
over bound vectors, (|, []) over free vectors, and function # combining points and free vectors. This
is very correct but rarely used. Often, only the symbols introduced for geometric scalars are used for
all operations, i.e.

+ = +/ @/ / # (4.13)
, O, (4.14)

§2 Affine space Triple (P,L,¢) with a set of points P, linear space (L,H,[-]) (over some field of
scalars) and a function ¢: P x P — L, is an affine space when

Al @(x,z) = @(x,y) Be(y, z) for every three points x,y,z € P

A2 for every o € P, the function ¢,: P — L, defined by ¢,(x) = ¢(o,x) for all x € P is a bijection [1].
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Figure 4.11: Point x is represented in two affine coordinate systems.

Axiom Al calls for an assignment of pairs of point to vectors. Axiom A2 then makes this assignmet
such that it is one-to-one when the first argument of ¢ is fixed.

We can define another function #: P x L — P, defined by 04% = ¢, ! (¥), which means ¢(0, 04%) = ¥
for all ¥ € L. This function combines points and vectors in a way that is very similar to addition and
hence is sometimes denoted by + instead of more correct 4.

In our geometrical model of A discussed above, function ¢ assigned to a pair of points x, y their
corresponding free vector A(x,y)- Function #, on the other hand, takes a point x and a free vector ¢
and gives another points y such that the bound vector (x, y) is a representative of 7, i.e. Ay, = .

4.5 Coordinate system in affine space

We see that function ¢ assigns the same vector from L to many different pairs of points from P. To
represent uniquely points by vectors, we select a point o, called the origin of affine coordinate system
and represent point x € P by its position vector X = ¢(0,x). In our geometric model of A discussed
above, we thus represent point x by bound vector (o, x) or by point 0 and free vector A, ).

To be able to compute with points, we now pass to the representation of points in A by coordinate

vectors. We choose a basis f = (51, b, .. .)in L. That allows us to represent point x € P by a coordinate

vector
X1

fﬁ = | *2 |, such that X = X1 51 + X2 52 + - (4.15)

The pair (0, B), where 0 € P and  is a basis of L is called an affine coordinate system (often shortly called
just coordinate system) of affine space (P, L, ¢).

Let us now study what happens when we choose another point o’ and another basis g/ = (l;{, I;é, .
to represent x € P by coordinate vectors, Figure Point x is represented twice: by coordinate
vector ¥ = ¢(0,X)g = A(yx)p and by coordinate vector X}, = (0',X)g' = A(y -

To get the relationship between the coordinate vectors J?ﬁ and x7,, we employ the triangle equality

p(0,x) = ¢@(0,0)Hep(0,x) (4.16)
¥ = omx (4.17)

which we can write in basis f as (notice that we replace [ by + to emphasize that we are adding
coordinate vectors)

B o= T+ 4.18)
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Figure 4.12: Affine space (P, V, @) of solutions to a linear system is the set of vectors representing
points on line p. In coordinate system (0, i7), vector X has coordinate 1. The subspace V of
solutions to the associated homogeneous system is the associated linear space. Function
(¢ assigns to two points 0, ¥ the vector il = §f — ¥.

and use the matrix A transforming coordinates of vectors from basis p’ to  to get the desired relation-
ship

% o= AT, 40, (4.19)

]

Columns of A correspond to coordinate vectors b b, ... When presented with a situation in a

187 V27
real affine space, we can measure those coordinates by a ruler on a particular representation of L by

geometrical vectors bound to, e.g., point o.

4.6 An example of affine space

Let us now present an important example of affine space.

4.6.1 Affine space of solutions of a system of linear equations

When looking at the following system of linear equations in IR?

HEEE a0

we immediately see that there is an infinite number of solutions. They can be written as

5 |2 1

x—[0]+’c{_1], TelR (4.21)
or as a sum of a particular solution [2,0]" and the set of solutions 7 = 7 [—1,1]" of the accompanied

homogeneous system
1 1], |0
BN @.22)

Figure .12 shows that the affine space (P, V, @) of solutions to the linear system (4.20) is the set of
vectors representing points on line p. The subspace V of solutions to the accompanied homogeneous
system (@.22) is the linear space associated to A by function ¢, which assigns to two points X,/ € A
the vector il = i/ — £ V. If we choose ¢ = [2,0]T as the origin in A and vector b = (6, %) = Z— 0'as
the basis of V, vector ¥ has coordinate 1.
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We see that, in this example, points of A are actually vectors of R?, which are the solution to
the system (4.20). The vectors of V are the vectors of R?, which are solutions to the associated
homogeneous linear system (@.22).
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5 Motion

Let us introduce a mathematical model of rigid motion in three-dimensional Euclidean space. The
important property of rigid motion is that it only relocates objects without changing their shape.
Distances between points on rigidly moving objects remain unchanged. For brevity, we will use
“motion” for “rigid motion”.

5.1 Change of position vector coordinates induced by motion

Figure 5.1: Representation of motion. (a) Alias representation: Point X is represented in two coordi-
nate systems. (b) Alibi representation: Point X move together with the coordinate system
into point Y.

§1 Alias representation of motion[]. Figure 5.1(a) illustrates a model of motion using coordinate
systems, points and their position vectors. A coordinate system (O, ) with origin O and basis B is
attached to a moving rigid body. As the body moves to a new position, a new coordinate system
(O, B’) is constructed. Assume a point X in a general position w.r.t. the body, which is represented in
the coordinate system (O, B) by its position vector ¥. The same point X is represented in the coordinate
system (O’, ) by its position vector X’. The motion induces a mapping fl;, — Xg. Such a mapping
also determines the motion itself and provides its convenient mathematical model.

Let us derive the formula for the mapping 3?[’3/ — Xg between the coordinates ¥}, of vector X and

coordinates X of vector ¥. Consider the following equations:

¥ = ¥+0 (5.1)
% o= T+ (5:2)
> AW I =/

Xg = [blﬁ bzﬁ bgﬁ] Xg, + 0 (5.3)
X o= Rf[;/ + 0y (5.4)

IThe terms alias and alibi were introduced in the classical monograph [19].
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(a) (b)

Figure 5.2: Rotation in two-dimensional space.

Vector ¥'is the sum of vectors ¥’ and ¢’, Equation5.1l We can express all vectors in (the same) basis §,

Equation[5.2l To pass to the basis B’ we introduce matrix R = [b{ﬁ béﬁ béﬁ ], which transforms the

- -

coordinates of vectors from B’ to , Equation[5.4l Columns of matrix R are coordinates b/ 5 béﬁ, béﬁ of

> o o
basic vectors b{, bé, bé of basis ' in basis f.

§2 Alibi representation of motion. An alternative model of motion can be developed from the
relationship between the points X and Y and their position vectors in Figure 5.1(b). The point Y is
obtained by moving point X altogether with the moving object. It means that the coordinates ﬁé, of

the position vector §’ of Y in the coordinate system (O, ') equal the coordinates X of the position
vector X of X in the coordinate system (O, ), i.e.

Yor = %

Jor =0 = %

-1(z =/ oz

R (y[;—oﬁ) = X
Jp = Riz+dy (5.5)

Equation 5.5l describes how is the point X moved to point Y w.r.t. the coordinate system (O, ).

5.2 Rotation matrix

Motion that leaves at least one point fixed is called rotation. Choosing such a fixed point as the origin

leads to O = O’ and hence to & = 0. The motion is then fully described by matrix R, which is called
rotation matrix.

§1 Two-dimensional rotation. To understand the matrix R, we shall start with an experiment in
two-dimensional plane. Imagine a right-angled triangle ruler as shown in Figure 5.2(a) with arms
of equal length and let us define a coordinate system as in the figure. Next, rotate the triangle ruler
around its tip, i.e. around the origin O of the coordinate system. We know, and we can verify it
by direct physical measurement, that, thanks to the symmetry of the situation, the parallelograms

through the tips of E){ and Eﬁ and along by and b, will be rotated by 90 degrees. We see that

b{ = a1l 51 + dn 52 (56)
bé = —da7 51 + a1 B)z (57)
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Figure 5.3: A three-dimensional coordinate system.

for some real numbers a1; and a31. By comparing it with Equation[5.3] we conclude that

R — [6111 —ﬂ21] (5.8)
a1 a1
We immediately see that
2 2
RTR _ { a1 LZZl] {an _ﬂ21] _ |:(111+(121 ) 0 ) } _ {1 0] (59)
—dr1 a1 as1 a 0 o +a21 01

since (Lz%1 + a%l) is the squared length of the basic vector of b;, which is one. We derived an interesting
result

R°! = RT (5.10)
R = R' (5.11)

Next important observation is that for coordinates xg and ¥, related by a rotation R, i.e. X3 = R¥j,
there holds true
() + () = Xy By = (Ra?ﬁ)T RXg = 3?; (R'R) % = fﬁTfﬁ = x* 4+ 1 (5.12)
Now, if the basis  was constructed as in Figure 5.2 in which case it is called an orthonormal basis,
then the parallelogram used to measure coordinates x, y of X is a rectangle, and hence x> + 3 is the
squared length of ¥ by the Pythagoras theorem. If f’ is related by rotation ro f, then also (x')? + (')?
is the squared length of X, again thanks to the Pythagoras theorem.
We see that fﬁTfﬁ is the squared length of ¥ when f is orthonormal and that this length is preserved

by computing it in the same way from the new coordinates of ¥ in the new coordinate system after
motion. The change of coordinates induced by motion is modeled by rotation matrix R, which has
the desired property R'R = I when the bases g, 8’ are both orthonormal.

§2 Three-dimensional rotation. Let us now consider three dimensions. It would be possible to
generalize Figure 5.2]to three dimensions, construct orthonormal bases, and use rectangular parallel-
ograms to establish the relationship between elements of R in three dimensions. However, the figure
and the derivations would become much more complicated.

