Graph Neural
Networks

Azad Afandizada
10.10.2025

N

Contents

* Introduction

« Basics of GNNs
 Classification Tasks

* Types of GNN Architectures
* Explanaibility

* Limitations and Challenges
* Applications

 Conclusion

Introduction

N

Introduction

Many real-world systems are naturally graphs:

* Social networks — people as nodes,
friendships as edges

* Molecules — atoms as nodes, bonds as
edges

Graphs capture relationships and structures, not
just individual data points.

What is Graph?

A graph G = (V, E)

 V =set of nodes (vertices)
« E =set of edges (connections)

Often represented by adjacency
matrix or edge list.

nun 5 W N = O

Why Not Just Use Standard ML

Most ML tasks assume data in Euclidean space (images, text,

audio).
. . . fc 3 fc_ 4
CNNs work on images: fixed grid structure. Fully-Connected Fully-Connected
Neural Network Neural Network
Conv_1 Conv_2 RelU activation
RNNs work on sequences: ordered data Convolution Convolution ,-%r—’ﬁ
' ' (5 x 5) kernel Max-Pooling (5 x 5) kernel Max-Pooling (with
valid padding (2x2) valid padding (2x2) dronout]
Increasingly, data come from non-Euclidean domains. Such data ® @®o
are often represented as graphs. o o
e 1
Graphs are irregular: % @ 02
* No fixed ordering of nodes. I i\
INPUT nl channels nl channels n2 channels nZ channels . . 9
- Variable size (different number of nodes) R eixd) i xazxen) - Exdedl o @bt gl oureur

n3 units

« Complex connectivity patterns.

* Need special models that respect permutation
invariance and local neighborhoods.

Inputs to GNNs

* G=(V,E), where: 2. Edge Features:

* V -setof nodes e,, € R¥ - Relationship between

connected nodes
* E -setof edges

Example: Distance between particles
1. Node Features:
x, € R? - Feature vector for each node

Example: Particle kinematics

Node and Hidden Embeddings

* Node Embedding - each node is represented by a feature
(k) TERNTA
vector h;;~ at layer K. Initially:
O = x
v ~— M

 Hidden Embeddings - Represent intermediate states of
node information after k message-passing steps

General GNN propagation rule

Nodes exchange information with
their neighbors.

Each node updates its
representation using;:

* Its own features.
* Features from its neighbors.

Iterative process: after multiple
layers, nodes “know” about distant
parts of the graph.

General GNN message-passing update equation:

K = 19 (b8, (8D e w,))

k=1, .. K - layers

N, ={u € V| (u,v) € E} - local neighborhood of node v

Classification
Tasks

N

Node Classification

1. Node Classification:

Goal: Predict the label of individual
nodes

Input: Single graph
Output: A label of each node

Example: Predicting the topic of a
paper in a citation graph

Edge classification (Link Prediction)

2. Edge Classification:

 (Goal: Predict the type or existence
of an edge between two nodes

* |nput: Node embeddings or pair
features

Qutput: Label or probability for
each possible edge

 Example: Predicting whether two
users will be friends

Graph Classification

3. Graph Classification:

 (@Goal: Predict a label for the entire
graph

* Input: Many small graphs
e OQutput: One label per graph

 Example: Classifying molecules as
toxic or non-toxic

Types of GNN
Architectures

N

Message Passing Neural Network

GNN layer is consist of three functions:

1. Message passing function mitt = M(hE, R, ey) @ @ @
@ |

\\ f‘j \
2. Aggregation function t+1 t+1
gereg mitl = z mtt _p i
weN) /'_"\ t+1 1
ienieym(hy, he, € h”- M“ h,
3. Update activation function /',;,& o / M= eneymlhihe ei) u()
woiner O @
4. Readout (per node output/global Message creation Aggregation Update function

graph-level output) y = R(hkvv € V)

Pros & Cons

* Very general framework — most GNNs * Expensive for large graphs (each layer
(GCN, GAT, etc.) can be expressed as needs neighbor communication).
MPNNSs.

 Over-smoothing: after many layers,

* Naturally captures local dependencies node embeddings become
between nodes through iterative indistinguishable.
message aggregation.

 Hard to scale to dynamic or time-
* Flexible — allows custom message, varying graphs.

aggregation, and update functions.
* Limited long-range dependency

capture without deeper networks
(which increases cost).

Graph Convolutional Networks

Introduced by Kipf & Welling (2017)

. 1 1
g+ — f(H(l),A) — O'(D_E AD 2 HOD W(l))

A = A + 1 - Adjacency matrix with self-loops
(Aggregate information from neighbors)

D - Degree of matrix A (Used for normalization)
H® - Node embeddings at layer |
W® - Weight matrix

o - Activation function (ReLu)

Hidden layer

RelU

s

Hidden layer

Pros & Cons

Simpler and more efficient special
case of MPNNs (uses linear
aggregation).

