Randomized Sampling-based Motion Planning Methods

Jan Faigl

Department of Computer Science
Faculty of Electrical Engineering
Czech Technical University in Prague

Lecture 09
B4M36UIR — Artificial Intelligence in Robotics

Jan Faigl, 2025 B4M36UIR — Lecture 09: Sampling-based Motion Planning




Overview of the Lecture

® Part 1 — Randomized Sampling-based Motion Planning Methods
= Sampling-Based Methods
= Probabilistic Road Map (PRM)
= Characteristics
= Rapidly Exploring Random Tree (RRT)

= Part 2 — Optimal Sampling-based Motion Planning Methods
= Optimal Motion Planners
= Rapidly-exploring Random Graph (RRG)
= Informed Sampling-based Methods
® Part 3 — Multi-Goal Motion Planning (MGMP)
= Multi-Goal Motion Planning
= Physical Orienteering Problem (POP)
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Part 1 — Sampling-based Motion Planning
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Sampling-Based Methods

Jan Faigl,

(Randomized) Sampling-based Motion Planning
It uses an explicit representation of the obstacles in C-space.

A "black-box" function is used to evaluate if a con-
figuration g is a collision-free using geometrical
models of the objects (robot and environment).

2D or 3D shapes of the robot and environment
can be represented as sets of triangles — tesselated
models.

Collision test is then a test of for the intersection
of the triangles.

Collision free configurations form a discrete rep-
resentation of Cgee. A collision test library RAPID http://ganma. cs . unc. edu/0BB/.
Configurations in Cgee can be sampled randomly and connected to a (probabilistic) roadmap.

Rather than the full completeness they provide probabilistic completeness or resolution com- ¢ s,
pleteness. It is probabilisticaly complete if for increasing number of samples, an admissible solution would be found (if exists). fﬁ%%é

)
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Probabilistic Roadmaps
A discrete representation of the continuous C-space generated by randomly sampled
configurations in Cgee that are connected into a graph.
= Nodes of the graph represent admissible configurations of the robot.

® Edges represent a feasible path (trajectory) between the particular configurations.

Having the graph, the final path (trajectory) can be found by a graph search technique. %
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Sampling-Based Methods

Incremental Sampling and Searching

m Single query sampling-based algorithms incrementally create a search graph (roadmap).

1.

N

Jan Faigl, 2025

Initialization — G(V/, E) an undirected search graph, V may contain Gstart, ggoar and/or
other points in Cpee.
Vertex selection method — choose a vertex g, € V for the expansion.
Local planning method — for some gpew € Crree, attempt to construct a path 7 : [0,1] —
Ctree such that 7(0) = qeur and 7(1) = @pew, T must be checked to ensure it is collision
free.

= If 7 is not a collision-free, go to Step 2.
Insert an edge in the graph — Insert 7 into E as an edge from g., t0 Gnen and insert
Gnew to V if Gnew ¢ V. How to test gpey is in V?
Check for a solution — Determine if G encodes a solution by using a single search tree
or graph search technique.
Repeat Step 2 — iterate unless a solution has been found or a termination condition is

satisfied.
LaValle, S. M.: Planning Algorithms (2006), Chapter 5.4.
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Sampling-Based Methods

Probabilistic Roadmap Strategies
Multi-Query strategy is to create a roadmap that can be used for several queries.
m Generate a single roadmap that is then used for repeated planning queries.

® An representative technique is Probabilistic RoadMap (PRM).

Kavraki, L., Svestka, P., Latombe, J.-C., Overmars, M. H.B: Probabilistic Roadmaps for Path Planning in
High Dimensional Configuration Spaces, IEEE Transactions on Robotics, 12(4):566-580, 1996.

Hsu, D., Latombe, J.-C., Kurniawati, H.: On the Probabilistic Foundations of Probabilistic Roadmap Planning.
The International Journal of Robotics Research, 25(7):627—-643, 2006.

Single-Query strategy is an incremental approach.

m For each planning problem, it constructs a new roadmap to characterize the subspace
of C-space that is relevant to the problem.

= Rapidly-exploring Random Tree — RRT; LaValle 1998
® Expansive-Space Tree — EST; Heu et al. 1997
® Sampling-based Roadmap of Trees — SRT.

A combination of multiple—query and single—query approaches.

Plaku et al., 2005
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Outline

= Probabilistic Road Map (PRM)
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Probabilistic Road Map (PRM)
Multi-Query Strategy

Build a roadmap (graph) representing the environment.
1. Learning phase

1.1 Sample n points in Crree.

1.2 Connect the random configurations using a local planner.
2. Query phase

2.1 Connect start and goal configurations with the PRM.

Using a local planner.

2.2 Use the graph search to find the path.

@ Probabilistic Roadmaps for Path Planning in High Dimensional Configuration Spaces
Lydia E. Kavraki and Petr Svestka and Jean-Claude Latombe and Mark H. Overmars,
IEEE Transactions on Robotics and Automation, 12(4):566-580, 1996.