We shall follow a more intuitive path instead. Consider that we have found that with two-
dimensional orthonormal bases, the lengths of vectors could be computed by the Pythagoras theorem
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since the parallelograms determining the coordinates were rectangular. To achieve this in three
dimensions, we need (and can!) use bases consisting of three orthogonal vectors. Then, again, the
parallelograms will be rectangular and hence the Pythagoras theorem for three dimensions can be
used analogically as in two dimensions, Figure

Considering orthonormal bases B, B/, we require the following to hold true for all vectors ¥ with

=[xy Z]T and X =[x ¥/ z’]T
(X/)2+ (y/)2+(2/)2 _ X2+y2+Z2
>T > ST >
Xﬁ/Xﬁ/ = xﬁxﬁ
(R%) RY = ©7
T (RR) X = X
Xy = X (5.13)

Equation must hold true for all vectors X and hence also for special vectors such as those with

coordinates
1 0 0 1 1 0

ol,l1],{of,[1],|0],]1 (5.14)
ol o] [1] o] |1] |1

Let us see what that implies, e.g., for the first vector

1

[1 0 0]Jc|o]| =1 (5.15)
0
11 = 1 (516)

Taking the second and the third vector leads similarly to cx; = c33 = 1. Now, let’s try the fourth vector

1
[1 1 0]Jc|1| = 2 (5.17)
0
l+cp+ce+1 = 2 (5.18)
cp+cm = 0 (5.19)

Again, taking the fifth and the sixth vector leads to c13 + ¢31 = c23 + c32 = 0. This brings us to the
following form of C

1 ¢ ci3
CcC = —C12 1 cp3 (5.20)
—c13 —c3 1

Moreover, we see that C is symmetric since
-
c'=(R'R) =R'R=C (5.21)

which leads to —c12 = ¢12, —¢13 = c13 and —ca3 = 023, 1.e. c12 = 13 = 23 = 0 and allows us to conclude
that
RIR=C=1 (5.22)

Interestingly, not all matrices R satisfying Equation5.22lrepresent motions in three-dimensional space.
Consider, e.g., matrix
10 0
Ss=101 O (5.23)
0 0 —1
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Matrix S does not correspond to any rotation of the space since it keeps the plane xy fixed and reflects
all other points w.r.t. this xy plane. We see that some matrices satisfying Equation [5.22] are rotations
but there are also some such matrices that are not rotations. Can we somehow distinguish them?

Notice that |S| = —1 while |I| = 1. It might be therefore interesting to study the determinant of C
in general. Consider that

1=1=[®R'R)| = [R[ IRl = |R|[R| = (IR])® (5.24)

which gives that |R| = +1. We see that the sign of the determinant splits all matrices satisfying
Equation[5.22into two groups — rotations, which have a positive determinant, and reflections, which
have a negative determinant. The product of any two rotations will again be a rotation, the product
of a rotation and a reflection will be a reflection and the product of two reflections will be a rotation.

To summarize, rotation in three-dimensional space is represented by a 3 x 3 matrix RwithR'R = I
and |R| = 1. The set of all such matrices, and at the same time also the corresponding rotations,
will be called SO(3), for special orthonormal three-dimensional group. Two-dimensional rotations will be
analogically denoted as SO(2).

5.3 Coordinate vectors

We see that the matrix R induced by motion has the property that coordinates and the basic vectors
are transformed in the same way. This is particularly useful observation when f is formed by the
standard basis, i.e.

17 [0] [o
g=1(1o],[1],]0 (5.25)
ol (o] |1

For a rotation matrix R, Equation 2.15]becomes

>, - - > - - -
by by otz r | | D r1 b+ r2by + 113 bs
>, - - - - -
bz = R|by|= |11 "2 t3 by | = | ro1b1 +rnby +1r3b3 (5.26)
= - -> - - >
b; bs 31 732 733 ] | bs r31byr + 13 by + 13303
and hence
1] 0 0 11
>, - - -
bl = rmbi+rpby+rsby=r1 |0 +rp|1|+7r3]0]| =|r2 (5.27)
0 | 0 1 r13

and similarly for E; and Eé We conclude that

11 r21 131
rn rp | =RT (5.28)
13 123 733

—
X
o

S
[
Il
<

—
N

This also corresponds to solving for R in Equation2.13|with A = R
1 00

010| = [*{ b bé]R (5.29)
00 1
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6 Rotation

6.1 Properties of rotation matrix

Let us study additional properties of the rotation matrix in three-dimensional space.

6.1.1 Inverse of R

Let
1 T2 113
R=|rm rn rms|=[r r r3] (6.1)
31 T32 133

be a rotation matrix with columns rj, ry, r3. We can find the inverse of R by evaluating its adjugate
matrix [5] and useR™! =R' and [R| = 1

1 .
R™! = —Adj(R) (6.2)
R|
RT = Adj(R) (6.3)
T
= [rz XTY3 T3 XTr] IpX rz] (6.4)
Y2733 — 123732 113732 — 112733 71127123 — 113122
= | 737131 — 7121733 1733 — 7113731 T13t21 — 11723 (6.5)
121¥32 — 122731 TY12731 — 111732 T11122 — 712721
which also gives an alternative expression of
i1 Tri2 13 T2 ¥33 — 123732 ¥23731 — 121733 T217¥32 — 122731
R= |1 7t 13| =|rsr—"riar3 117133 —r3r3r rar3 — 1173 (6.6)
Y31 T3 133 Y2723 — 113122 113121 —T11¥23 7111722 — 1121721
6.1.2 Eigenvalues of R
Let R be a rotation matrix. Then for every 7 € C°
R?)'RT = FTRTRT = R'R) T = 77 (6.7)
where T is the conjugate transpose@. We see that for all 7 € C° and A € C such that
RT=AT (6.8)

'Conjugate transpose [B] on vectors with complex coordinates means, e.g., that

. ot . .
ap +bui ap+bpi| | an—bui an —byui
an +bni ap+bxni a1y —bipi axp —byni

for all ay1,a12, 21,822, b11, b12, b2, by € R. Also recall [3] that ab =ab for all a,be C, t becomes T for real matrices and
AT = A for scalar A € C. Conjugate transpose is a natural generalization of the Euclidean scalar product in real vector
spaces to complex vector spaces. As X'¥ = ||¥|? gives the squared Euclidean norm for real vectors, X'¥ = ||¥]|? gives

the squared “Euclidean” norm for complex vectors. It therefore also makes a good sense to extend the notion of angle
Re(27)

between complex vectors to ¥, i/ as cos Z (¥, i) =
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there holds true
A9 (A7) = (@9) (6.9)
A @D = (@) (6.10)
AP@'9) = (@9 (6.11)
and hence |A|?> = 1 for all 7 # 0. We conclude that the absolute value of eigenvalues of R is one.
Next, by looking at the characteristic polynomial of R
A—rn —Tr12 —7113
p(d) = |[(AI-R)[= —r1 A—r2 —123 (6.12)
—731 —r32 A =133
= A (r11 + 122 + 133) A2
+(r117r2 — 121712 + 111733 — 131713 + 10733 — 23 732) A (6.13)
+r11 (ra3 32 — 122 733) — 121 (132713 — 112 733) + 731 (113 722 — 112 723)
= /\3 — (1’11 + 70 + 1’33) AZ + (7’33 + 720 + 7’11) A — |R| (6.14)
= A% —traceR(A2— 1) -1 (6.15)
= (A—1)(A*+ (1 —traceR) A + 1) (6.16)

we conclude that 1 is always an eigenvalue of R. Notice that we have used identities in Equation
to pass from Equation [6.13/to Equation 6.14R.

Let us denote the eigenvalues as A1 = 1, A2 = x + yi and A3 = x — yi with real x, y. It follows from
the above that x? + y?> = 1. We see that there is either one real or three real solutions since if y = 0,
then x2 = 1 and hence A, = A3 = +1. We conclude that we encounter only two situations when all
eigenvalues are real. Either Ay = A, = A3 =1,0or Ay =land A, = A3 = —1.

6.1.3 Eigenvectors of R

Let us now look at eigenvectors of R and let’s first investigate the situation when all eigenvalues of R
are real.

§1 Ay =A=A3=1: LetAd; =Ay=A3 =1 Thenp(d) = (A —1)3 =213 -3A%2+31 — 1. It means
that 1 + 72 + 133 =3 and sincerq; < 1,7 < 1,733 <1, it leads to r1; = 2 = r33 = 1, which implies
R = I. Then I — R = 0 and all non-zero vectors of R? are eigenvectors of R. Notice that rank of R — I
is zero in this case.

Next, consider A1 = 1 and Ay = A3 = —1. The eigenvectors ¥ corresponding to A, = A3 = —1 are
solutions to

RG = -7 (6.17)

There is always at least one one-dimensional space of such vectors. We also see that there is a rotation
matrix

1 0 0
R=[0 -1 0 (6.18)
0 0 -1

2Alternatively, it follows from the Fundamental theorem of algebra [7] the p(A) = 0 has always a solution in C and since
coefficients of p(A) are all real, the solutions must come in complex conjugated pairs. The degree of p(A) is three and
thus at least one solution must be real and hence equal to +1. Now, since p(0) = — |(R)| = —1, limy_,,, p(A) = o0, and
p(A) is a continuous function, it must (by the mean value theorem [3]]) cross the positive side of the real axis and hence
one of its eigenvalues has to be equal to one.
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with real eigenvectors

1 0 0
r{0],r#0, and s|1|+t|0],s*+£ %0, (6.19)
0 0 1

which means that there is a one-dimensional space of real eigenvectors corresponding to 1 and a
two-dimensional space of real eigenvectors corresponding to —1. Notice that rank of R — I is two
here.

§2 Ay = 1,4, = A3 = —1: How does the situation look for a general R with eigenvalues 1, -1, —1?
Consider an eigenvector ) corresponding to 1 and an eigenvector @, corresponding to —1. They are
linearly independent. Otherwise there has to be s € IR such that U» = s7; # 0 and then

5)2 = S 5)1 (620)
R 172 = SR 5)1 (621)
—U, = sU; (6.22)
leading to s = —s and therefore s = 0 which contradicts 7, # 0. Now, let us look at vectors 73 € R3
defined by
=il
[ JT] i3 = 0 (6.23)
)

The above linear system has a one-dimensional space of solutions since the rows of its matrix are
independent. Chose a fixed solution U3 # 0. Then

71+, [dRT]. 7.
Rt N 62

We see that R' 73 and 73 are in the same one-dimensional space, i.e. they are linearly dependent and
we can write
R0 = s (6.25)

for some non-zero s € C. Multiplying equation [6.25] by R from the left and dividing both sides by s
gives

1—) -
g 3 = RU3 (6.26)

Clearly, 75 is an eigenvector of R. Since it is not a multiple of 7, it must correspond to eigenvalue
—1. Moreover, 7, 73 = 0 and hence they are linearly independent. We have shown that if —1 is an
eigenvalue of R, then there are always at least two linearly independent vectors corresponding to the
eigenvalue —1, and therefore there is a two-dimensional space of eigenvectors corresponding to —1.
Notice that the rank of R — I is two in this case since the two-dimensional subspace corresponding to
—1 can be complemented only by a one-dimensional subspace corresponding to 1 to avoid intersecting
the subspaces in a non-zero vector.