Performs well for node classification
and semi-supervised learning.

Easy to implement and widely
supported in libraries (PyTorch
Geometric, DGL).

Assumes homophily — nodes
connected by edges should have
similar features.

Over-smoothing with deeper layers.

Struggles with directed, weighted, or
heterophilic graphs.

Information loss when averaging
neighbors with equal weights.

Graph Attention Networks

* GATs extend GCNs using attention
mechanisms.

 They allow nodes to weigh the
importance of their neighbors
dynamically.

* Motivation: In GCNs, all neighbors
contribute equally, but not all are
equally important.

e GATs learn attention coefficients to
focus on the most relevant
connections

Each node v computes attention coefficients with
its neighbors u:
eyy = a(Wh,, Why,)

h,, - feature vector of v
W - learnable weight matrix
a — attention function

Then coefficients are normalized:
Ay = softmaxy(eyy)

Ay - Shows how importantu to v

Graph Attention Networks

 The new embedding for node v is
computed as a weighted sum of its
neighbors’ features:

h, = a(2 a,,uWhu>

ueN(v)

To stabilize training and capture
multiple types of relationships, GATs
often use multiple attention heads:

/ k
hy = ”Ik(:lo-(2 algu)W(k)hu>

ueN(v)

Pros & Cons

Learns importance of each neighbor
using attention — adaptive weighting
improves performance.

Handles graphs with varying node
degrees naturally.

Reduces noise from irrelevant
neighbors.

Good for heterogeneous or complex
relationship graphs.

Computationally heavier due to
attention coefficient calculation.

Attention may overfit on small or
sparse datasets.

Scaling to very large graphs requires
sampling or approximation.

Interpretability of attention weights
can sometimes be misleading.

Why Explainability for GNNs

 GNNSs are powerful but often black * Key nodes and edges: Shows the most
boxes (tough to know why a prediction important components within a
was made). prediction.

* Explanations help to debug models. * Feature importance: Specific node

and edge features that make
decisions.

Explainablity Techniques \

Graph Neural Netwok

* |nstance-level Explanations: Focus on emananons
understanding individual predictions
making the complex more
manageable.

* Model-level Explanations: Uncover the ((orssnsresrss) (_parursasons) (" oscampostion)
overall decision-making process
providing a broader understanding.

Model-level
Explanations

Instance-level
Explanations

\J

GNNEXxplainer 2019 /
PGExplainer 2020 LRP 2019

ZORRO 2020 Excitation BP 2019

GraphMask 2021 \ GNN-LRP j 2020
2021

Causal Screening
o|u]] #4): Explainability in Graph Neural Networks: A Taxonomic Survey (Yuan et al. 2020)

SA
Guided BP

2020 (

2020
2020

CAM
Grad-CAM

-
-

Instance-level
Explanations

N

Gradients/Features-Based
Methods

Simplest approach used in picture
and text jobs.

Focuses on identifying important
input features by backpropagating
gradients.

Feature-based approaches transfer
hidden features to the input space
using interpolation.

Larger gradients or feature values
typically denote increased
Importance in such methods.

Given that hidden features and
gradients have strong relationships
with model parameters such
explanations can reveal the model’s
Information.

Saliency Analysis (SA)

» This method highlights the input e Saturation problems.
features that contribute the most to
the model’s prediction. e (Can only reflect the sensitivity
between input and output which
« Uses squared gradient values as cannot accurately show the
value scores for input features. importance.

« Simple and efficient.

Guided Backpropagation
(GuidedBP)

» This method uses a guided version of backpropagation to
identify the most important input features.

« Guided BP only back propagates positive gradients while
clipping negative gradients to zeros since negative
gradients are difficult to understand.

« Shares the same problems as SA.

Class Activation Mapping (CAM)

" ViSualve he Fsglons of the bt that * Restricts its application and
contribute the most to the model’s generalization. (GNN must meet
prediction. specific criteria).

 CAM requires the use of a fully- . i ificati
connectqed layer as the final clgssifier Only explain graph cla§S|f|Cat|on :
and a alobal average poo“ng |ayer in mOdeIS, because the final FC Iayer IS
the GNN model. required to map predictions to various

nodes.

* Weights are obtained from the final FC
layer connected with the target
prediction.

|t takes the final node embeddings and
combines different feature maps by
weighted summations to obtain
importance scores for input nodes.