First planner that demonstrates ability to solve general planning problems in more than 4-5 dimensions. ¢
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PRM Construction

Given problem domain
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PRM Construction

Random configuration
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PRM Construction

Connecting random samples

Cfree
ocal planner
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PRM Construction

Connected roadmap
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PRM Construction

Query configurations
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PRM Construction
Final found path
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Probabilistic Road Map (PRM)

Practical PRM

® [ncremental construction.

m Connect nodes in a radius r.

m | ocal planner tests collisions up to se-
lected resolution 4.

m Path can be found by Dijkstra's algo-

rithm.
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Probabilistic Road Map (PRM)

Practical PRM

Incremental construction.

Connect nodes in a radius r.

Local planner tests collisions up to se-
lected resolution 4.

Path can be found by Dijkstra’s algo-
rithm.

What are the properties of the PRM algorithm?
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Probabilistic Road Map (PRM)

Practical PRM

Incremental construction.

Connect nodes in a radius r.

Local planner tests collisions up to se-
lected resolution 4.

Path can be found by Dijkstra’s algo-
rithm.

What are the properties of the PRM algorithm?

We need a couple of more formalisms.
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Probabilistic Road Map (PRM)
Path Planning Problem Formulation

® Path planning problem can be defined by a triplet
P = (Cfree7 Ginit ngal)a where

" Chee = cl(C\ Cops), C=(0,1)4, ford €N, d > 2;

B Ginit € Crree is the initial configuration (condition);
B Qg is the goal region defined as an open subspace of Cree.

(scaling)

= Function 7 : [0,1] — RY of bounded variation is called:
® path - if it is continuous;
m collision-free path — if it is a path and 7(7) € Cgee for 7 € [0, 1];
m feasible — if it is a collision-free path, and 7(0) = ginir and 7(1) € cl(Qgoar)-
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Probabilistic Road Map (PRM)

Path Planning Problem Formulation

Path planning problem can be defined by a triplet
P = (Cfreey dinit, ngal)a where
L Cfree = Cl(C \ Cobs)y C= (07 l)d, for d e N, d > 2, (scaling)
B Ginit € Crree is the initial configuration (condition);
B Qg is the goal region defined as an open subspace of Cree.

Function 7 : [0,1] — RY of bounded variation is called:

® path - if it is continuous;

m collision-free path — if it is a path and 7(7) € Cgee for 7 € [0, 1];

m feasible — if it is a collision-free path, and 7(0) = ginir and 7(1) € cl(Qgoar)-

A function 7 with total variation TV(7) < oo is said to have bounded variation, where TV(7) is the
total variation

TV(7r) = SUP{peN,0=ro<T1<...<Tph=s} Zinzl |7T(7'f) - 77(7771)|-

Total variation TV(r) is de facto a path length.

Jan Faigl, 2025 B4M36UIR — Lecture 09: Sampling-based Motion Planning 13 /72



Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT)

Outline

= Characteristics

Jan Faigl, 2025 B4M36UIR — Lecture 09: Sampling-based Motion Planning 14 /72



Characteristics

Path Planning Problem

m Feasible path planning
For a path planning problem (Cfree, Ginit; Qgoal):
= Find a feasible path 7 : [0, 1] — Cfree such that 7(0) = ginir and 7(1) € cl(Qgoar), if such
path exists;
® Report failure if no such path exists.
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Characteristics

Path Planning Problem

m Feasible path planning
For a path planning problem (Cfree, Ginit; Qgoal):
= Find a feasible path 7 : [0, 1] — Cfree such that 7(0) = ginir and 7(1) € cl(Qgoar), if such
path exists;
® Report failure if no such path exists.

m Optimal path planning
The optimality problem asks for a feasible path with the minimum cost.
For (Ctree, Ginit, Qgoar) and a cost function ¢ : ¥ — R>o:
® Find a feasible path 7* such that c(7n*) = min{c(x) : 7 is feasible};
® Report failure if no such path exists.

The cost function is assumed to be monotonic and bounded.
There exists ke such that c(m) < ke TV(m).
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Probabilistic Completeness 1/2

First, we need robustly feasible path planning problem (Cfee, Ginit; Qgoar)-

B g € Cpee is 0-interior state of Cgee if the closed ball o int ( Cfree)
of radius & centered at q lies entirely inside Cpee. g -8

m g-interior of Cee is ints(Chree) = {q € CreelB/s &
Cfree}. A collection of all §-interior states.

m A collision free path 7 has strong d-clearance,
if 7 lies entirely inside ints(Cree)-

"= S—interior state

" (Cree, Ginits Qgoal) is robustly feasible if a solution exists and it is a feasible path with
strong J-clearance, for § > 0.

Jan Faigl, 2025 B4M36UIR — Lecture 09: Sampling-based Motion Planning 16 / 72



Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT)

Probabilistic Completeness 2/2
An algorithm ALG is probabilistically complete if, for any robustly feasible path
p/anning prob/em P = (Cfreea dinit ngal),
lim Pr(ALG returns a solution to P) = 1.

n—oo

® |t is a “relaxed” notion of the completeness.
® Applicable only to problems with a robust solution.

ft
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Characteristics

Asymptotic Optimality 1/4 — Homotopy

Asymptotic optimality relies on a notion of weak o-clearance.
Notice, we use strong d-clearance for probabilistic completeness.
® We need to describe possibly improving paths (during the planning).
® Function 1 : [0,1] — Cfree is called homotopy, if ¥(0) = w1 and (1) = 7 and ¥(7)
is collision-free path for all 7 € [0, 1].

