
Graph Neural
Networks

Azad Afandizada

10.10.2025

Contents

• Introduction

• Basics of GNNs

• Classification Tasks

• Types of GNN Architectures

• Explanaibility

• Limitations and Challenges

• Applications

• Conclusion

Introduction

Introduction

Many real-world systems are naturally graphs:

• Social networks → people as nodes,
friendships as edges

• Molecules → atoms as nodes, bonds as
edges

Graphs capture relationships and structures, not
just individual data points.

What is Graph?

A graph G = (V, E)

• V = set of nodes (vertices)

• E = set of edges (connections)

Often represented by adjacency
matrix or edge list.

Why Not Just Use Standard ML

• Most ML tasks assume data in Euclidean space (images, text,
audio).

• CNNs work on images: fixed grid structure.

• RNNs work on sequences: ordered data.

• Increasingly, data come from non-Euclidean domains. Such data
are often represented as graphs.

• Graphs are irregular:

• No fixed ordering of nodes.

• Variable size (different number of nodes).

• Complex connectivity patterns.

• Need special models that respect permutation
invariance and local neighborhoods.

Basics of GNNs

Inputs to GNNs

• G = (V,E), where:

• V – set of nodes

• E –set of edges

1. Node Features:

𝑥𝑣 ∈ ℝ
𝑑 - Feature vector for each node

Example: Particle kinematics

2. Edge Features:

𝑒𝑢𝑣 ∈ ℝ
𝑘 - Relationship between

connected nodes

Example: Distance between particles

Node and Hidden Embeddings

• Node Embedding – each node is represented by a feature

vector ℎ𝑣
(𝑘)

at layer k. Initially:

ℎ𝑣
(0)

= 𝑥𝑣

• Hidden Embeddings - Represent intermediate states of
node information after k message-passing steps

General GNN propagation rule

• Nodes exchange information with
their neighbors.

• Each node updates its
representation using:

• Its own features.

• Features from its neighbors.

• Iterative process: after multiple
layers, nodes “know” about distant
parts of the graph.

General GNN message-passing update equation:

ℎ𝑣
(𝑘)

= 𝑓𝜃
𝑘

ℎ𝑣
𝑘−1

, ℎ𝑢
𝑘−1

| 𝑢 ∈ 𝑁𝑣

k = 1, … K – layers

𝑁𝑣 = 𝑢 ∈ 𝑉 | 𝑢, 𝑣 ∈ 𝐸 - local neighborhood of node v

Classification
Tasks

Node Classification

1. Node Classification:

• Goal: Predict the label of individual
nodes

• Input: Single graph

• Output: A label of each node

• Example: Predicting the topic of a
paper in a citation graph

Edge classification (Link Prediction)

2. Edge Classification:

• Goal: Predict the type or existence
of an edge between two nodes

• Input: Node embeddings or pair
features

• Output: Label or probability for
each possible edge

• Example: Predicting whether two
users will be friends

Graph Classification

3. Graph Classification:

• Goal: Predict a label for the entire
graph

• Input: Many small graphs

• Output: One label per graph

• Example: Classifying molecules as
toxic or non-toxic

Types of GNN
Architectures

Message Passing Neural Network

GNN layer is consist of three functions:

1. Message passing function

2. Aggregation function

3. Update activation function

4. Readout (per node output/global
graph-level output)

𝑚𝑣𝑤
𝑡+1 = 𝑀 ℎ𝑣

𝑡 , ℎ𝑤
𝑡 , 𝑒𝑣,𝑤

𝑚𝑣
𝑡+1 = ෍

𝑤𝜖𝑁(𝑣)

𝑚𝑣𝑤
𝑡+1

ℎ𝑣
𝑡+1 = 𝑈 ℎ𝑣

𝑡 , 𝑚𝑣
𝑡+1

𝑦 = 𝑅(ℎ𝑣
𝑡∀𝑣 ∈ 𝑉)

Pros & Cons

• Very general framework — most GNNs
(GCN, GAT, etc.) can be expressed as
MPNNs.

• Naturally captures local dependencies
between nodes through iterative
message aggregation.

• Flexible — allows custom message,
aggregation, and update functions.

