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Introduction



Introduction

Many real-world systems are naturally graphs:

• Social networks → people as nodes, 
friendships as edges

• Molecules → atoms as nodes, bonds as 
edges

Graphs capture relationships and structures, not 
just individual data points.



What is Graph?

A graph G = (V, E) 

• V = set of nodes (vertices) 

• E = set of edges (connections) 

Often represented by adjacency 
matrix or edge list.



Why Not Just Use Standard ML

• Most ML tasks assume data in Euclidean space (images, text, 
audio). 

• CNNs work on images: fixed grid structure. 

• RNNs work on sequences: ordered data. 

• Increasingly, data come from non-Euclidean domains. Such data 
are often represented as graphs. 

• Graphs are irregular: 

• No fixed ordering of nodes.

• Variable size (different number of nodes). 

• Complex connectivity patterns. 

• Need special models that respect permutation 
invariance and local neighborhoods.



Basics of GNNs



Inputs to GNNs

• G = (V,E), where: 

• V – set of nodes

• E –set of edges

1. Node Features:

𝑥𝑣 ∈ ℝ
𝑑 - Feature vector for each node

Example: Particle kinematics

2. Edge Features:

𝑒𝑢𝑣 ∈ ℝ
𝑘 - Relationship between 

connected nodes

Example: Distance between particles



Node and Hidden Embeddings

• Node Embedding – each node is represented by a feature 

vector ℎ𝑣
(𝑘)

at layer k. Initially: 

ℎ𝑣
(0)

= 𝑥𝑣

• Hidden Embeddings - Represent intermediate states of 
node information after k message-passing steps



General GNN propagation rule

• Nodes exchange information with 
their neighbors. 

• Each node updates its 
representation using: 

• Its own features. 

• Features from its neighbors.

• Iterative process: after multiple 
layers, nodes “know” about distant 
parts of the graph.

General GNN message-passing update equation:

ℎ𝑣
(𝑘)

= 𝑓𝜃
𝑘

ℎ𝑣
𝑘−1

, ℎ𝑢
𝑘−1

| 𝑢 ∈ 𝑁𝑣

k = 1, … K – layers

𝑁𝑣 = 𝑢 ∈ 𝑉 | 𝑢, 𝑣 ∈ 𝐸 - local neighborhood of node v 



Classification 
Tasks



Node Classification

1. Node Classification:

• Goal: Predict the label of individual 
nodes

• Input: Single graph 

• Output: A label of each node

• Example: Predicting the topic of a 
paper in a citation graph



Edge classification (Link Prediction)

2. Edge Classification:

• Goal: Predict the type or existence 
of an edge between two nodes

• Input: Node embeddings or pair 
features

• Output: Label or probability for 
each possible edge

• Example: Predicting whether two 
users will be friends



Graph Classification

3. Graph Classification:

• Goal: Predict a label for the entire 
graph

• Input: Many small graphs

• Output: One label per graph

• Example: Classifying molecules as 
toxic or non-toxic



Types of GNN 
Architectures



Message Passing Neural Network

GNN layer is consist of three functions:

1. Message passing function

2. Aggregation function

3. Update activation function

4. Readout (per node output/global 
graph-level output)

𝑚𝑣𝑤
𝑡+1 = 𝑀 ℎ𝑣

𝑡 , ℎ𝑤
𝑡 , 𝑒𝑣,𝑤

𝑚𝑣
𝑡+1 = ෍

𝑤𝜖𝑁(𝑣)

𝑚𝑣𝑤
𝑡+1

ℎ𝑣
𝑡+1 = 𝑈 ℎ𝑣

𝑡 , 𝑚𝑣
𝑡+1

𝑦 = 𝑅(ℎ𝑣
𝑡∀𝑣 ∈ 𝑉)



Pros & Cons

• Very general framework — most GNNs 
(GCN, GAT, etc.) can be expressed as 
MPNNs.

• Naturally captures local dependencies 
between nodes through iterative 
message aggregation.

• Flexible — allows custom message, 
aggregation, and update functions.

• Expensive for large graphs (each layer 
needs neighbor communication). 