® A collision-free path 71 is homotopic to 75 if there exists homotopy function 1.

A path homotopic to w can be continuously transformed to m through Cpree.
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Asymptotic Optimality 2/4 — Weak d-clearance

m A collision-free path 7 : [0,s] — Cpee has weak d-clearance if there exists a path 7/
that has strong o-clearance and homotopy ¢ with ¢(0) = 7, ¢(1) = «’, and for all
a € (0, 1] there exists 0, > 0 such that ¢)(«) has strong d-clearance.

Weak §-clearance does not require points along a path to be at least
a distance 6 away from obstacles.

m A path 7 with a weak J-clearance.

m 7’ lies in ints(Cree) and it is the same homotopy
class as .

We need the strong §-clearance to find 7’ (by randomized sam-
pling). Then, such a path can be (localy) improved (shorten)
towards the shortest . ©’ must be within the same homotopy
class (passing obstacles at the same way as the optimal path
) to guarantee such a path w can be the optimal path.

ft
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Characteristics

Asymptotic Optimality 3/4 — Robust Optimal Solution

m Asymptotic optimality is applicable with a robust optimal solution that can be ob-
tained as a limit of robust (non-optimal) solutions.

® A collision-free path 7* is robust optimal solution if it has weak §-clearance and for
any sequence of collision free paths {7} nen, Tn € Chree such that limp_oo mp = 7%,

nll_)rrgo c(mn) = c(m*).

There exists a path with strong §-clearance, and 7* is homotopic to such
path and ©* is of the lowest cost.
® Weak d-clearance implies an existence of the strong J-clearance path within the some
homotopy, and thus robustly feasible solution problem.

Thus, it implies the probabilistic completeness.
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Characteristics

Asymptotic Optimality 4/4 — Asymptotically Optimal Algorithm

An algorithm ALG is asymptotically optimal if, for any path planning problem P =
(Cree, Ginit» Qgoar) and cost function ¢ that admits a robust optimal solution with the

finite cost c* such that
Pr ({.Iim YALY = c*}) =1.
1—00

n YiAﬁg is the extended random variable corresponding to the minimum-cost solution
included in the graph returned by ALG at the end of the iteration /.
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Characteristics

Properties of the PRM Algorithm

® Completeness for the standard PRM has not been provided when it was introduced.
® A simplified version of the PRM (called sPRM) has been most studied.
m sPRM is probabilistically complete.

What are the differences between PRM and sPRM?
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Characteristics

PRM vs. simplified PRM (sPRM)

Algorithm 1: PRM Algorithm 2: sPRM
Input: gj,;r, the number of samples n, and radius r Input: gj,;;, the number of samples n, and
Output: PRM - G = (V,E) radius r
V « 0: E « 0 Output: PRM - G = (V,E)
fori=0,...,ndo V < {qinit }U{SampleFree;}i—1,... n—1; E < 0;
Grand < SampleFree; foreach v € V do
U < Near(G = (V,E), Grand, ); U <Near(G = (V,E),v,r)\{v}h
V — VU{qrand }; foreach v € U do
foreach u € U with increasing ||u — q,|| do if CollisionFree(v, u) then
if grang and u are not in the same L E + EU{(v,u),(u,v)}
connected component of G = (V, E)
then _ .
if CollisionFree(gand, u) then return G = (V. B);
L E < EU{(Grand; 1), (U, drand) }: = Connections between vertices in the same con-

nected component are allowed.

return G = (V, E); ® The radius r is fixed and can be relatively long;
thus sPRM can be very demanding.

Several ways for the set U of vertices to connect them can improved the performance, such as k-nearest
neighbors to v; or variable connection radius r as a function of n at the cost of lost of asymptotical optimality
or even probabilistic completeness.
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Characteristics

PRM — Properties

® sPRM (simplified PRM):

Probabilistically complete and asymptotically optimal.
Processing complexity can be bounded by O(n?).

Query complexity can be bounded by O(n?).

Space complexity can be bounded by O(n?).

m Heuristics practically used are not necessarily probabilistic complete and asymptotically
optimal.
® k-nearest SPRM is not probabilistically complete for k = 1.
m Variable radius sPRM is not probabilistically complete; with the radius r(n) = 'yn*%.
See Karaman and Frazzoli: Sampling-based Algorithms for Optimal Motion Planning, IJRR 2011.

PRM algorithm
+ It has very simple implementation.
+ It provides completeness (for sSPRM).

— Differential constraints (car-like vehicles) are not straightforward (but possible).
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Characteristics

Comments about Random Sampling 1/2

= Different sampling strategies (distributions) may be applied.

’ : :. . ..o ° < . | ..l u: .'. -::’.......:..
-, . o . Le3.
.- . o ® .... . . .. . .. ..a....la'.u :

® Notice, one of the main issues of the randomized sampling-based approaches is the
narrow passage.
m Several modifications of sampling-based strategies have been proposed in the last decades.
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Comments about Random Sampling 2/2

= A solution can be found using only a few samples.

Using the Oraculum.
® Sampling strategies are important: Near obstacles; Narrow passages; Grid-based,;

Uniform sampling must be carefully considered.

James J. Kuffner (2004): Effective Sampling and Distance Metrics for 3D Rigid Body
Path Planning, ICRA, 2004.