§3 General Ay, A, A3:  Finally, let us look at arbitrary (even non-real) eigenvalues. Assume A =
x + yi for real x, y. Then we have

RG = (x+vyi)7 (6.27)

If y # 0, vector ¥ must be non-real since otherwise we would have a real vector on the left and a
non-real vector on the right.

58



T Pajdla. Elements of Geometry for Robotics 2025-9-20 (pajdla@cvut.cz)

Now, we also see that for y # 0, we have three pairwise distinct eigenvalues 1, x + yi, and x — yi
since the characteristic polynomial p(A) has real coefficients.

Let us next see that with pairwise distinct eigenvalues A1 # Ay # A3z # Ay, the set V = {0y, 0h, U3},
of eigenvectors v; corresponding to A; for i = 1,2,3, is linearly independent. To show that, let us
look at the sequence of nested sets Vy = {vy,..., 0} for k = 1,2, 3. First, we see that the singleton set
Vy = {01} is linearly independent since 7 is non-zero. Now, assuming linearly dependent V = V3,
there is k € {2,3} such that Vj_; is linearly independent and Vj is linearly dependent. Hence, we can
write

Uk = 4101+ -+ GO (6.28)
and multiply both sides by R to get
Roy, = mRop + - + ;Rop (6.29)
MOk = mAU + -+ B Ak_1Vk—1 (6.30)
However, we can also get
Mok = amAgor + - + BAO— (6.31)

by multiplying both Equation[6.28 by Ax. Now, we subtract Equation[6.31] from Equation to get
0 = a(A—A)or + -+ ax(A—1 — Ak) o1 (6.32)

We see that coefficients a;(A; — Ax) fori =1,...,k — 1 must be zero since Vi_; is linearly independent.
However, since A; — A are all non-zero, we conclude that all 2; must be equal to zero. However, this
is in contradiction with Equation and non-zero vx. We see that V is linearly independent since
there is no k where linearly independent Vj_; could turn into a linearly dependent V.

Thus, for a rotation R, there are in this case three one-dimensional subspaces of eigenvectors (we
now understand the space as C° over C). In particular, there is exactly one one-dimensional subspace
corresponding to the eigenvalue 1. The rank of R — I is two.

Let 7 be an eigenvector of a rotation matrix R. Then

RT = (x+yi)d (6.33)
R'RG = (x+yi)R'T (6.34)
7 = (x+vyi)R'7 (6.35)

]- 2> T2
mv = R'U (636)
(x—yi)7 = R'T (6.37)

We see that the eigenvector @ of R corresponding to eigenvalue x + yi is the eigenvector of RT corre-
sponding to eigenvalue x — yi and vice versa. Thus, there is the following interesting correspondence
between eigenvalues and eigenvectors of R and R'. Considering eigenvalue-eigenvector pairs (1, ),
(x + i, 02), (x — yi, U3) of Rwe have (1,71), (x — yi, 02), (x + yi, U3) pairs of R", respectively.

§4 Orthogonality of eigenvectors The next question to ask is what are the angles between eign-
evectors of R? We will considers pairs (A1 = 1,71), (A2 = x + yi,02), (A3 = x — yi, U3) of eigenvectors
associated with their respective eigenvalues. For instance, vector 7; denotes an eigenvector associated
with egenvalue 1.

If all eigenvalues are equal to 1, i.e. R = I, then all non-zero vectors of IR® are eigenvectors of R
and hence we can alway find two eignevectors containing a given angle. In particular, we can choose
three mutually orthogonal eignevectors.
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If Ay = 1and A; = A3 = —1, then we have seen that every 7} is perpendicular to ¢, and 73 and that
U5 and 73 can be any two non-zero vectors in a two-dimensional subspace of R3, which is orthogonal
to 71. Therefore, for every angle, there are ¥> and 73 which contain it. In particular, it is possible to
choose ¥, to be orthogonal to 73 and hence there are three mutually orthogonal eigenvectors.

Finally, if A, A3 are non-real, i.e. y # 0, we have three mutually distinct eigenvalues and hence there
are exactly three one-dimensional subspaces (each without the zero vector) of eigenvectors. If two
eigenvectors are from the same subspace, then they are linearly dependent and hence they contain
the zero angle.

Let us now evaluate 27177

77;272 = _)I _)2 = Z?;I—RTR U_)z = 771T(x + yl) 172 = (x + yl) 271—772 (6.38)
We conclude that either (x + yi) = 1 or 51272 = 0. Since the latter can’t be the case as y # 0, the former
must hold true. We see that ; is orthogonal to 7>. We can show that 7 is orthogonal to 3 exactly in
the same way.

Let us next consider the angle between eigenvectors 7, and U3

dlth = TR RO = (RT3) Ry = ((x — yi) T3) (x + yi) &2 (6.39)
= 3 (x+ yi) (x + yi) B (6.40)
5; 0y = (¥ +2xyi — y?) 17;52 (6.41)

We conclude that either (x* + 2xyi — y?) = 1 or ﬁg

since y # 0 but then —y2 = 1, which is, for a real y, impossible. We see that 17;772 = 0, i.e. vectors U
are orthogonal to vectors 3.

Clearly, it is always possible to choose three mutually orhogonal eigenvectors. We can further
normalize them to unit legth and thus obtain an orthonormal basis as non-zero orthogonal vectors
are linearly independent. Therefore

U, = 0. The former implies xy = 0 and threfore x = 0

A
R[Z?l 272 773] = [271 272 273] A (6.42)
A3
A
(@ & |'R[& & &] = A (6.43)

A3

Let us further investigate the structure of eigenvectors 0,, v3. We shall show that they are “conju-
gated”. Let’s write 0, = il + wi with real vectors if, @. There holds true

RU» = R+ wWi)=Ril +RWi (6.44)
(x+y))a = (x+yi)(@+wWi)=xtl—ywd+ (xi@0 + yil)i (6.45)

which implies
Rii=x—y®w and RO=xW+ yd (6.46)

Now, let us compare two expressions: R (i — wi) and (x — yi) (& — i)

R(/l—wi) = RU—RWi=xU—yw— (x@0+yil)i (6.47)
(x—yi)(l—wi) = xd—yw— (xw+yi)i (6.48)

We see that
R (i — @) = (x — yi) (il — @i) (6.49)
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which means that (x — yi, i — @i) are an eigenvalue-eigenvector pair of R. It is importatnt to under-
stand what has been shown. We have shown that if i/ + @i is an eigenvector of R corresponding to an
eigenvalue A, then the conjugated vector i/ — @i is an eignevector of R corresponding to eigenvalue,
which is conjugated to A (This does not mean that every two eigenvectors corresponding to x + yi
and x — yi must be conjugated).

The conclusion from the previous analysis is that the both non-real eigenvectors of R are generated
by the same two real vectors il and @. Let us look at the angle between i/ and @. Consider that

0=3dd = (@— i) @+di) =@ +@ i) + Di) (6.50)
= @'d—0'0) + @D+ D )i (6.51)
= @'d—-@"D)+2@ i (6.52)
and therefore
i'i=w"®w and @' =0 (6.53)

which means that vectors i and @ are orthogonal.
Finally, let us consider
0=70,0, =0, il + 0, Wi (6.54)
and hence
G/ii=0 and ¥/ @=0 (6.55)

which means that i and @ are also orthogonal to 7;.

6.1.4 Rotation axis

A one-dimensional subspace generated by an eigenvector 7 of R corresponding to A = 1, is called
the rotation axis (or axis of rotation) of R. If R = I, then there is an infinite number of rotation axes,
otherwise there is exactly one. Vectors 7, which are in a rotation axis of rotation R, remain unchanged
by R, i.e.RT = 7.

Consider that the eigenvector of R corresponding to 1 is also an eigenvector of R" since

RY = o (6.56)
Tp 2 _ T2
R'Ru; = R 7 (6.57)
1 = RO (6.58)
It implies
®R—RN7 = 0 (6.59)
0 T2 — 721 113 — 7131
21 — 7112 0 r3—tp | = 0 (6.60)
r31— 13 T3 — 123 0
and we see that
0 T2 — 7T 113 — 131 32 — 123 0
21 — 112 0 r3—ra | |r3—m | = |0 (6.61)
731 — 7113 132 — 123 0 21 — 112 0

Clearly, we have anice formula for an eigenvector corresponding to A1 = 1, when vector [7’32 — 3 113 — 731 721 —
is non-zero. That is when R — R is a non-zero matrix, which is exactly when R is not symmetric.
Let us now investigate the situation when R is symmetric. Then, R = R" = R~! and therefore

R(R+I)=RR+R=I+R=R+1I (6.62)

which shows that the non-zero columns of the matrix R + I are eigenvectors corresponding to the
unit eigenvalue. Clearly, at least one of the columns must be non-zero since otherwise, R = —I and
IR| would be minus one, which is impossible for a rotation.