• Over-smoothing: after many layers, 
node embeddings become 
indistinguishable. 

• Hard to scale to dynamic or time-
varying graphs. 

• Limited long-range dependency 
capture without deeper networks 
(which increases cost).



Graph Convolutional Networks

Introduced by Kipf & Welling (2017)

𝐻(𝑙+1) = 𝑓(𝐻 𝑙 , 𝐴) = 𝜎 Ď−
1
2 ÂĎ−

1
2 𝐻(𝑙) 𝑊(𝑙)

Â = A + I – Adjacency matrix with self-loops 
(Aggregate information from neighbors)

Ď – Degree of matrix Â (Used for normalization)

𝐻(𝑙) - Node embeddings at layer l

𝑊(𝑙) - Weight matrix

𝜎 – Activation function (ReLu)



Pros & Cons

• Simpler and more efficient special 
case of MPNNs (uses linear 
aggregation).  

• Performs well for node classification 
and semi-supervised learning. 

• Easy to implement and widely 
supported in libraries (PyTorch
Geometric, DGL).

• Assumes homophily — nodes 
connected by edges should have 
similar features. 

• Over-smoothing with deeper layers. 

• Struggles with directed, weighted, or 
heterophilic graphs. 

• Information loss when averaging 
neighbors with equal weights.



Graph Attention Networks

• GATs extend GCNs using attention 
mechanisms.

• They allow nodes to weigh the 
importance of their neighbors 
dynamically.

• Motivation: In GCNs, all neighbors 
contribute equally, but not all are 
equally important.

• GATs learn attention coefficients to 
focus on the most relevant 
connections

Each node v computes attention coefficients with 
its neighbors u:

𝑒𝑣𝑢 = 𝑎(𝑊ℎ𝑣,𝑊ℎ𝑢)

ℎ𝑣 - feature vector of v

W – learnable weight matrix

a – attention function

Then coefficients are normalized:
𝛼𝑣𝑢 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥𝑢 𝑒𝑣𝑢

𝛼𝑣𝑢 - shows how important u to v



Graph Attention Networks

• The new embedding for node v is 
computed as a weighted sum of its 
neighbors’ features:

ℎ𝑣
′ = 𝜎 ෍

𝑢𝜖𝑁(𝑣)

𝛼𝑣𝑢𝑊ℎ𝑢

• To stabilize training and capture 
multiple types of relationships, GATs 
often use multiple attention heads:

ℎ𝑣
′ = ||𝑘=1

𝐾 𝜎 ෍

𝑢𝜖𝑁(𝑣)

𝛼𝑣𝑢
(𝑘)
𝑊(𝑘)ℎ𝑢



Pros & Cons

• Learns importance of each neighbor 
using attention — adaptive weighting 
improves performance. 

• Handles graphs with varying node 
degrees naturally. 

• Reduces noise from irrelevant 
neighbors. 

• Good for heterogeneous or complex 
relationship graphs.

• Computationally heavier due to 
attention coefficient calculation. 

• Attention may overfit on small or 
sparse datasets. 

• Scaling to very large graphs requires 
sampling or approximation. 

• Interpretability of attention weights 
can sometimes be misleading.



Explainability



Why Explainability for GNNs

• GNNs are powerful but often black 
boxes (tough to know why a prediction 
was made). 

• Explanations help to debug models.

• Key nodes and edges: Shows the most 
important components within a 
prediction. 

• Feature importance: Specific node 
and edge features that make 
decisions.



Explainablity Techniques

• Instance-level Explanations: Focus on 
understanding individual predictions 
making the complex more 
manageable.

• Model-level Explanations: Uncover the 
overall decision-making process 
providing a broader understanding.



Instance-level 
Explanations 



Gradients/Features-Based 
Methods

• Simplest approach used in picture 
and text jobs.

• Focuses on identifying important 
input features by backpropagating 
gradients.

• Feature-based approaches transfer 
hidden features to the input space 
using interpolation.

• Larger gradients or feature values 
typically denote increased 
importance in such methods.