Naive sampling Uniform sampling of SO(3) using Euler angles
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= Rapidly Exploring Random Tree (RRT)
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Rapidly Exploring Random Tree (RRT)

Rapidly Exploring Random Tree (RRT)

Single—Query algorithm.
® |t incrementally builds a graph (tree) towards the goal area.

It does not guarantee precise path to the goal configuration.
1. Start with the initial configuration qo, which is a root of the constructed graph (tree).
2. Generate a new random configuration gnew in Cree.

Find the closest node gpear t0 Gnew in the tree.
KD-tree implementation like ANN or FLANN libraries can be utilized.
4. Extend gpear towards gpew .

Extend the tree by a small step or using a direct control u € U that will move
the robot to the position closest to qnew applied for ét.

5. Go to Step 2 until the tree is within a sufficient distance from the goal configuration.

Or terminates after dedicated running time.
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Rapidly Exploring Random Tree (RRT)

RRT Construction

#1 new random configuration

/
\/
o N\

- o
9o |'/ 9 new

#2 the closest node

V.
/

| - Qnear [ J
90 / 9 new

- vy
o Uy
q | - 9 near v [ ]
0 A LUy q new
\ Us

Jan Faigl, 2025
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Rapidly Exploring Random Tree (RRT)

RRT Algorithm

® Motivation is a single query and control-based path finding.

® [t incrementally builds a graph (tree) towards the goal area.

Algorithm 3: Rapidly Exploring Random Tree (RRT)

Input: gjir, number of samples n
Output: Roadmap G = (V, E)
V < {Qinit }; E < 0;
fori=1,...,ndo
Grand < SampleFree;
Qnearest <— NeaVESt(G = (V7 E)7 Qrand);
Qnew < Steer(qnearesh Qrand);
if CollisionFree(qnearest, Gnew) then
L V+—Vu {Xnew}; E<+ EU {(Xnearestyxnew)};

return G = (V, E);

@ Rapidly-exploring random trees: A new tool for path planning

S. M. LaValle,
Technical Report 98-11, Computer Science Dept., lowa State University, 1998.
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Rapidly Exploring Random Tree (RRT)

Properties of RRT Algorithms

The RRT algorithm rapidly explores the space.

Gnew Will more likely be generated in large, not yet covered parts (voroni bias).

Allows considering kinodynamic/dynamic constraints (during the expansion).

Can provide trajectory or a sequence of direct control commands for robot controllers.

A collision detection test is usually used as a “black-box.”
RAPID, Bullet libraries.

Similarly to PRM, RRT algorithms have poor performance in narrow passage problems.

RRT algorithms provide feasible paths.

It can be relatively far from an optimal solution; according to the
length of the path.

® Many variants of the RRT have been proposed in the literature.
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Sampling-Based Methods

Jan Faigl, 2025

Probabilistic Road Map (PRM)

Characteristics

Examples 1/4 — Variants of RRT algorithms

mAT [ [ T T
TITT 3

R F,:

T T T T1H

RRTCohnest | |

T T T T1H

Courtesy of P. Vanék.
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Rapidly Exploring Random Tree (RRT)

Examples 2/4 — Motion Planning Benchmarks

Alpha puzzle benchmark Bugtrap benchmark

Courtesy of V. Vonasek.
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Examples 3/4 — Planning on Terrain Considering Frictions

Planning on a 3D surface Planning with dynamics (friction forces)

Courtesy of V. Vonasek. %
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Rapidly Exploring Random Tree (RRT)

Examples 4/4 — Motion Planning for Complex Shape and Car-like Robot

* * * +
S - o
r * - -
* * * *
] & a
-y L 4
= o A
* * * * ‘
- L8
-
* * * *
Apply rotations to reach the goal Planning for a car-like robot

Courtesy of V. Vonasek and P. Vanék.

Jan Faigl, 2025 B4M36UIR — Lecture 09: Sampling-based Motion Planning



Rapidly Exploring Random Tree (RRT)

Car-like Robot

-y ICC (Instantaneous Centre of Curvature)

= Configuration

X = |v

position and orientation.
= Controls
¥

forward velocity, steering angle.

m System equation
)_< = Vv C?S ¢ Kinematic constraints dim(d) < dim(X).
){ = vsin ¢ : Differential constraints on possible §:
o = Ytanp . - _ %y
L xsin(¢) — y cos(¢) = 0.
36 / 72
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Control-Based Sampling

Rapidly Exploring Random Tree (RRT)

m Select a configuration g from the tree T of the current configurations.

® Pick a control input ¥ = (v, ¢) and the inte-
grate system (motion) equation over a short

period At:
Ax HRAL /y cos 10)
Ay | = vsing | dt.
A¢ ¢ Ttanyp

m |f the motion is collision-free, add the endpoint
to the tree.
Considering k configurations for kot = dt.

Jan Faigl, 2025
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Optimal Motion Planners Rapidly-exploring Random Graph (RRG) Informed Sampling-based Methods

Part |

Part 2 — Optimal Sampling-based Motion Planning
Methods
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Optimal Motion Planners Rapidly-exploring Random Graph (RRG) Informed Sampling-based Methods

Outline

= Optimal Motion Planners
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Optimal Motion Planners

Sampling-Based Motion Planning
PRM and RRT are theoretically probabilistic complete.
They provide a feasible solution without quality guarantee.