61



T Pajdla. Elements of Geometry for Robotics 2025-9-20 (pajdla@cvut.cz)

6.1.5 Rotation angle

Rotation angle 6 of rotation R is the angle between a non-zero real vector ¥ which is orthogonal to
and its image RX. There holds

X'RX
cos O = 6.63
77 (6:63)
Let us set
X=uU+w (6.64)

Clearly, Xis a real vector which is orthogonal to 7 since both i and @ are. Let’s see that it is non-zero.
Vector 7, is an eigenvector and thus

0#£ T, th = U+D © (6.65)

and therefore i # 0 or @ + 0. Vectors i, @ are orthogonal and therefore their sum can be zero only if
they both are zero since otherwise for, e.g., a non-zero i we get the following contradiction

0=d"0=d"(@+d) =i @+ F=u'il #0 (6.66)

Let us now evaluate

cos = = = —— = -
XX (il + D)7 (4 + @) Wi+ w'w
ST - ST = ST - ST =
x(Wi+w'w) +y'id—w' w
_ X qu y (i ) (6.67)
Ui+ 0w
— x (6.68)

We have used equation[6.46/and equation[6.53] We see that the rotation angle is given by the real part
of A, (or A3). Consider the characteristic equation of R, Equation [6.13

0 = A% —traceRA% + (R11 + Ryp + R33) A — IR| (6.69)
(A=1)(A —x—yi)(A —x + yi) (6.70)
= VP-Qx+ DA+ +2x+P)A - (P + 7 (6.71)

We see that traceR = 2x + 1 and thus

1
cos O = E(traceR -1) (6.72)

6.1.6 Matrix (R —1I)

§1 The range and the null space of (R — I). We have seen that rank (R — I) = 0 forR = I and
rank (R — I) = 2 for all rotation matrices R # I. Notice also that rank (R" — I) = rank (R" — I)" =
rank (R — I) since rank of a matrix equals the rank of its transpose [6} 7].

Let us next investigate the relationship between the range and the null space of (R — I). The null
space of (R — I) is generated by eigenvectors corresponding to 1 since (R — I)¥ = 0 implies R¥ = 7.
Now assume that vector 7 is also in the range of (R — I). Then, there is a vector 4 € R® such that
U= (R—I)d. Let us evaluate the square of the length of 7

77 = TR-1)d= @' R-F)d=(F —3")d=0 (6.73)

which implies @ = 0. We have used result with x = 1and y = 0. Hence, the range of R — I
intersects the null space of R — I in the zero vector.
We can show even more. Consider 7 in the null space of (R — I) and a vector (R — I)a'in the range
of (R — I). Then, using[6.58]
FTR-1)Z=0a=0 (6.74)

shows that the range of (R — I) is orthogonal to the null space of A®-1).

3In fact this also follows from (R — I) being a normal matrix [5],i.e., (R —I)T(R—I)=2I —R—RT = (R—I)(R—1I)T.
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Figure 6.1: (R — I) 7is the difference between the rotated projection of X to the range of (R — I) and the
projection of ¥ to the range of (R — I).

§2 Geometry of (R—I). Letusnow interpret(R—I)geometrically. The range of (R—1I)isorthogonal
to its null space. The null space of (R — I) is generated either by 7 = 0, when its rank is zero, or by
a unit vector U, when its rank is two. In either case, the matrix of the projection onto the range of
0 = (R—1I)d,d € R®canbe written as I — 77" [5]. Now, let us look at a projection X, of a general vector

X onto the range of (R — I),i.e.atxX, = (I—77')x. We can rotate it to R¥, and take their difference as

RX, — %, =R(I—77 )¥—(I—-77 )¥=R—F7)¥—(I—-070)¥=R¥—IX¥=R—-I)X (6.75)

We see that (R — I) gives the difference between the rotated projection of ¥ to the range of (R — I) and
the projection of X to the range of (R — I), see Figure

6.1.7 Tangent space to rotations

The set of rotation matrices
R={ReR”|R'R=1, R| =1} (6.76)

can be understood as a subset of R’ with

T fim "2 T3
r = [7’11 21 ¥31 Tip Tt T3 112 123 7’3] representingR= 21 T 123 (6.77)
rap T3z 733

Rotation constraints in definition[6.76]are algebraic and thus R is a an affine variety@. Let us investigate
how does look the tangent space to R.

To get the tangent space to R, we will first find the normal Ng to R at rotation R and then take its
orthogonal complement Ty, which is tangent to R at R. In the end, we will write it all down in a
convenient matrix form.

The space Ng, normal to R, is generated by columns of the Jacobian matrix [3] of constraints in
written in a matrix form as

[ 111712 + 12172 + 131732
711713 + 121723 + 131733
r12713 + 122723 + 132733

C=|r +m+r3—1 (6.78)
riz + r%z + 7%2 —1

+ 72+, —1

| 711722733 — F11 723132 — 112121133 + 112123131 + 113721732 — 13722 131 — 1

% An affine variety is a subset of a linear space defined by algebraic constraints.
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The Jacobian matrix of C is obtained as

[ r2 r r2 rin rmm 13 O 0 0
rz 13t 0 0 0 m m 1
ac; 0 0 0 r3 13 13 r2 rm I3
Jij e J=|2r11 2rp1 2r3; 0 0 0 0 0 0
] 0 0 0 21’12 21’22 2}’32 0 0 0
0 0 0 0 0 0 27"13 21’23 21’33
|\ I s Ju T Jwe Jwm s T
with
J71 122733 — 123732
J72 —r12733 + 113732
J73 r12723 — 113122
J74 —721733 + 123731
J75 11733 — 113731
J76 —r11723 + 113721
J77 21732 — 122731
J78 —r11732 + 112731
J79 11722 — 12721

Jacobian matrix J is a 7 x 9 matrix. Rows 1,2, 3 of J have the property that each row contains elements
of just two columns of R. Rows 4,5, 6 of J have the property that each row contains elements of just
one column of R. It thus suggests to construct a basis T of the tangent space Ty to R from columns of

R. We can check that

0 —r3 12

0 —r3 12

0 —r3 132

13 0 —rn

JT=0 with T= 723 0 —ry (6.79)

r33 0 —r3

—r2 M1 0

—rn 1 0

| =132 131 0

Next, we can see that each column of T contains two different columns of R and hence Tx = 0
for a non-zero x implies that every two columns of R are linearly dependent, which is impossible.

Therefore, T has the rank equal to three.

Finally, the first six rows of J contain columns of R. We see that [x" 0]J = 0 for a non-zero x
implies that columns of R are linearly dependent, which is impossible. Therefore, the rank of Ny is
not smaller than six. Hence, the dimension of the tangent space Ty is exactly three at every R € R and

T is indeed a basis of Tk.

Let us now rewrite the above back into a matrix form by inverting the matrix vectorization used

in We rewrite columns of T into three matrices

0 rz3 —ro —-r3 0 r2  —r
Ty=|(0 r3 —rn|, Ta=|—-r3 0 19|, T3=|rn -1y (6.80)
0 13 —r3 —r33 0 7131 13 —r31
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and then can write the reformated tangent space of rotations at R for some real vector s = [s1 sy s3]
as

TR(S) = T181 +Tysp +T3s3 (6.81)
i 713 12 r13 11 12 11
= =Sy | 123 | +83 | T2 |, S1 |73 | —S3 |t |, —S1|Tn|+s2|Tn
| 733 732 733 31 732 31
[ 11 T2 113 0 —s3 s
= 21 Ty 123 S3 0 —51 (682)
| 731 732 133 —S2 51 0
= R[s], (6.83)

The first order approximation of rotations around R is then obtained as
R+ Tr(s) =R+R|[s], =R(I+[s],) (6.84)

In particular, vectors in the tangent spaces to the space of rotations at the identity, which are called
infinitesimal rotations, are
Tr(s) = [s], (6.85)

and the first order approximation of rotations at the identity is

I+Ti(s) =1+ [s], (6.86)
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7 Rotation representation and parameterization

We have seen Chapter 6] that rotation can be represented by an orthonormal matrix R. Matrix R has
nine elements and there are six constraints R'R = I and one constratint |[R| = 1. Hence, we can view
the space of all rotation matrices as a subset of R°. This subse] is determined by seven polynomial
equations in nine variables. We will next investigate how to describe, i.e. parameterize, this set with
fewer parameters and fewer constraints.

7.1 Angle-axis representation of rotation

cos X,

sin O Xy

=4
X

[l
SN
X
=y

Figure 7.1: Vector 1/ is obtained by rotating vector ¥ by angle 0 around the rotation axis given by
unit vector 7. Vector i/ can be written as a linear combination of an orthogonal basis

ST =2 > (3T 2

[¥ — (0) %) T, 7 x X, (0) %) 7).

We know, Paragraphl6.1.4, that every rotation is etermined by a rotation axis and a rotation angle.
Let us next give a classical construction of the rotation matrix from an axis and angle.

Figure [ZT] shows how the vector ¥ rotates by angle 6 around an axis given by a unit vector 7 into
vector 1. To find the relationship between ¥ and 3, we shall construct a special basis of IR>. Vector
X either is, or it is not a multiple of 7. If it is, than i = ¥ and R = I. Let us alternatively consider ¥,
which is not a multiple of 7 (an hence is not the zero vector!). Futher, let us consider the standard
basis ¢ of R® and coordinates of vectors X, and ;. We construct three non-zero vectors

Mo = (Ty %) Uy (7.1)
Xl X— (5; %) Uy

- - -

Xxg = Uy X Xg (

Tt is often called algebraic variaty in specialized literature [2].
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which are mutually orthogonal and hence form a basis of R®. We may notice that cooridate vectors
¥ e R3, are actually equal to their coordinates w.r.t. the standard basis 0. Hence we can drop ¢ index
and write

Y = (@TRI=0@H=@T)F=[d) ¥ 7.4
X = - @ 0N0=X— (00 )¥=(1-77)¥=1[0], % (7.5)
Vs = UxX=[0],% (7.6)
We have introduced two new matrices
[7]y=707" and [7], =I-77" (7.7)

Let us next study how the three matrices [77]”, [7],, [7], behave under the transposition and mutual
multiplication. We see that the following indentities

[?7]1 = [d), [ [@, =0, [@ . =9 [0, [0 =9,
[0], = [dl., @ [6=0 [, [0, =[d]., [0], [d]«= Tﬂx / (7.8)
[0 = =1, [@, B =0, [d [0, =0, [@ [, = -

hold true. The last identity is obtained as follows

0 —03 (%) 0 —03 (%]
[7], [0l = U3 0 -0 U3 0 —ou (7.9)
| —02 U1 0 -0y U1 0
[ —v% — Ug V102 V103
= V102 —v% — v% VoU3 (7.10)
| V103 vv3 —vT — 0]
[0 -1 vy 0o
2
= vy -1 o3| =[d,-I=-[d], (7.11)
U103 VU3 Ug —1

It is also interesting to investigate the norms of vectors X and X. Consider

122 = 2 =2 [F)L[F], =2 (—[7})2=%"[7], ¥ (7.12)
[P = F2 =T [@) (8], 2= [FL T =T [F), T (7.13)
Since norms are non-negaive, we conclude that ¥, || = [|€x].