• Expensive for large graphs (each layer
needs neighbor communication).

• Over-smoothing: after many layers,
node embeddings become
indistinguishable.

• Hard to scale to dynamic or time-
varying graphs.

• Limited long-range dependency
capture without deeper networks
(which increases cost).

Graph Convolutional Networks

Introduced by Kipf & Welling (2017)

𝐻(𝑙+1) = 𝑓(𝐻 𝑙 , 𝐴) = 𝜎 Ď−
1
2 ÂĎ−

1
2 𝐻(𝑙) 𝑊(𝑙)

Â = A + I – Adjacency matrix with self-loops
(Aggregate information from neighbors)

Ď – Degree of matrix Â (Used for normalization)

𝐻(𝑙) - Node embeddings at layer l

𝑊(𝑙) - Weight matrix

𝜎 – Activation function (ReLu)

Pros & Cons

• Simpler and more efficient special
case of MPNNs (uses linear
aggregation).

• Performs well for node classification
and semi-supervised learning.

• Easy to implement and widely
supported in libraries (PyTorch
Geometric, DGL).

• Assumes homophily — nodes
connected by edges should have
similar features.

• Over-smoothing with deeper layers.

• Struggles with directed, weighted, or
heterophilic graphs.

• Information loss when averaging
neighbors with equal weights.

Graph Attention Networks

• GATs extend GCNs using attention
mechanisms.

• They allow nodes to weigh the
importance of their neighbors
dynamically.

• Motivation: In GCNs, all neighbors
contribute equally, but not all are
equally important.

• GATs learn attention coefficients to
focus on the most relevant
connections

Each node v computes attention coefficients with
its neighbors u:

𝑒𝑣𝑢 = 𝑎(𝑊ℎ𝑣,𝑊ℎ𝑢)

ℎ𝑣 - feature vector of v

W – learnable weight matrix

a – attention function

Then coefficients are normalized:
𝛼𝑣𝑢 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥𝑢 𝑒𝑣𝑢

𝛼𝑣𝑢 - shows how important u to v

Graph Attention Networks

• The new embedding for node v is
computed as a weighted sum of its
neighbors’ features:

ℎ𝑣
′ = 𝜎 ෍

𝑢𝜖𝑁(𝑣)

𝛼𝑣𝑢𝑊ℎ𝑢

• To stabilize training and capture
multiple types of relationships, GATs
often use multiple attention heads:

ℎ𝑣
′ = ||𝑘=1

𝐾 𝜎 ෍

𝑢𝜖𝑁(𝑣)

𝛼𝑣𝑢
(𝑘)
𝑊(𝑘)ℎ𝑢

Pros & Cons

• Learns importance of each neighbor
using attention — adaptive weighting
improves performance.

• Handles graphs with varying node
degrees naturally.

• Reduces noise from irrelevant
neighbors.

• Good for heterogeneous or complex
relationship graphs.

• Computationally heavier due to
attention coefficient calculation.

• Attention may overfit on small or
sparse datasets.

• Scaling to very large graphs requires
sampling or approximation.

• Interpretability of attention weights
can sometimes be misleading.

Explainability

Why Explainability for GNNs

• GNNs are powerful but often black
boxes (tough to know why a prediction
was made).

• Explanations help to debug models.

• Key nodes and edges: Shows the most
important components within a
prediction.

• Feature importance: Specific node
and edge features that make
decisions.

Explainablity Techniques

• Instance-level Explanations: Focus on
understanding individual predictions
making the complex more
manageable.

• Model-level Explanations: Uncover the
overall decision-making process
providing a broader understanding.

Instance-level
Explanations

Gradients/Features-Based
Methods

• Simplest approach used in picture
and text jobs.

• Focuses on identifying important
input features by backpropagating
gradients.

• Feature-based approaches transfer
hidden features to the input space
using interpolation.

• Larger gradients or feature values
typically denote increased
importance in such methods.

• Given that hidden features and
gradients have strong relationships
with model parameters such
explanations can reveal the model’s
information.

Saliency Analysis (SA)

• This method highlights the input
features that contribute the most to
the model’s prediction.

• Uses squared gradient values as
value scores for input features.