However, they are successfully used in many practical applications.

In 2011, a systematical study of the asymptotic behavior of randomized sampling-based

p|anners has been pu bllshed . It shows, that in some cases, they converge to a non-optimal value with a probability 1.
It builds on properties of Random Geometric Graphs (RGG) introduced by Gilbert (1961) and further studied by Penrose (1999).

Based on the study, new algorithms have been proposed: RRG and optimal RRT (RRT™).

Karaman, S., Frazzoli, E.: Sampling-based algorithms for optimal motion planning, 1JRR, 30(7):846—894, 2011.

http://sertac.scripts.mit.edu/rrtstar
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Optimal Motion Planners

RRT and Quality of Solution 1/2

= Let Y*RT be the cost of the best path in the RRT at the end of the iteration i.
= YRRT converges to a random variable

||m )/iRRT — YO,ZRT'

1— 00
= The random variable YRT is sampled from a distribution with zero mass at the opti-

mum, and
PriYERT > ] =1.
Karaman and Frazzoli, 2011

® The best path in the RRT converges to a sub-optimal solution almost surely.
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Optimal Motion Planners

RRT and Quality of Solution 2/2

® RRT does not satisfy a necessary condition for the asymptotic optimality.
= For 0 < R < infgeo,., |1g — Ginitl|, the event {lim,_ YT = c*} occurs only if the
k-th branch of the RRT contains vertices outside the R-ball centered at gj,;; for infinitely

many k.

See Appendix B in Karaman and Frazzoli, 2011.

m |t is required the root node will have infinitely many subtrees that extend at least a
distance € away from gjpj:.

The sub-optimality is caused by disallowing new better paths to be discovered.
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Optimal Motion Planners Rapidly-exploring Random Graph (RRG) Informed Sampling-based Methods

Outline

= Rapidly-exploring Random Graph (RRG)
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Rapidly-exploring Random Graph (RRG)

Rapidly-exploring Random Graph (RRG)

Algorithm 4: Rapidly-exploring Random Graph (RRG)
Input: ginir, the number of samples n
Output: G = (V,E)
V0, E+D
fori=0,...,ndo
Grand < SampleFree
Gnearest < Nearest(G = (V, E), Grand)
Anew < Steer(qnearesh qrand)
if CollisionFree(qnearest; Gnew) then

Qnear < Near(G = (V, E), Gnew, min{yRRg(Iog(card(V))/card(V))l/d,n})

V< VU {qnew}; E+—EU {(qnearesta qnew)a (qneWa qnearest)}
foreach gpear € Qpear do

if CollisionFree(qnear, gnew) then
L E«EU {(qneah qnew)7 (anW7 qnear)} // Comnect Qpear With Gnew -

return G = (V, E)

Proposed by Karaman and Frazzoli (2011). Theoretical results are related to properties of Random Geometric Graphs (RGG)
introduced by Gilbert (1961) and further studied by Penrose (1999).
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Rapidly-exploring Random Graph (RRG)

RRG Expansions

® At each iteration, RRG tries to connect new sample to all vertices in the r, ball centered
at it.
® The ball of radius
| V 1/d
r(card(V)) = min { Yrre (W) 7
where

® 7 is the constant of the local steering function;
" YRR > Vrre = 2(1 4 1/d)Y¥(1(Chree) /Ca) M %;
- d — dimension of the space;
- p(Cfree) — Lebesgue measure of the obstacle—free space;
- (4 — volume of the unit ball in d-dimensional Euclidean space.

® The connection radius decreases with n.
® The rate of decay = the average number of connections attempted is proportional to
log(n).
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Rapidly-exploring Random Graph (RRG)

RRG Properties

Probabilistically complete;

= Asymptotically optimal;

Complexity is O(log n).

(per one sample)

Computational efficiency and optimality:
® |t attempts a connection to ©(log n) nodes at each iteration;
In average

= Reduce volume of the “connection” ball as log(n)/n;
® Increase the number of connections as log(n).
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Rapidly-exploring Random Graph (RRG)

Other Variants of the Optimal Motion Planning

= PRM* follows the standard PRM algorithm where connections are attempted between
roadmap vertices that are the within connection radius r as the function of n:

r(n) = fprM(Iog(n)/n)l/d.

m RRT* is a modification of the RRG, where cycles are avoided.
It is a tree version of the RRG.

m A tree roadmap allows considering non-holonomic dynamics and kinodynamic constraints.
® |t is basically the RRG with “rerouting” the tree when a better path is discovered.
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Optimal Motion Planners

Rapidly-exploring Random Graph (RRG) Informed Sampling-based Methods

Example of Solutlon 1/3

RRT, n=250

RRT, n=500

RRT*, n=250

Jan Faigl, 2025

RRT*, n=500 RRT*, n=2500 RRT*, n=10000
Karaman & Frazzoli, 2011
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Optimal Motion Planners Rapidly-exploring Random Graph (RRG) Informed Sampling-based Methods

Example of Solution 2/3

RRT, n=20000 RRT*, n=20000 %
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Optimal Motion Planners Rapidly-exploring Random Graph (RRG) Informed Sampling-based Methods