We can now write i/ in the basis [¥), X1, ¥x] as

_)

y o= x||+\|xLHc059H ”+HXLHS HfH (7.14)
X
= X+ cosOX| +sin0 Ty (7.15)
= [0]; ¥+ cos O [7], ¥+sin6 [7], ¥ (7.16)
= ([d] + cosO [7], +5sin6 [7],) X =RX (7.17)
We obtained matrix
R = [7]} + cos O [7], +sin B [7], (7.18)

Let us check that this indeed is a rotation matrix
R'R = ([d] +cosO [7], +sin6 [Z7]X)T ([@]) + cos 6 [7], +sin6 [7],)
= ([d)) + cos O [7], —sin0 [d], ) ([7] + cosO [7], +sin0 [7],)
[, + cos® € [7] . + sin B cos 6 [7], — sin6 cos 6 [d], + sin® O [7],
= [77]” +[0], =1 (7.19)
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R can be written in many variations, which are useful in different situations when simplifying for-
- —)T

mulas. Let us provide the most common of them using [7], = 77", [7], = I —[7]; = I — 77" and

(7]

R = 17]||+c059 [7], + sin6 [7], (7.20)
= T7' +cosO(I—F7") +sinb [7], (7.21)
= cosOI+ (1—cos0)TT +sin6 [7], (7.22)
= cosOI+ (1—cos0) [0], +sin0 [7], (7.23)
= cosOI+ (1—cosB)(I+[F])+sin0 [7], (7.24)
— I+ (1-cos0)[d]> +sin0[7], (7.25)

7.1.1 Angle-axis parameterization

Let us write R in more detail

R = cosOI+ (1—cos0)TF +sin0 [7], (7.26)
= (1-cos0)TF" +cosOTI +sin [7], (7.27)
0101 0102 0103 1 00 0 —03 (%)
= (1—cosB) | vv; vv2 vv3 | +cosO|0 1 0| +sinb 0 —v
U301 0302 0303 0 01 (%} 0
v101(1 —cos0) + cosO v1v(1 —cosO) —v3sinf 0103(1 —cos 0) + vpsin O
= | vv1(1 —cosB)+v3sin6 vvp(1l —cosB) + cosO wvyv3(1 — cosB) —v18in O
v301(1 — cos 0) —vp8in 0O v30(1 —cosO) +v1sinf  v3v3(1 — cosO) + cos O
(7.28)
which allows us to parameterize rotation by four numbers
[0 v1 v U3]T with 0% + 03 + 03 = 1 (7.29)

The parameterization uses goniometric functions.

7.1.2 Computing the axis and the angle of rotation from R

Let us now discuss how to get a unit vector 7' of the axis and the corresponding angle 6 of rotation from
a rotation matrix R, such that the pair [0, 7] gives R by Equation[Z.28 To avoid multiple representations
due to periodicity of 0, we will confine O to real interval (—m, 7].

We can get cos(60) from Equation[6.72]

If cos O = 1, then sin O = 0, and thus 6 = 0. Then, R = I and any unit vector can be taken as 7, i.e.
all paris [0, 7] for unit vector 7 € R® represent I.

If cos@ = —1, then sin6@ = 0, and thus 6 = n. Then R is a symmetrical matrix and we use
Equation to get U1, a non-zero multiple of ¥, i.e. ¥ = a ¢}, with real non-zero «, and therefore
% /||01]| = s 7 with s = +1. We are getting

R = 2[77]||—I=21777T—I=25255T (s7)(sD) (7.30)

- - T
() (&) e () (2
(TN (21 7] e

from Equation[7.27land hence we can form two pairs
R P E 732
[o1] [71]
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representing this rotation.
Let’s now move to —1 < cos 0 < 1. We construct matrix

R—R' = (1-cosb) [7], + cos O T + sin O [d],,
—((1 = cos 0) [7]; + cos O T +sin 6 [ZTJX)T (7.33)
= (1 —-cos0) [d]; + cosOI +sin 0O [7],
—((1 = cos 0) [7]; + cos O T —sin 6 [7],,) (7.34)
= 2sin0 [7], (7.35)
which gives
0 ri2 =121 113 —131 0 —vz wm
21 — 1712 0 T3 — 132 =2sinf U3 0 —01 (736)
r31 —t13 V32 — 123 0 | —v; g 0
and thus _
1 |72~ 7123
sin O 5) = E ri3 — 131 (7.37)
| 721 — 712
We thus get
. . 1
[sin 6] ||d]| = |sin 6] = 5 \/(rzs —r32)* + (rs1 — r13)? + (12 — r21)? (7.38)
There holds
sin 7 = sin(—0) (—0) (7.39)
true and hence we define
0 = arccos (E(trace (R) — 1)> , 7= 5| (7.40)
21 —T12
and write two pairs
7 7
[+8'+sin 9} ’ {_6'_sin9] (741)

representing rotation R.
We see that all rotations are represented by two pairs of [0, 7] except for the identity, which is
represented by an infinite number of pairs.

7.2 Euler vector representation and the exponential map

Let us now discuss another classical and natural representation of rotations. It may seem as only
a slight variation of the angle-axis representation but it leads to several interesting connections and
properties.

Let us consider the euler vector defined as

=07 (7.42)

where 0 is the rotation angle and 7 is the unit vector representing the rotation axis in the angle-axis
representation as in Equation [/.27
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Next, let us recall the very fundamental real functions [3] and their related power series

exp x

sin x

Cosx

(7.43)
x2H (7.44)

(7.45)

It makes sense to define the exponential function of an m x m real matrix A € R"*™ as

expA =

(7.46)

We will now show that the rotation matrix R corresponding to the angle-axis parameterization [6, 7]

can be obtained as

R([6,3]) = exp 2], — exp[07],

(7.47)

The basic tool we have to employ is the relationship between [ej?; and [¢],.. It will allow us to pass
form the ifinite summantion of matrix powers to the infinite summation of the powers of 6 and hence
to sin 6 and cos 6, which will, at the end, give the Rodrigues formula. We write, Equation [Z.1]]

and substitute into Equation[7.46/to get

exp[07],

« (7.48)

0 6 n

2, [ j'] ; (7.49)
n=0

L P oL

,IZ_ZO (2n)! gf) (2n +1)! (7.50)

Let us notice the identities, which are obtained by generalizing Equations[7.48|to an arbitrary power n

07° = 1 (7.51)
07 = (=1)" 162"V [67) forn=1,... (7.52)
07! = (-1)"6*[07], forn=0,... (7.53)
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and substitute them into Equation[7.50/to get

exp[07], = I+ (i —(_1)1;;(??(”_1)) [65]2X + (i
n=1 :
e (6
= I-— (i (_(12):)9'271 _ ) 77] + sin 0 [0]
n=0 ’

I—(cos@—1)[d]> +sin6[d],
I+sin6[d], + (1—cos6)[d]>

L+ sinle] [1]
[0,3)

by the comparison with Equation

7.3 Quaternion representation of rotation

7.3.1 Quaternion parameterization

(1= cos ) [ITI]

2

X

(_1);162;1
(2n+1)!

).

(7.54)

We shall now introdude another parameterization of R by four numbers but this time we will not use
goniometric functions but polynomials only. We shall see later that this parameterization has other

useful properties.

This paramterization is known as unit quaternion parameterization of rotations since rotations

are represented by unit vectors from R*.

In general, it may sense to talk even about non-unit

quaternions and we will see how to use them later when applying rotations represented by unit
quaternions on points represented by non-unit quaternions. To simplify our notation, we will often

write “quaternions” insted of more correct “unit quaternions”.

Let us do a seemingly unnecessary trick. We will pass from 6 to § and introduce

7 cosg
S [ cos%} || |wising
1 sin & q3 vysin §
g4 U3 sing
There still holds
0 6 o 6
|7 = q% +q§ +q§ +qi = cosza +sin2§v% +sin2§v§ +sin2§v§ = COos
true. We can verify that the following identities
» 0 2
cos® = 2 cos §—1=2q1—1
6 ¢)
sing = 2 COSE sinE
5 o . 0,
sinfv = 2 COSE SIHEZ) =2m [qz q3 Q4]T
7]
cosf® = 1-2sin?= = —2(‘7§+‘7§+‘7i> :‘ﬁ_q%
6
1—cosO® = Zsil’lzz =2(q§+q§+qﬁ)

71

29

2

— 7

0
] 2_
+ sin

— 7

~1

(7.55)

(7.56)

(7.57)
(7.58)
(7.59)
(7.60)

(7.61)
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hold true. We can now substitute the above into Equation [7.23]to get

R = I+sin0[d], + (1—cos6) 7] (7.62)
= I+2 cosg sing [7], + 2 sin® g [3]% (7.63)
of. 6. 0.
= I+2cos 5 {sm EU] ) +2 [sm Ev] ) (7.64)
2
q2 q2
= I+2q¢ q3 +2 q3 (7.65)
q4 X q4 X
[ 1 —2q14s 2193 —q3 — 0 293 204
= 20194 1 2qq2 | +2 Qg3 —q95— 4 4394 (7.66)
| 2q193 29192 1 9294 739 —q5 — 3
g7+ a3 — a5 —4q; 2 (ngs - Zm)z 2 (0294 + 9193)
= 2(q2q3 + mqs) 95— a5+ 95— 4q;  2(9394 — q192) (7.67)
| 2(q29s — 1q3)  2(@3qa+quq2) 45— 45 — a5+ 45

which uses only second order polynomials in elements of 4.

7.3.2 Computing quaternions from R

To get the quaternions representing a rotation matrix R, we start with Equation [7.64l Let us first
confine 6 to the real interval (—m, 77| as we did for the angle-axis parameterization.

Matrix R either is or it is not symmetric.