• Simple and efficient.

• Saturation problems.

• Can only reflect the sensitivity
between input and output which
cannot accurately show the
importance.

Guided Backpropagation
(GuidedBP)

• This method uses a guided version of backpropagation to
identify the most important input features.

• Guided BP only back propagates positive gradients while
clipping negative gradients to zeros since negative
gradients are difficult to understand.

• Shares the same problems as SA.

Class Activation Mapping (CAM)

• This method generates heatmaps to
visualize the regions of the input that
contribute the most to the model’s
prediction.

• CAM requires the use of a fully-
connected layer as the final classifier
and a global average pooling layer in
the GNN model.

• Weights are obtained from the final FC
layer connected with the target
prediction.

• It takes the final node embeddings and
combines different feature maps by
weighted summations to obtain
importance scores for input nodes.

• Restricts its application and
generalization. (GNN must meet
specific criteria).

• Only explain graph classification
models, because the final FC layer is
required to map predictions to various
nodes.

Perturbation-based Methods

• Involve modifying the input graphs to
observe the model’s reactions,
revealing crucial nodes and edges.

• But not all graphs can be resized to
have the same number of edges and
nodes.

• Structural information between
nodes often plays a crucial role in
characteristics of a graph.

GNNExplainer

• This method modifies the input graph
and measures the change in the
model’s output to identify important
nodes and edges.

• Initializes randomly soft masks for
edges and node features. Improved by
maximizing the mutual information
between predictions obtained by the
original graph and predictions of the
new graph using backpropagation.

• Final masks explain the relative
importance of various parts of the
graph.

• Suffers from the “introduced
evidence” (new nodes or edges).

• The created masks are graph-specific
and not easily generalizable.

PGExplainer

•This method uses a probabilistic
graphical model to explain the model’s
predictions.

• Each edge in a graph first gets an
embedding formed by concatenating
node embeddings of the nodes that the
edge connects.

• These edge embeddings are used for
predicting the importance of that edge.

•The mask predictor is trained similarly
as in GNNExplainer

• The “introduced evidence” problem is
largely avoided due to the use of the
reparameterization trick.

Surrogate Methods

• The idea is to employ a surrogate
model to approximate the
predictions of the model.

• The explanations from surrogate
model are used to explain the
original prediction.

GraphLIME

• It builds a local neighborhood
around a target node using its N-hop
neighboring nodes (where N =
number of GNN Layers).

• The local dataset is learnt using a
nonlinear surrogate model.

• Based on the weights attributed to
different features in HSIC Lasso it
can select important features which
are treated as explanations for both
the surrogate and the GNN
predictions.

• Can only provide explanations for node
features and it ignores graph
structures such as nodes and edges.

• Cannot be applied to graph
classification problems.

Decomposition Methods

• Reveals the relationship between
the features and the output
predictions.

• Follows that the sum of the
decomposed terms should equal the
original prediction score.

• Challenging to apply to the graph
domain. Structural properties cannot
be ignored while distributing scores.

LRP

• Score decomposition rule is
developed based on the hidden
features and weights.

• The scores of a target neuron are
represented as a linear
approximation of neuron scores from
the previous layer.

• Explanation results are more trustable
as LRP is directly developed based on
the model parameters.

Model-level
Explanations

Model Level Explanations

• Aims for high-level understandings
of deep graph models.

• Create graphs that maximally
activate the model for specific
classes revealing its internal
representations.

• Investigates which input graph
patterns can result in a particular
GNN behavior like optimising a
target prediction

• More difficult to explain GNNs at the
model level. Underexplored subject.

XGNN

• Explains the GNN model from a global
perspective.

• Creates the most important graph
patterns for a given class.

• Makes predictions about how to add
an edge to the existing graph at each
step.

• Created graphs are then input into the
trained GNNs to get feedback for
policy gradient training of the
generator.

• By employing policy gradient to
maximize the reward the entire
framework is optimized.

• Offers more knowledge of the GNN
model through the use of class
relevant graph patterns.

• Independent of any specific GNN
architecture.

• Less accurate than the instance level
techniques.

How to Tell If an Explainability
Technique Works Well?