Example of Solution 3/3

https://www.youtube.com/watch?v=YKiQTJpPFkA
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Rapidly-exploring Random Graph (RRG)

Overview of Randomized Sampling-based Algorithms

Probabilistic  Asymptotic

Algorithm o
Completeness Optimality
PRM v b 4
sPRM v v
k-nearest sSPRM b 4 b 4
RRT v b 4
RRG v v
PRM* v v
RRT* (%4 v

sPRM with connection radius r as a function of n; r(n) = waM(Iog(n)/n)l/d with
vPRM > Yprm = 2(1+1/d)* 9 (1(Crree) /Ca)* -
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Optimal Motion Planners Rapidly-exploring Random Graph (RRG) Informed Sampling-based Methods

Outline

= Informed Sampling-based Methods
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Informed Sampling-based Methods

Improved Sampling-based Motion Planners

Although asymptotically optimal sampling-based motion planners such as RRT* or RRG
may provide high-quality or even optimal solutions to the complex problem, their per-
formance in simple scenarios (such as 2D) is relatively poor.

In a comparison to the ordinary approaches such as visibility graph.

The computational performance can be improved similarly as for the RRT.

m Using goal biasing, supporting sampling in narrow passages, multi-tree growing
(Bidirectional RRT).

The general idea of improvements is based on informing the sampling process.

Many modifications of the algorithms exists, selected representative modifications are
m Informed RRT#*;
® Batch Informed Trees (BIT*);
® Regionally Accelerated BIT* (RABIT¥).

It shows an evolution of the improvements.
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Informed Sampling-based Methods

Algorithm 1: Informed RRT*(Xqtart, Xgoal )

Informed RRT* “vepam

2 E+ 0

m Focused RRT* search to increase the convergence rate.

5
. . .. L. o Chest ¢ Milx, ), € X, {COST (Xsomn) }i
m Use Euclidean distance as an admissible heuristic. 7| Xrana  Sample (Xatart, Xgoal, Chest):
. : . . 8 Xnearest ¢ Nearest (7, Xyand):
m Ellipsoidal informed subset — the current best solution cpest 9| Xuow ¢ Steer (Xncarest, Xrand);
10 if CollisionFree (Xnecarest, Xnew) then
1 V+u {xnew}§
B 2 Xnear < Near (T, Xnew, "RRT* )}
P = {X S X|||Xstart - XH2 + HX - Xgoal||2 < Cbest}~ 13 Xmin ¢ Xnearest:
14 Cmin 4 Cost (Xpmin) + ¢ - Line (Xnearest, Xnew):
15 for ¥Yxnear € Xnear do
Algorithm 2: Sample (Xutart. Xgoals Cmax) 16 Cnew 4 COSt (Xnear) + ¢ - Line (Xnear, Xnew):
1 if cmax < 00 then 17 if cnew < Cmin then
st — Cin (8 Xstart Xgoal o 2| emin = |[Xsont = Xotart || 1 if CollisionFree (Xnear, Xnew) then
3 Xeentre ¢ (Xstart + wa /2 19 Xmin ¢ Xnear}
J ‘ S :iiocaclx;nromrmname (Xstarts Xgoal )+ 20 Cin 4 Cnew:
s Cmas /2
I Chest . (riYica,n ¢ (V/hax — Cin) /2 -
. L dia.g(u.lz(.\./. ks ) 2 E — E U {(Xmin, Xnew) }s
s Xball ¢ SampleUnitNBall; 2 for Vxnear € Xnear do
= Directly based on the RRT*. 9 | Xrand ¢ (CLXpa1 + Xeantre) 0 X3 2 Cnear ¢ Cost (Xnear);
10 else u Cnew 4 Cost (Xnew) + ¢ - Line (Xnew, Xnear);
= Having a feasible solution; item sample " L X ~U(X): 2 if Cnew < Cncar then
inside the ellipse. 12 return Xpand: 2 if CollisionFree (Xnew, Xnear) then
2 Xparent < Parent (Xnear);
» 28 E + E\ {(Xparent; Xnear) }:
Gammell, J. B., Srinivasa, S. S., Barfoot, T. D.: Informed RRT*: 29 E « B U {(Xnew, Xnear) }3
Optimal Sampling-based Path Planning Focused via Direct Sampling L
of an Admissible Ellipsoidal Heuristic. IROS, 2014. 30 if InGoalRegion (Xnew) then
3t [ Xsoln + Xsoln U {Xnew};

32 return T;
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Optimal Motion Planners

Jan Faigl, 2025

Rapidly-exploring Random Graph (RRG)

Informed RRT* — Demo

000909

000462

Il Informed RRT*

https://www.youtube.com/watch?v=d7dX5MvDYTc

B4M36UIR — Lecture 09: Sampling-based Motion Planning
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Informed Sampling-based Methods

Batch Informed Trees (BIT*)

® Combining RGG (Random Geometric Graph) with the heuristic in incremental graph search
technique, e.g., Life|0ng Planning A* (LPA*) The properties of the RGG are used in the RRG and RRT*.

® Batches of samples — a new batch starts with denser implicit RGG.

® The search tree is updated using LPA* like incremental search to reuse existing information.