If R is symmetric, then either sin 6/27 = 0 or cos 0/2 =0. If sin0/27 = 0, then sin 6/2 = 0 since
|7 = 1 and thus cos 6/2 = +1. However, cos /2 = —1 for no 0 € (—, 7] and hence cos /2 = 1.
This corresponds to 6 = 0 and hence to R = I which is thus represented by quaternion

[1 0 0 0] (7.68)

If cos9/2 = 0, then sinf/2 = +1 but sin6/2 = —1 for no 6 € (—n, n] and hence sin6/2 = 1. This
corresponds to the rotation the by 0 = 7 around the axis given by unit @ = [v1, v2, v3]". This rotation
is thus represented by quaternion

[0 01 v 03] (7.69)
Notice that 7 and —@ generate the same rotation matrix R and hence every rotation by 0 = m is

represented by two quaternions.
If R is not symmetric, then R — R # 8 and hence we are geting a useful relationship

0 0.
R—R' = 4cos > [sin Ev} ) (7.70)

and next continue with writing

0 0 1
cos’==1-sin==1—-=(1—-cosf) =1—

1 1
5 > 5 (1 - E(traceR - 1)> =1 (1 + traceR)  (7.71)

N =

using traceR, and thus

0
g1 =Cos 7 = % \/traceR +1 (7.72)

2
with s = £1. We can form equation

0 2 —T21 713 — 731 r32 — 723 qz
21 — 12 0 Tz —7r3p | = 713 — 731 = s 4/traceR + 1 q3 (7.73)
31— T3 Tt — 123 0 1 —ri2 ] |, 94 ] ],

72



T Pajdla. Elements of Geometry for Robotics 2025-9-20 (pajdla@cvut.cz)

which gives the following two quaternions

traceR + 1 traceR + 1
+1 T3 — 1 -1 T3 — 1
32 — 123 ) 32 — 123 (7.74)
2 +/traceR + 1 r3 — 131 2 y/traceR + 1 r13 — 131
21 — 112 21 — 112

which represent the same rotation as R.

We see that all rotations are represented by the above by two quaternions § and —§ except for the
identity, which is represented by exactly one quaternion.

The quaternion representation of rotation presented above represents every rotation by a finite
number of quaternions whereas angle-axis repesentation allowed for an infinite number of angle-
axis pairs to correspond to the indentity. Yet, even this still has an “aesthetic flaw” at the identity,
which has only one quaternion whereas all other rotations have two quaternions. The “flaw” can be
removed by realizing that § = [—1, 0, 0, 0] " also maps to the identity. However, if we look for O that
corresponds to cos 8/2 = —1 we see that such 6/2 = +kmand hence 6 = +2kmn fork =1,2,..., which
are points isolated from (—7, t]. Now, if we allow 6 to be in interval (—2 7, +2 1], then the set

{ [77CS(1)ISI gﬁ] ‘ 0e[-2m +27, e R, 7] = 1} (7.75)

of quaternions contains exactly two quaternions for every rotation matrix R and is obtained by a
continuous mapping of a closed interval of angles, which is boundend, times a sphere in R3, which
is also closed and bounded.

7.3.3 Quaternion composition

Consider two rotations represented by 71 and §». The respective rotation matrices Ry, Ry can be
composed into rotation matrix Ry; = Ry Ry, which can be represented by »1. Let us investigate how
to obtain g from 4} and 7,. We shall use Equation to relate Ry to 41 and R; to 3, then evaluate
Ry1 = Ry Ry and recover g from Ry;. We use Equation[Z.23] to write

R=2sin291777T+(2 c0529—1)1+2c0sgsing [7], (7.76)
2 2 2 2
and
Ri = 2(s1%h) (s171)" + (26 = 1) I +2¢1 [s171] (7.77)
Ry = 2(s21) (s20) " + (2 c% —1)I+2c [5202], (7.78)
Ry = 2(5210n1) (521921) " + (2c3 — 1) I + 221 [52101]
with shortcuts
€1 = COS i, $1 = sin ﬁ, Cp = COS @, Sp = sin @, C>1 = COS %, So1 = sin%
2 2 2 2 2 2

Let us, next assume that both Ry, Ry are not identities. Then 0; # 0 and 05 # 0 and rotation axes 7; # 6,
U # 0 are well defined. We can now distinguish two cases. Either v = +0,, and then vy = 0y = +0,
or U; # +0,, and then
[th, T2, Ta x T1] (7.79)
forms a basis of R3. We also notice that 7;, 7» always appear in Ry, Ry in the product with sy, s5.
We can thus write
0

- . 6 - . 6 rd . 6 v . 6 v d
sin % Up1 = a7 SIn 71 U1 + ap sin 72 Uy + az (sin 72 Uy X sin 71 U1) (7.80)

with coefficients a1,a;,a3 € R. To find coefficients a1, a;,a3, we will consider the following special
situations:
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1. U1 = +0, implies Uy = U1 = 0, and 6,1 = 01 £ 0, for all real 6; and 0.

2. 5;5‘1 = 0and 6; = 6, = implies

Ri = 239 — 1 (7.81)
Ry = 200, — 1 (7.82)
Ry = (60 —I)2017] —I) =1-2(20, + %)) (7.83)

We see that in the former case we are getting
6 - . 6 . 9 -
sin % U1 = (a1 sin 71 + a; sin 72) v1 forall61,0, € R (7.84)

which for @ # 0 leads to

sin % = @ sin % + ap sin % (7.85)
sin O ; 0 = gpsin % + ap sin % (7.86)
sin % cos % + cos % sin % = aisin % + ap sin % (7.87)
for all 61, 6> € R. But that means that
a; = cos % and ap = cos % (7.88)

In the latter case we find that @,; is a non-zero multiple of 7, x U7 since

Rot (h x 01) = (I—2(thd, +%7,)) (0> x D7) (7.89)
5)2 X 5)1 — 2?72’(7; (’('72 X _)1) — 2271’(7;r (_)2 X _)1) (790)
= 772 X 771 (791)
However, that means that
sin % Up1 = a3 (sin %5)2 x U1 sin 71) (7.92)
We next get 0»1 using Equation[6.721as
1 1 S s 2 1
cos 0y1 = E(traceR— 1) = 5(3 = 2(|72|* + |71]|7) = 1) = 5(3 —4-1)=-1 (7.93)
and hence 6,1 = +m and thus
Uy = a3 (T x Up) (7.94)

but since 7; is perpendicular to 0, 7 x U, is a unit vector and thus a3 = 1. We can thus hypothesize
that in general

. O, O, (. 01, 61 (. 62, . 02, . 01,
sin > U1 = COS > <sm > U1 | + cos > sin > Uy | + | sin > Uy | x [ sin 5 U1 (7.95)

Let’s next find cos % consistent with the above hypothesis. We see that

0 0
cos? % — 1 —sin® % (7.96)
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and hence we evaluate

2 621 ) 6 21 5T = "
sin - = sin 7021021 s1n—vz1 s1n—021 (7.97)
0 0, 6
_ 202 . 201 261 . 202
cos > sin > + cos 2 sin > (7.98)
02 01 02 01 .
+ 2 cos > cos > <s1n > vz> <sm > vl> (7.99)

+

0y .0 \1'[(. 6: . .61,
[(5111?202) X <sm?101>] [(511{17202) X <51n?101)] (7.100)

We used the fact that 1, 7> are perpendicular to their vector product.
To move further, we will use that for every two unit vectors i, 7 in R® there holds

@x ) (x3) = [@@x0)| = []*|7]*sin’ £(i,) (7.101)
= [d@P19*(1 — cos® £ (i, 9)) = |i|*|[7)* — (1" 5)? (7.102)
true.
Applying this to the last summand in Equation[.100, we get
0 0 0 0 0
sin? % = cos’ 72 sin? 71 + cos? 71 sin? 72 (7.103)
o)) 01 (. 02 . \(. 61,
+ 2 cos > Ccos— <sm > vz> sin — U1 (7.104)
6 6 6, .\(. 6 ’
..2Y2 . o2Vl . Y2 o - Yl o
+ sin > sin > [(sm > Uz) (sm > 211)] (7.105)
01 0 0
_ 271 271 222
= sin > + cos > sin > (7.106)
2
+ 2COS@COS@ sin@ﬁ \ sin&ﬁ - sin@z7 \ sinﬁﬁ
2 2 2 2 ! 2 ? 2 !
0 o
— 1—cos? ?1 cos? 22 (7.107)

2
+ 2 92 9 inﬁﬁ’ \ inﬁﬁ’ — inﬁﬁ’ \ inﬁﬁ’
cos 7= cos =~ | sin =0 | | sin — 71 sin—- 02 | { sin =7

where we used the fact that

) o 0 0 o )
. 2 Y1 201 o202 o 201 201 . 202
sin” = + cos > sin” = 1 — cos > + cos ) (7.108)
0 o 0 0
_ 2 01 2002\ _ 201 202
= 1+ cos > <sm > > 1 — cos 5 Cos” >
We are thus obtaining
o o
COSZ% = 1 —sin? 221 (7.109)
o 0
—  cos? 21 coszj2 (7.110)
T u 2
— 2 cos % cos % <sin % 772> <sin % 771> + [(sin % z7z> <sin % z7l>]
T 2
= (cos % cos % - <sin % z7z> <sin % 171>> (7.111)
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Our complete hypothesis will be

. O O, (. 01, 61 (. 62, . 02, . 01,
sin == 01 cos — |sin—=7y | +cos == (sin—-0 | + (sin =7 ) x | sin =7

2 2 2 2
T
cos % = cos % cos % - (sin % 52) (sin % z7l> (7.112)
To verify this, we will run the following Maple [17] program
> restart:
> with(LinearAlgebra):
> E:=IdentityMatrix(3):
> X_:=proc(u) <<0|-ul[3]|ul[2]>,<u[3]]0]|-u[l]>,<-u[2]|u[1l]|0>> end proc:
> vli=<xl,yl,zl>:
> V2:=<X2,y2,z2>:
> R1:=2*(sl*vl).Transpose(sl*v1)+(2%cl"2-1)*E+2*c1*X_(s1*vl):
> R2:=2%(s2*v2) .Transpose(s2*v2)+(2*c2"2-1)*E+2*c2*X_(s2*v2):
> R21:=expand” (R2.R1):
> c21:=c2*cl-Transpose(s2*v2).(sl*vl);