Perturbation-based Methods

* Involve modifying the input graphs to

observe the model’s reactions, R
revealing crucial nodes and edges. . = ——————— Prediction
(")
Feature mask
- But not all graphs can be resized to | 0s]07]03 I
have the same number of edges and input graph 4 Edge mask
nodes. @ :
Q‘ Mask generation i GNN
@ G) algorithm 10
o € ¢ @

« Structural information between
nodes often plays a crucial role in
characteristics of a graph.

Node mask

oo]
J

.

GNNEXxplainer

This method modifies the input graph
and measures the change in the
model’s output to identify important
nodes and edges.

Initializes randomly soft masks for
edges and node features. Improved by
maximizing the mutual information
between predictions obtained by the
original graph and predictions of the
new graph using backpropagation.

Final masks explain the relative
Importance of various parts of the
graph.

Suffers from the “introduced
evidence” (new nodes or edges).

The created masks are graph-specific
and not easily generalizable.

PGEXxplainer

*This method uses a probabilistic
graphical model to explain the model's
predictions.

» Each edge in a graph first gets an
embedding formed by concatenating
node embeddings of the nodes that the
edge connects.

* These edge embeddings are used for
predicting the importance of that edge.

*The mask predictor is trained similarly
as in GNNExplainer

The “introduced evidence” problem is
largely avoided due to the use of the
reparameterization trick.

Surrogate Methods

 Theidea is to employ a surrogate e
i Fit surrogate models
model to approximate the [_—_)mpm o o |
predictions of the model. | doming | —
[: Sampled HSIC Lasso
. |
* The explanations from surrogate - | | s
. ! .
model are used to explain the o | | Lo L g v | S s
original prediction. [l : GeNs
: : New
Y : : predictions
l Prediction ' : I;::z:::t:l;f i — Bayesian PGM
|
== |

GraphLIME

|t builds a local neighborhood * Can only provide explanations for node
around a target node using its N-hop features and it ignores graph
neighboring nodes (where N = structures such as nodes and edges.
number of GNN Layers).

e Cannot be applied to graph
 The local dataset is learnt using a classification problems.
nonlinear surrogate model.

« Based on the weights attributed to
different features in HSIC Lasso it
can select important features which
are treated as explanations for both
the surrogate and the GNN
predictions.

Decomposition Methods

Reveals the relationship between
the features and the output
predictions.

Follows that the sum of the
decomposed terms should equal the
original prediction score.

Challenging to apply to the graph
domain. Structural properties cannot
be ignored while distributing scores.

Target score Designed BP
explanation a

Explain Distribute Distribute
0.5
.25
015
plunu m
0.025 l\.

0.075
Node explanatio

L

« - LRP
0.

L3400

1.0

Prediction
score

i e)

Walk ¢

LRP

Score decomposition rule is
developed based on the hidden
features and weights.

The scores of a target neuron are
represented as a linear
approximation of neuron scores from
the previous layer.

Explanation results are more trustable
as LRP is directly developed based on
the model parameters.

Model-level
Explanations

N

Model Level Explanations

« Aims for high-level understandings « More difficult to explain GNNs at the
of deep graph models. model level. Underexplored subject.

» Create graphs that maximally
activate the model for specific
classes revealing its internal
representations.

* Investigates which input graph
patterns can result in a particular
GNN behavior like optimising a
target prediction

XGNN

. Explainst_the GNN model from a global * Offers more knowledge of the GNN
PETSPECHVE. model through the use of class
« Creates the most important graph relevant graph patterns.

patterns for a given class.

« Makes predictions about how to add) Indﬁgtentdent of any specific GNN

atn edge to the existing graph at each architecture.

step.

C d h hen i . H * Less accurate than the instance level
« Created graphs are then input into the :

trained GNNSs to get teedback for techniques.

policy gradient training of the

generator.

« By employing policy gradient to
maximize the reward the entire
framework is optimized.

How to Tell If an Explainablility
Technique Works Well?

Fidelity: checks if the features
chosen by the algorithm really matter
for the model’s predictions. Remove
important/unimportant feature and

see if accuracy drops/stays the same.

Sparsity: good explanations should
capture only the most important
Input features and ignore the rest
(lower is better).

Stability: when small changes are
applied to the input the prediction
should not be affected

Accuracy: tells how close the
algorithm’s explanation is to the real
reason behind the model’s prediction.
Did the algorithm find the same
important features as true ones?

Fidelity

1.

SubgraphX (Gradients/Fea
tures-Based Methods)
outperforms all other
methods.

2. GNN-GI and GNN-

LRP, generally obtain higher
scores than GNNExplainer
and PGExplainer.