• Given that hidden features and 
gradients have strong relationships 
with model parameters such 
explanations can reveal the model’s 
information.



Saliency Analysis (SA)

• This method highlights the input 
features that contribute the most to 
the model’s prediction.

• Uses squared gradient values as 
value scores for input features.

• Simple and efficient.

• Saturation problems.

• Can only reflect the sensitivity 
between input and output which 
cannot accurately show the 
importance.



Guided Backpropagation 
(GuidedBP)

• This method uses a guided version of backpropagation to 
identify the most important input features.

• Guided BP only back propagates positive gradients while 
clipping negative gradients to zeros since negative 
gradients are difficult to understand.

• Shares the same problems as SA.



Class Activation Mapping (CAM)

• This method generates heatmaps to 
visualize the regions of the input that 
contribute the most to the model’s 
prediction.

• CAM requires the use of a fully-
connected layer as the final classifier 
and a global average pooling layer in 
the GNN model.

• Weights are obtained from the final FC 
layer connected with the target 
prediction.

• It takes the final node embeddings and 
combines different feature maps by 
weighted summations to obtain 
importance scores for input nodes.

• Restricts its application and 
generalization. (GNN must meet 
specific criteria).

• Only explain graph classification 
models, because the final FC layer is 
required to map predictions to various 
nodes.



Perturbation-based Methods

• Involve modifying the input graphs to 
observe the model’s reactions, 
revealing crucial nodes and edges.

• But not all graphs can be resized to 
have the same number of edges and 
nodes.

• Structural information between 
nodes often plays a crucial role in 
characteristics of a graph.



GNNExplainer

• This method modifies the input graph 
and measures the change in the 
model’s output to identify important 
nodes and edges.

• Initializes randomly soft masks for 
edges and node features. Improved by 
maximizing the mutual information 
between predictions obtained by the 
original graph and predictions of the 
new graph using backpropagation.

• Final masks explain the relative 
importance of various parts of the 
graph.

• Suffers from the “introduced 
evidence” (new nodes or edges).

• The created masks are graph-specific 
and not easily generalizable.



PGExplainer

•This method uses a probabilistic 
graphical model to explain the model’s 
predictions.

• Each edge in a graph first gets an 
embedding formed by concatenating 
node embeddings of the nodes that the 
edge connects.

• These edge embeddings are used for 
predicting the importance of that edge.

•The mask predictor is trained similarly 
as in GNNExplainer

• The “introduced evidence” problem is 
largely avoided due to the use of the 
reparameterization trick.



Surrogate Methods

• The idea is to employ a surrogate 
model to approximate the 
predictions of the model.

• The explanations from surrogate 
model are used to explain the 
original prediction.



GraphLIME

• It builds a local neighborhood 
around a target node using its N-hop 
neighboring nodes (where N = 
number of GNN Layers).

• The local dataset is learnt using a 
nonlinear surrogate model.

• Based on the weights attributed to 
different features in HSIC Lasso it 
can select important features which 
are treated as explanations for both 
the surrogate and the GNN 
predictions.

• Can only provide explanations for node 
features and it ignores graph 
structures such as nodes and edges.

• Cannot be applied to graph 
classification problems.



Decomposition Methods

• Reveals the relationship between 
the features and the output 
predictions.

• Follows that the sum of the 
decomposed terms should equal the 
original prediction score.

• Challenging to apply to the graph 
domain. Structural properties cannot 
be ignored while distributing scores.



LRP

• Score decomposition rule is 
developed based on the hidden 
features and weights.

• The scores of a target neuron are 
represented as a linear 
approximation of neuron scores from 
the previous layer.

• Explanation results are more trustable 
as LRP is directly developed based on 
the model parameters.



Model-level 
Explanations 



Model Level Explanations

• Aims for high-level understandings 
of deep graph models.

• Create graphs that maximally 
activate the model for specific 
classes revealing its internal 
representations.

• Investigates which input graph 
patterns can result in a particular 
GNN behavior like optimising a 
target prediction

• More difficult to explain GNNs at the 
model level. Underexplored subject.