During each batch, the search| [When a.solution is féund, the| |[A new batch of samples is then| [ The process repeats indefinitely,
expands outwards - aréund the| |batch finishes and the éxpansion| |added and the search restarts. restarting each time an im-

--= -~ ‘ . proved solution is found.

o ] BN Y
‘-."..‘ i '... ..

minimum  solution using-. a| [stops. g
heuristic. : L

() C “h) s () (d)
Fig. 3. An illustration of the informed search procedure used by BIT*. The start and goal states are shown as green and red, respectively. The current
solution is highlighted in magenta. The subproblem that contains any better solutions is shown as a black dashed line, while the progress of the current
batch is shown as a grey dashed line. Fig. (a) shows the growing search of the first batch of samples, and (b) shows the first search ending when a solution
is found. After pruning and adding a second batch of samples, Fig. (c) shows the search restarting on a denser graph while (d) shows the second search
ending when an improved solution is found. An animated illustration is available in the attached video.

Gammell, J. B., Srinivasa, S. S., Barfoot, T. D.: Batch Informed Trees (BIT*): Sampling-based optimal
planning via the heuristically guided search of implicit random geometric graphs, ICRA, 2015.
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Jan Faigl, 2025

Informed Sampling-based Methods

RRT*
t = 00.034344s
c = 01.724808

Informed RRT* @ i I “m Z - JT‘ BIT*

t = 00.034316s
c = 01.724528

1 FMT*
o t=100.034295s
J =00

https://www.youtube.com/watch?v=TQIoCC48gp4
B4M36UIR — Lecture 09: Sampling-based Motion Planning
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Informed Sampling-based Methods

Regionally Accelerated BIT* (RABIT*)

m Use local optimizer with the BIT* to improve the convergence speed.

® Local search Covariant Hamiltonian Optimization for Motion Planning (CHOMP) is utilized to
connect edges in the search graphs using local information about the obstacles.

X X5 X
0 . o a
’ ° ’ ’
Xstart Xgoal Xstart IP Xgoal Xstart IP Xgoal
® . ——& \ o ® .- ' 0 ® .. P
X; o X; - X;
N N
Xk Xk Xk AN

° (b) Yo (c) o

(a

Fig. 2. An illustration of how the RABIT* algorithm uses a local optimizer to exploit obstacle information and improve a global search. The global search
is performed, as in BIT*, by incrementally processing an edge queue (dashed lines) into a tree (a). Using heuristics, the potential edge from x; to xj, is
processed first as it could provide a better solution than an edge from x; to x;. The initial straight-line edge is given to a local optimizer which uses
information about obstacles to find a local optima between the specified states (b). If this edge is collision free, it is added to the tree and its potential
outgoing edges are added to the queue. The next-best edge in the queue is then processed in the same fashion, using the local optimizer to once again

propose a better edge than a straight-line (c).
Choudhury, S., Gammell, J. D., Barfoot, T. D., Srinivasa, S. S., Scherer, S.: Regionally
Accelerated Batch Informed Trees (RABIT*): A Framework to Integrate Local Information
into Optimal Path Planning. ICRA, 2016.
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Informed Sampling-based Methods

Regionally Accelerated BIT* (RABIT*) — Demo
RABIT* matches BIT* performance on eas) problcmb (R2)

o
%5

RRT#* Informed RRT* BIT* RABIT*
5100 5100 s 1.67 5:1.57
Solution cost vs. tine:

RABIT* has 1.8 times
faster convergence on
hard problems (R8)

=

Mexdinn solution cost
4

/ b
'3

' w'

w? o g2
Corpmbaticnal e <

® HRET & HET-Conneet se—QpTs Infesmned QIET  m— T

https://www.youtube.com/watch?v=mgq-DW36jSo
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Informed Sampling-based Methods

Covariant Hamiltonian Optimization for Motion Planning (CHOMP)

® Trajectory optimization based on functional gradient techniques to improve the trajectory with
trade-off between trajectory smoothness and obstacle avoidance.
® Trajectory function 7 : [0, T] — C with a cost function &/ : 1 — R™.
® The trajectory optimization 7* = argmin_cn U(7), s.t. 7(0) = ginit and 7(T) = ggoal.
Function gradient descent 7,1 + *V U(m;).

m CHOMP instantiates functional gradient descent for the cost °
Z/{(Tr) = usmooth(ﬂ') + )\uobs(ﬂ')- (1)

= Smoothness cost can be defined as Usmooth(T) = 5 fo |7 (¢)||? dt.

= Obstacle cost J
Uobs 71—)—// C(qu )) EwA(ﬂ—(t))

® The cost function in W, ¢ : W — R that uses signed distance field to computed distance to the closes obstacle.
Return higher cost the closer the point is to an obstacle.

= Computing the cost for each point of the trajectory, thus integral over time.

= Integral over body points a using forward kinematics mapping ¥ 4 to get robot's points for m(t).

Zucker, M., Ratliff, N., Dragan, A. D., Pivtoraiko, M., Klingensmith, M., Dellin, C. M., Bagnell, J. A., and Srinivasa, S. S.: CHOMP:
Covariant Hamiltonian optimization for motion planning. The International Journal of Robotics Research. 32(9-10):1164-1193, 2013.

dadt. (2)
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Informed Sampling-based Methods

Overview of Improved Algorithm

= Optimal path/motion planning is an active research field.