Graph-SST2

Fidelity+
= <
A

o
~
v/

.
0.14 \s

050 055 0.0

=O= SubgraphX

065 070 075 080

Sparsity

~+- Grad-CAM

A
N

Graph-SST5 Graph-Twitter
02751 *
0.250
0.225 1
£.0.200 $o. . :
3075 2 ;
- * 0201
0.150 4
0.125 0.154 \0
0.100 + 0.10
050 055 060 065 070 075 080 050 055 060 065 070 075 080
Sparsity Sparsity
BA-2Motifs BA-shapes
0351
O=0—0~0—0—0—0—0—0 A
08 0 O-CUOO-0-O—O B0
030
‘*——_o\o_.—o
06| o ——+— — 0.25 1
+ A A + B
2 20,20
§0.4' \ g
- %0151
o \ 0.10 4
I g
\ 0.05 Ge g —3
0.0 L] T T T v T T T T T T T T T
050 055 060 065 020 075 0.80 050 055 060 065 070 075 080
Sparsity Sparsity
=¥~ GNN-GI =O— GNNExplainer GNN-LRP =<+ Deeplift —— PGExplainer

Accuracy & Stability

Synthetic datasets BA-Shapes and BA-
Community. In these datasets the known true

patterns (motifs) are turned into true edge Methods BA- shapes BA- Community
e sdoe mporaceSeorepedcledy | Neic Ao Sy A Sl
comparison is measured usmg the AUC- : =
ROC. GNNExplainer ~ 08780 01721 09194 0.1820
ﬁF-Qr Ilg?ohri?hheeth ﬁ(;%l;rggg (I:isé ?abstgtir;aencclj bbnyNN- PGExplainer 0.7147 0.0522 0.6843 0 177
GNNExplainer on the BA-Community dataset. GNN-LRP 0.9243 0.1872 0.8357 0.1239
2 DeepLift has the best Stability, but that DeepLift 000% 00432 04100 (00842

comes at the cost of accuracy.

Limitations and
Challenges

N

Graph Structure Limitation

* GNNs can get confused when all * This happens because of the
nodes have the same features (every aggregation step. GNN combines
node looks identical). In that case, information from neighbors. If function
even if two graphs have different gives the same result for two different
connections GNN might still think they neighborhoods then the model can’t

are the same. tell those structures apart.

Noise Vulnerablility

 GNNs are not robust to noise in graph data

* Adding a slight noise in graph through node perturbation or edge
addition/deletion is influencing the output of the GNNs.

Label Scarcity and Overfitting in
Scientific Tasks

* In domains like chemistry or biology, labels are expensive to acquire
(experiment results)

 Datasets are often small, which leads models to overfit

Future Challenges

 Making GNNs robust and stable under * Finding good pre-training strategies for
graph perturbations. GNNSs.

 Handling optimization over discrete * Finding trade offs between accuracy
graph structures effectively. and robustness.

Applications

N

Charged particle tracking (HEP)

Paper: Charged particle tracking via
edge-classifying interaction networks
(DeZoort et al., 2021)

Application: Identify true track segments
from silicon-tracker hits (HL-LHC-like

pileup).

GNN achieves high edge classification
accuracy and strong tracking efficiency.

Models trained on simpler graphs performed
well on complex ones.

The model runs quickly on GPUs (using
TorchScript) and is much smaller than earlier
GNNSs.

Combinatorial optimization with
physics-inspired GNNs

Paper: Combinatorial Optimization with
Physics-Inspired Graph Neural Networks
(Schuetz, Brubaker, Katzgraber, 2021)

Application: Solve NP-hard QUBO/PUBO
problems (MaxCut, MIS) via an
unsupervised PI-GNN trained on a relaxed
Hamiltonian then project to integers.

On MaxCut: PI-GNN is competitive with
or better than classic solvers.

On MIS: matches traditional
algorithms on small graphs and
scales; achieves high quality solutions
up to very large graphs.

Conclusion

* GNNs have become a powerful framework.

 They show success across fields (social networks, recommendation systems,
physics, chemistry).

* Despite these advances challenges remain

Papers Used

https://arxiv.org/pdf/1901.00596

https://arxiv.org/pdf/1812.08434

https://arxiv.org/pdf/2107.01188

https://arxiv.org/pdf/2507.13703

https://medium.com/@debjoysaha/a-beginners-guide-to-
explainability-in-graph-neural-networks-99927d527718

https://medium.com/@vykarray29/explainable-ai-for-graph-
neural-networks-a4b89c¢89983a

https://arxiv.org/pdf/1901.00596
https://arxiv.org/pdf/1812.08434
https://arxiv.org/pdf/2107.01188
https://arxiv.org/pdf/2507.13703
https://medium.com/@debjoysaha/a-beginners-guide-to-explainability-in-graph-neural-networks-99927d527718
https://medium.com/@ykarray29/explainable-ai-for-graph-neural-networks-a4b89c89983a