XGNN

• Explains the GNN model from a global 
perspective.

• Creates the most important graph 
patterns for a given class.

• Makes predictions about how to add 
an edge to the existing graph at each 
step.

• Created graphs are then input into the 
trained GNNs to get feedback for 
policy gradient training of the 
generator.

• By employing policy gradient to 
maximize the reward the entire 
framework is optimized.

• Offers more knowledge of the GNN 
model through the use of class 
relevant graph patterns.

• Independent of any specific GNN 
architecture.

• Less accurate than the instance level 
techniques.



How to Tell If an Explainability
Technique Works Well?

• Fidelity: checks if the features 
chosen by the algorithm really matter 
for the model’s predictions. Remove 
important/unimportant feature and 
see if accuracy drops/stays the same.

• Sparsity: good explanations should 
capture only the most important 
input features and ignore the rest 
(lower is better).

• Stability: when small changes are 
applied to the input the prediction 
should not be affected

• Accuracy: tells how close the 
algorithm’s explanation is to the real 
reason behind the model’s prediction. 
Did the algorithm find the same 
important features as true ones?



Fidelity

1.
SubgraphX (Gradients/Fea
tures-Based Methods) 
outperforms all other 
methods.

2. GNN-GI and GNN-
LRP, generally obtain higher 
scores than GNNExplainer
and PGExplainer.



Accuracy & Stability

Synthetic datasets BA-Shapes and BA-
Community. In these datasets the known true 
patterns (motifs) are turned into true edge 
masks. These true masks are compared with 
the edge importance scores predicted by 
different explanation methods. The 
comparison is measured using the AUC-
ROC.

1.The highest accuracy is obtained by GNN-
LRP for the BA-shapes dataset and by 
GNNExplainer on the BA-Community dataset.

2.DeepLift has the best Stability, but that 
comes at the cost of accuracy.



Limitations and 
Challenges



Graph Structure Limitation

• GNNs can get confused when all 
nodes have the same features (every 
node looks identical). In that case, 
even if two graphs have different 
connections GNN might still think they 
are the same.

• This happens because of the 
aggregation step. GNN combines 
information from neighbors. If function 
gives the same result for two different 
neighborhoods then the model can’t 
tell those structures apart.



Noise Vulnerability

• GNNs are not robust to noise in graph data

• Adding a slight noise in graph through node perturbation or edge 
addition/deletion is influencing the output of the GNNs.



Label Scarcity and Overfitting in 
Scientific Tasks

• In domains like chemistry or biology, labels are expensive to acquire 
(experiment results)

• Datasets are often small, which leads models to overfit



Future Challenges

• Making GNNs robust and stable under 
graph perturbations. 

• Handling optimization over discrete 
graph structures effectively. 

• Finding good pre-training strategies for 
GNNs.

• Finding trade offs between accuracy 
and robustness.



Applications



Charged particle tracking (HEP)

Paper: Charged particle tracking via 
edge-classifying interaction networks
(DeZoort et al., 2021)

Application: Identify true track segments 
from silicon-tracker hits (HL-LHC-like 
pileup).

• GNN achieves high edge classification 
accuracy and strong tracking efficiency. 

• Models trained on simpler graphs performed 
well on complex ones. 

• The model runs quickly on GPUs (using 
TorchScript) and is much smaller than earlier 
GNNs.



Combinatorial optimization with 
physics-inspired GNNs

Paper: Combinatorial Optimization with 
Physics-Inspired Graph Neural Networks
(Schuetz, Brubaker, Katzgraber, 2021)

Application: Solve NP-hard QUBO/PUBO 
problems (MaxCut, MIS) via an 
unsupervised PI-GNN trained on a relaxed 
Hamiltonian then project to integers.

• On MaxCut: PI-GNN is competitive with 
or better than classic solvers.

• On MIS: matches traditional 
algorithms on small graphs and 
scales; achieves high quality solutions 
up to very large graphs.



Conclusion

• GNNs have become a powerful framework.

• They show success across fields (social networks, recommendation systems, 
physics, chemistry).

• Despite these advances challenges remain



Thank you
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