21 :=c2cl —s1x1s2x2 —slyls2y2 —slz1s2z2

> s21lv21:=c2*sl*v1+s2*cl*v2+X_(s2*v2).(sl*vl);

c2s1x1 +s2clx2—s2z2s1yl +s2y2s1z1
s21v21 := | 281yl +s2cly2 +s2z2s1x1 —s2x2s1z1
c2s1z1 +s2c1z2 —s2y2s1x1 +s2x2s1yl
> RR21:=2%s21v21.Transpose(s21v21)+(2*c21"2-1)*E+2*c21*X_(s21v21):
> simplify(expand”™ (RR21-R21),[x172+y17" 24217 2=1,x2"2+y2 " 2+z2"2=1,
cl”2+s172=1,c2"2+s2"2=11);
0 00
000
0 00

which verifies that our hypothesis was correct.
Thus we see that

o1 = 72 Ons o - & 2, let. e o | (113)
sin == U1 5 U1 +CO0Ss 5 sin 5 Uy +sIn 5 Sin 5 Uz X U]

=

O (2] O OO ST
- cos = _ cos 5t €os % — sin % sin 5+ 0, U1
cos % sin

Considering two unit quaternions

p1 q1
- p2 > q2
- , d = 7.114
F=|in| and 7= (7.114)
P4 qa
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we can now give their composition as

[ q1p1— q2p2 — 93 p3 — Gaps |
JMip2+q2p1 +493p4 —q4aps (7.115)
q1pP3 +q3p1 +qap2 — G2 pa

| J1P4 +qapr +q2p3 —q3p2 |

[ 191 — q2p2 — q3p3 — Gapa |
_ q2p1+q1p2_q4p3+q3p4 (7116)
q3p1 +qap2 +q91P3 —q2pa
| 9aP1 —qg3p2 T 42P3 + q1 P4 |
(51— -3 —qa| | p1]
L B e (7.117)
q3 g4 Mmoo —q2 P3
1 94 —q35 g2 q1] [ pa]

I~
N
Il
=
=
Il

7.3.4 Application of quaternions to vectors

Consider a rotation by angle 0 around an axis with direection @ represented by a unit quaternion

q = [cos g sin g 7] and a vector ¥ € R3. To rotate the vector, we may construct the rotation matrix
R(7) and apply it to the vector ¥ as R(7) X.
Interestingly enough, it is possible to accomplish this in somewhat different and more efficient way

by first “embedding” vector ¥ into a (non-unit!) quaternion

0

X
} = xl (7.118)

X3

= O

i - |

and then composing it with quaternion § from both sides

0 0
FpER)F = [C"Sez ] [OH C"Séﬁ] (7.119)

sin§ 7| |[X]|—sin§
One can verify that the following
0 > = -1
Sl = X 7.120
{R(q)x} gp) g (7.120)

holds true.

7.4 “Cayley transform” parameterization

We see that unit quaternions provide a nice parameterization. It is given as a matrix with polynomial
entries of four parameters. However, unit quaternions still are somewhat redundant since every
rotation is represented twice.

Let us now mention yet another classical rotation parameterization, which is known as “Cayley
transform”. This parameterization uses only three parameters to represent three-dimensional rota-
tions. In a sense, it is as ecconomic as it can be. On the other hand, it can’t represent rotations by
180°.

Actually, it can be proven [20] that there is no mapping (parameterization), which could be (i)
continuous, (ii) one-to-one, (iii) onto, and (iv) three-dimensional (i.e. mapping a “three-dimensional
box” onto all three-dimensional rotations).
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6/2 0

Figure 7.2: Cayley transform parameterization of two-dimensional rotations.

Axis-angle parameterization is continuous and onto but not one-to-one and not three-dimensional.
Euler vector parameterization is continuous, onto, three-dimensional but not one-to one. Unit quater-
nions are continuous, onto but not three-dimensional and not one-to one (although they are close
to that by being two-to-one). Finally, Cayley transform parameterization is continuous, one-to-one,
three-dimensional but it not onto.

In addition, unit quaternions and Cayley transform parameterizations are “finite” in the sense that
they are polynomial rational functions of their parameters while other above mentioned representa-
tions require some “infinite” process for computing trigonometric functions. This may be no problem
if approximate evaluation of functions is acceptable but, as we will see, it is a fundamental obstacle
to solving interesting engineering problems using computational algebra.

7.4.1 Cayley transform parameterization of two-dimensional rotations

Let us first look at two-dimesional roations. Figure [7.2] shows an illustartion of the relationship
between parameter c and cos 0, sin 0 on the unit circle. We see that, using the similarity of triangles,

% = £. Considering that (cos 0)? + (sin 0)? = 1 we are getting
1—(cos0)> = (sinB)? =c*(cosO + 1)% = *((cos 0)* +2 cos O + 1) (7.121)
0 = (2+1)(cos0)?+2c*cosO +c*—1 (7.122)
and thus
224+ At —4(2+1)(2-1) N A-(t-1) +1-¢
cos @ — % (E+DE-1) _ (-1 _#l-c (7.123)
2(c2+1) c2+1 1+¢?
gives either cos 0 = —1 or
cosf = L€ (7.124)
142 '
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The former case corresponds to point [—1 0] . In the latter case, we have

_ 2 1 2)2 _ (1 — 2)2
(sin@)? = 1—(c056)2:1—(1+22)2:< +C(i+c§)2 ) (7.125)
4284+ -(1-22+c) 42 [ 2 2
B (1 + c?)? (1422 (1 +c2> (7.126)

and thus sin0 = + 1122. Now, we see from Figure[Z.2 that we want sin O to be positive for positive c.

Therefore, we conclude that

2¢
sin@ = 7.127
1+4¢? ( )
It is important to notice that with the parameterization given by Equation [Z.124] we can never get
cos @ = —1 for a real c since if that was true, we would get —1 — ¢ = 1 — ¢? and hence —1 = 1.

On the other hand, we see that Cayley transform maps every c € R into a point on the unit circle
[cos 0 sin 0] T, and hence to the corresponding rotation

. -2 2c
R(C) = [cos@ —sm@] _ [1+C2 1+C2] (7.128)

sin 0 cos 6 2c 1-c
1+4c2 1+4c2

The mapping R(c): R — R is one-to-one since when two ¢y, c2 map into the same point, then

2a _ 2o (7.129)
1+c 1+¢c ’
a(l+cd) = al+d) (7.130)

cq—c = cic(c1 —¢2) (7.131)

implies that either cic; # 0, and then ¢; = ¢, or cic; = 0, and then ¢; = 0 = ¢, because both 1 + c%,
1 + c3 are positive. Next, let us see that the mapping is also onto R\{[—1 0]"}. Consider a point
[cosO sinO]" # [~10]". Its preimage c, is obtained as

sin @

=7 7.132
¢ 1+ cos@ ( )

which is clearly defined for cos 6 # —1.

7.4.1.1 Two-dimensional rational rotations

It is also important to notice that the R(c) is a rational function of c as well as c is a rational function or
R (e.g. of the two elements in its first column). Hence, every rational number c gives a rational point
[ b]" on the unit circle as well as every rational point [a b]" provides a rational c. This way, we can
obtain all rational two-dimensional rotations by going over all rational c’s plus the rotation —I».

7.4.2 Cayley transform parameterization of three-dimensional rotations

We saw that we have obtained a bijective (one-to-one and onto) mapping between all real numbers
and all two-dimensional rotations other than the rotation by 180° degrees. Now, since every three-
dimensional rotation can be actually seen as a two-dimensional rotation after aligning the z-axis with
the rotation axis, we may hint on having an analogous situation in three dimensions after removing
all rotations by 180°. Let us investigate this further and see that we can indeed establish a bijective
mapping between R® and all three-dimensional rotations by other than 180° angle.
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Let us consider that all rotations by 180° are represented by unit quaternionsinthe form [0 ¢2 g3 g4 ].

Hence, to remove them, it is enough to remove from all cases when c; = 0. One way to do it, is to
write down the rotation matrix in terms of (non-unit) quaternions §

. TG0 200~ q9s) - 200204+ 0175)
= 2(q3+q194) 95— 95 +95— 497 2(9392 — 192) (7.133)
2 2 2 2 1 2 3 4
NEDAGBTU| 2000 — 133)  2(ga9s + ) 2 — 03 — G + 43

R(7)

and thenset gy = 1,42 = ¢1, g3 = 2, q4 = c3, to get

, 1+t —c3—c5  2(cic2—c3) 2 (c1c3 + 2)
R(C) = 2(cic+c3) 1—-c+c5—c  2(cc3—c) (7.134)
1+ +c2+c2 B 2 20
1 T T 2 (c1c3 — €2) 2 (cpc3 + €1) 1—c]—c5+

with ¢ = [C1 ()] 63]T € R3.

It can be verified that R(¢) 'R(¢) = I for all ¢ € R® and hence the mapping R(¢): R® — R maps the
space IR? into rotation matrices R. Let us next see that the mapping is also one-to-one.

First, notice that by setting c; = ¢, = 0, we are getting

1_C§ -2 C3 0

1 1—c3 —2c3 0 g T
— 2 _ 1—
Re) =12 2% 1-9 0 20, 19 (7.135)
3 0 0 T+4c 0 3 0 3 )

which is exactly the Cayley parameterization for two-dimensional rotation around the z-axis. In the
same way, we get that R(c;) are rotations around the x-axis and R(c2) are rotations around the y-axis.
We have seen in Paragraph that the mapping between the unit quaternions 4 and rotation
matrices R(§) was “two-to-one” in the way that there were exactly two quaternions §, —f mapping
into one R, i.e. R(7) = R(—4). Now, we are forcing the first coordinate of the unit quaternion § =
[1 a1 & o ]T
I+ +c+cs
Now, let us see that by R(¢) we can represent all rotations that are not by 180°. ...

be positive. Therefore, the mapping R(¢) becomes one-to-one.
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8 Study motion parameterization

We understand, Chapter[5} that rotations can be represented in many ways. In particular, quaternions
provide a very convenient parameterization. They provide a continuous bijection between the subset
of non-isotropic points of the three-dimensional complex projective space IP?: and the rotation group
SO¢(3) of the complex rotations acting on the three-dimensional complex space ]P?C Our goal is to
construct a nice parameterization of the three-dimensional motions SE¢(3), acting on IP2, by a subset
of 11307:.

Let us first look at the two-dimensional complex rotations SO¢(2) acting on P2, which can be
parameterized by a subset of the complex projective space P¢ as

. s —c2 —2cs 0
[c s] st 2+s2#0— | 2cs s2—c> 0 (8.1)
0 0 c? + s?