• Fidelity: checks if the features
chosen by the algorithm really matter
for the model’s predictions. Remove
important/unimportant feature and
see if accuracy drops/stays the same.

• Sparsity: good explanations should
capture only the most important
input features and ignore the rest
(lower is better).

• Stability: when small changes are
applied to the input the prediction
should not be affected

• Accuracy: tells how close the
algorithm’s explanation is to the real
reason behind the model’s prediction.
Did the algorithm find the same
important features as true ones?

Fidelity

1.
SubgraphX (Gradients/Fea
tures-Based Methods)
outperforms all other
methods.

2. GNN-GI and GNN-
LRP, generally obtain higher
scores than GNNExplainer
and PGExplainer.

Accuracy & Stability

Synthetic datasets BA-Shapes and BA-
Community. In these datasets the known true
patterns (motifs) are turned into true edge
masks. These true masks are compared with
the edge importance scores predicted by
different explanation methods. The
comparison is measured using the AUC-
ROC.

1.The highest accuracy is obtained by GNN-
LRP for the BA-shapes dataset and by
GNNExplainer on the BA-Community dataset.

2.DeepLift has the best Stability, but that
comes at the cost of accuracy.

Limitations and
Challenges

Graph Structure Limitation

• GNNs can get confused when all
nodes have the same features (every
node looks identical). In that case,
even if two graphs have different
connections GNN might still think they
are the same.

• This happens because of the
aggregation step. GNN combines
information from neighbors. If function
gives the same result for two different
neighborhoods then the model can’t
tell those structures apart.

Noise Vulnerability

• GNNs are not robust to noise in graph data

• Adding a slight noise in graph through node perturbation or edge
addition/deletion is influencing the output of the GNNs.

Label Scarcity and Overfitting in
Scientific Tasks

• In domains like chemistry or biology, labels are expensive to acquire
(experiment results)

• Datasets are often small, which leads models to overfit

Future Challenges

• Making GNNs robust and stable under
graph perturbations.

• Handling optimization over discrete
graph structures effectively.

• Finding good pre-training strategies for
GNNs.

• Finding trade offs between accuracy
and robustness.

Applications

Charged particle tracking (HEP)

Paper: Charged particle tracking via
edge-classifying interaction networks
(DeZoort et al., 2021)

Application: Identify true track segments
from silicon-tracker hits (HL-LHC-like
pileup).

• GNN achieves high edge classification
accuracy and strong tracking efficiency.

• Models trained on simpler graphs performed
well on complex ones.

• The model runs quickly on GPUs (using
TorchScript) and is much smaller than earlier
GNNs.

Combinatorial optimization with
physics-inspired GNNs

Paper: Combinatorial Optimization with
Physics-Inspired Graph Neural Networks
(Schuetz, Brubaker, Katzgraber, 2021)

Application: Solve NP-hard QUBO/PUBO
problems (MaxCut, MIS) via an
unsupervised PI-GNN trained on a relaxed
Hamiltonian then project to integers.

• On MaxCut: PI-GNN is competitive with
or better than classic solvers.

• On MIS: matches traditional
algorithms on small graphs and
scales; achieves high quality solutions
up to very large graphs.

Conclusion

• GNNs have become a powerful framework.

• They show success across fields (social networks, recommendation systems,
physics, chemistry).

• Despite these advances challenges remain

Thank you

Papers Used

https://arxiv.org/pdf/1901.00596

https://arxiv.org/pdf/1812.08434

https://arxiv.org/pdf/2107.01188

https://arxiv.org/pdf/2507.13703

https://medium.com/@debjoysaha/a-beginners-guide-to-
explainability-in-graph-neural-networks-99927d527718

https://medium.com/@ykarray29/explainable-ai-for-graph-
neural-networks-a4b89c89983a

https://arxiv.org/pdf/1901.00596
https://arxiv.org/pdf/1812.08434
https://arxiv.org/pdf/2107.01188
https://arxiv.org/pdf/2507.13703
https://medium.com/@debjoysaha/a-beginners-guide-to-explainability-in-graph-neural-networks-99927d527718
https://medium.com/@ykarray29/explainable-ai-for-graph-neural-networks-a4b89c89983a