We can extend it to SE¢(2) acting on IP¢. by

(8.2)

s2—c® —2cs cx—sy
0 0 e +s?

[c s x y]Ts.t. cz+52;é0'—>[ 2cs 2 —c* sx+cy

First of all, we see that a[¢ s «x y]T for & € C provides the a? multiple of the rotation matrix on
the right hand side above, since the map is homogeneous of degree two. Next, we see that for every

. T .
representative [tl tz] of a translation, we have exactly one

X c —s]7" H
H R &
since we can always do the inversion.

Let us now generalize the above construction to SE¢(3). We need to construct a homogeneous
degree-two map acting on ]P%. SOc(3), acting on P2, is parameterized by the non-isotropic quater-

nions[7.67las

0 7+ 95— 95— 1, 22 (QZZ3 - Zm)z 2 (4294 + 9193) 0
2 2 2(q2q3 + mqs) 97— a5+ 495 —4q;  2(9394 — q192) 0
= s.t. #0— 1 2 3 4
1= g | St ]al 2(020s — 193)  2(q30a + @) B —GF — @+ 2 0
G4 0 0 0 q%+q§+q§+qi

(8.4)
Next, we need to construct a one-to-one homogeneous, degree-two map between the translations and
one-dimensional subspaces of IP?. Let us consider the following equation forx = [x y z w]

g1 92 43 44 X 0 0
—q2 41 q4 —43 Y —X@t+yqtzq-wqs | [k (8.5)
—q3 —d4 n q2 z —Xq3—Yqgs+zq1 +wqn [2)
—q4 43 —q2  q1 w —Xq4+ Y43 —zZq2 W t3
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For every vector [tl tr t3 ]T, we have a unique solution of for [x y z w]T since the matrix on
the left is of full rank for any non-zero [41 42 43 44 ]. Thus, we can construct the map

q1
q2
73 P+P—ai—q> 2(0gs—qqs)  2(0ds+Q193)  —X@+Yq+ 204 — W43
1 St{!qzio]H 2(q293 + q10) 1~ G5+ 05— 05 200594 —G2) XG5 yda+ 21+ W0
x |77 xTq=0 2(gs —qq3)  2(Ga9a+q92) 41— 45— 43+ 47 —XQat Y@ —zZ@Fwaq
y 0 0 0 @+ a5+ 95+ 0,
y4
_w_

(8.6)

from a subset to ]Pé to SEc(3), acting on ]Pg:’:. This map is the Study motion parameterization [21} 22]].
The key property of the parameterization is that it is given by homogeneous polynomials of
degree two in the coordinates of representatives in IPZ_,. Hence, it is well defined since it maps all

representatives of a 1D subspace of ]PZ: into the representatives of a single subspace of ]Pol:6 of 4 x 4
complex motion matrices.

The domain of the map is the set difference V1\V> of two six-dimensional projective varieties in
IPZ. The variety V1 is given by Vi = V({(x"q) = V((x1q1 + X242 + X343 + x4 44)). The variety V, is
givenby Vy = V({|a|?)) = V({g? + g5 + 43 + q5)). The map is one-to-one and onto.
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9 Axis of Motion

We will study motion and show that every motion in three dimensional space has an axis of motion.
Axis of motion is a line of points that remain in the line after the motion. The existence of such an axis
will allow us to decompose every motion into a sequence of a rotation around the axis followed by a
translation along the axis as shown in Figure0.1(a).

9.1 Algebraic characterization of the axis of motion.

Consider Equation[5.5land denote the motion so defined as m(xg) = RXj + 0, w.r.t. a fixed coordinate

B
system (O, ). Now let us study the sets of points that remain fixed by the motion, i.e. sets F such

that for all 3 € F motion m leaves the m(xg) in the set, i.e. m(xg) € F. Clearly, complete space and the
empty set are fixed sets. How do look other, non-trivial, fixed sets?

A nonempty F contains at least one Xg. Then, both g = m(¥X3) and Zg = m(ijg) must be in F, see
Figure@.I[b). Let us investigate such fixed points xg for which

Zp — ip = Yp — Xp 9.1)

holds true. We do not yet know whether such equality has to necessary hold true for points of all
fixed sets F but we see that it holds true for the identity motion id that leaves all points unchanged,
i.e. id(xg) = Xg. We will find later that it holds true for all motions and all their fixed sets. Consider
the following sequence of equalities

Z—Vp = Up—

R(R¥Xp +0y) + 05 —R¥g — 05 = RXg+0; — ¥
R*% + ROy —RY; = R¥p+0;—Xp
R?% —2RXp + % = —R0j+0;
(R —2R+I)% = —(R-1I)d;
R-I)R-I)% = —(R-I)d, 9.2)
(R—1) ((R—I)fﬁJrJé) =0 (9.3)

Equation[.3]always has a solution. Let us see why.

Recall that rank (R — I) is either two or zero. If it is zero, then R — I = 0 and (i) Equation[0.3 holds
for every x.

Let rank (R — I) be two. Vector Jﬁ’
becomes (R — I)?¥g = 0, which has (ii) a one-dimensional space of solutions because the null space

and the range of R — I intersect only in the zero vector.

Let 5;,3’ be non-zero. Vector (7ﬁ' either is in the span of R — I or it is not. If 55’ is in the span of R — I,

then (R — I) xg + 6;3’ = 0 has (iii) one-dimensional affine space of solutions.

either is zero or it is not zero. If it is zero, then Equation

If Jﬁ’ is not in the span of R — I, then (R — I)i; + (75’ for ¥s € R® generates a vector in all one-

dimensional subspaces of R? which are not in the span of R — I. Therefore, it generates a non-zero

vector Zg = (R —1I)ijg + 073’ in the one-dimensional null space of R — I, because the null space and

the span of (R — I) intersect only in the zero vector. Equation (R — I)Zz = 0 is satisfied by (iv) a
one-dimensional affine set of vectors.
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Figure 9.1: Axis of motion.

We can conclude that every motion has a fixed line of points for which Equation©.1lholds. Therefore,
every motion has a fixed line of points, every motion has an axis.

9.2 Geometrical characterization of the axis of motion

We now understand the algebraic description of motion. Can we also understand the situation
geometrically? Figure[9.2 gives the answer. We shall concentrate on the general situation with R # I

=g

and 05 # 0. The main idea of the figure is that the axis of motion a consists of points that are first

Figure 9.2: Axis a of motion is parallel to the axis of rotation r and intersects the perpendicular plane o
passing through the origin O at a point P, which is first rotated in ¢ away from a to P’ and
then returned back to P” on a by translation ¢”. Point P is determined by the component
0 of 0/, which is in the plane o.
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rotated away from a by the pure rotation R around r and then returned back to a by the pure translation
>/

0.
B
Figure shows axis a of motion, which is parallel to the axis of rotation r and intersects the
perpendicular plane o passing through the origin O at a point P, which is first rotated in o away from
a to P’ and then returned back to P” on a by translation Jﬁ' . Point P is determined by the component

=g

0gpof 0, ﬁ/’ which is in the plane 0. Notice that every vector 0g can be written as a sum of its component

0//g parallel to r and component 0, g perpendicular to r.

§1 Motion axis is parallel to rotation axis. Let us verify algebraically that the rotation axis r is
parallel to the motion axis a. Consider Equation9.2] which we can rewrite as

R-I7%% = —(R-I)d; (9.4)
Define axis r of motion as the set of points that are left fixed by the pure rotation R, i.e.

R-I)x3 = 0 (9.5)
Rfﬁ = J?ﬁ (9.6)

These are eigenvectors of R and the zero vector. Take any two solutions ¥} B 3?25 of Equation9.4land
evaluate

R-IP2(Fp—dp) = —(R-I)G+R-1)d5=0 (9.7)

and thus a non-zero ¥ p— fzﬁ is an eigenvector of R. We see that the direction vectors of a lie in the
subspace of direction vectors of r.

9.3 Solving for the axis of motion

In Section 0.T] we have shown that every motion has a motion axis. Let us now give an explicit
description of the axis, in the spirit of [21, p.212], by choosing a particularly convenient solution of
Equation0.2] Let us take a geometric approach. It follows from Section[0.2] that

RE, — %y = 3 9.8)

Equation6.75and ¢ = (I — d7")d”’ give
R-—1)X=—(I-37")0d" (9.9)
Let us now express the projector (I — 77" ) using matrix R. Considering Equation[Z.21] we can write

R = 00 +cosO(I—37 )+sin6 [7], (9.10)
R+R = 277" +2cosO(I—-37") (9.11)

Now, we can use Equation[6.72] to rewrite cos 0 as 2 cos O = traceR — 1 to get

R+R' = 237 + (traceR—1)(I—-37") (9.12)
R+R' = (3—traceR)77' + (traceR—1)T (9.13)
and thus we get
R+R" + (1 — traceR) I
77T — (1 — traceR) (9.14)
3 — traceR

L 2I—-R-—R'
I-799 = ————— (9.15)

3 — traceR
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Substituting Equation into Equation 9.9 yields

R-1)¥Y = —(I—-37")0"

2I —R—RT
R—I)¥ = - — — — g5
( ) 3 — traceR

Now, we will employ another very useful identity
2I-R—-R'=R-I)R" —1)
to get (R — I) on the right hand side of Equation[9.17]

(R_ I) (RT — I) 3’

R—I)¥ = —
( ) 3 — traceR
> (I_RT) -/
R—-I)¥x = (R—-I)——
( ) ( >3—traceR
and thus we see that
> (I_RT) -/
Xo=———2""0
3 — traceR

is a particular solution of Equation[9.9] i.e. it is a point in the motion axis.
Let us see that it is a particularly interesting point. We shall evaluate

6)T(I — RT) >/

7%, d'=00"=0
3 — traceR

X0 =

(9.16)
(9.17)

(9.18)

(9.19)

(9.20)

(9.21)

(9.22)

to see that i) is perpendicular to the rotation axis of R which means that point on the motion axis
represented by ¥ is the closest point to the origin O and also is the intersection of the motion axis
with the plane perpendicular to the rotation axis and passing through the origin O.

A general point of the motion axis is thus obtained as

(I — RT) >/

— 7§ with R7=0 and 70 for
3 — traceR

X=at0+
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