Approaches Constraints Planning Mode Kinematic Model ~Sampling Strategy Metric
1. RRT* (l Holonomic Offline Point Uniform Euclidean
2. Anytime RRT* [4]  Non-holonomic ~ Online Dubin Car Uniform Euclidean + Velocity
3. B-RRT* [58] Holonomic Offline Rigid Body Local bias Goal biased

RRT*EN [33] Holonomic Offline Robotic Arm Uniform Cumulative Euclidean
5. RRT*-Smart [35]  Holonomic Offline Point Tntelligent Euclidean
6. Optimal B-RRT* [36]Holonomic Offline Point Uniform Euclidean
7. RRT# [50] Holonomic Offline Point Uniform Euclidean
8. /Z&(J;plcd RRT* [64], Non-holonomic  Offline Car-likc and UAV  Uniform A* Heuristic
9. SRRT* [44] Non-holonomic  Offline UAV Uniform Geometric + dynamic constraint
10- fnformed RRT* [34] Holonomic Offline Point Direct Sampling Euclidean
1L [B_RRT* [37] Holonomic Offline Point Intelligent Greedy + Euclidean
12. DT-RRT [39] Non-holonomic  Offline Car-like Hybrid Angular + Euclidean
13. RRT*i [31 Non-holonomic ~ Online UAV Local Sampling A* Heuristic
14. RTR+CS* [43] Non-holonomic ~ Offline Car-like Uniform + Local Planning ~ Angular + Euclidean
15. Mitsubishi RRT* [2] Non-holonomic ~ Online Autonomous Car  Two-stage sampling Weighted Euclidean
l6. CARRT* [65] Non-holonomic ~ Online Humanoid Uniform MW Energy Cost
17. prRT* [48] Non-holonomic  Offline P3-DX Uniform Euclidean

Noreen, ., Khan, A., Habib, Z.: Optimal path planning using RRT* based approaches: a survey and future directions. 1JACSA, 2016.
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Informed Sampling-based Methods

Motion Planning for Dynamic Environments — RRT*

® Refinement and repair of the search graph during the navigation (quick rewiring of the shortest path).

RRTX — Robot in 2D RRTX — Robot in 2D
https://www.youtube.com/watch?v=KxFivNgTV4o

https://wuw.youtube.com/watch?v=S9pguCPUo3M
Otte, M., & Frazzoli, E. (2016). RRTX: Asymptotically optimal single-query sampling-based motion planning
with quick replanning. International Journal of Robotics Research, 35(7), 797--822.
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Multi-Goal Motion Planning Physical Orienteering Problem (POP)

Part |l
Part 3 — Multi-goal Motion Planning (MGMP)
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Multi-Goal Motion Planning Physical Orienteering Problem (POP)

Outline

= Multi-Goal Motion Planning
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Multi-Goal Motion Planning

Multi-Goal Motion Planning

® |n the previous cases, we consider existing roadmap or relatively “simple” collision free (shortest)
paths in the polygonal domain.

= However, determination of the collision-free path in high dimensional configuration space (C-
space) can be a challenging problem itself.

® Therefore, we can generalize the MTP to multi-goal motion planning (MGMP) considering
motion planners using the notion of C-space for avoiding collisions.

® An example of MGMP can be to plan a cost efficient trajectory for hexapod walking robot to
visit a set of target locations.

#Expansions: 14900; Vertices: 8849; Edges: 25256

N

Path length: 125.7
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Multi-Goal Motion Planning

Problem Statement — MGMP Problem

= The working environment W C R3 is represented as a set of obstacles © C W and the
robot configuration space C describes all possible configurations of the robot in W.

m For g € C, the robot body A(q) at q is collision free if A(q) N O = ) and all collision
free configurations are denoted as Cgee.

m Set of n goal locationsis G = (g1,.-.,8n), & € Cree-

= Collision free path from gstart t0 Ggoas is & : [0,1] — Cree With K(0) = Gstarr and
d(k(1), gend) < €, for an admissible distance e.

® Multi—goal path 7 is admissible if 7 : [0, 1] = Cfee, 7(0) = 7(1) and there are n points
such that 0 <t; <tp <... <ty d(7(t;),v;) <€ and Uy ;c,vi=G.

® The problem is to find the path 7* for a cost function ¢ such that c(7*) =
min{c(7) | T is admissible multi-goal path}.
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Multi-Goal Motion Planning

MGMP — Existing Approches

= Determining all paths connecting any two locations g;, gj € G is usually very computationally demanding.
m Considering Euclidean distance as an approximation in the solution of the TSP as the Minimum Spanning Tree
(MST) — Edges in the MST are iteratively refined using optimal motion planner until all edges represent a

feasible solution. Saha, M., Roughgarden, T., Latombe, J.-C., Sanchez-Ante, G.: Planning Tours of Robotic Arms among.
Partltfoned Goals., International Journal of Robotlcs Research, 5(3):207-223, 2006

= Synergistic Combination of Layers of Planning (SyCLoP) — A combination of route and trajectory planning.
Plaku, E., Kavraki, L.E., Vardi, M.Y. (2010): Motion Planning With Dynamics by a Synergistic Combination
of Layers of Planning, |EEE Transactions on Robotics, 26(3):469-482, 2010.

m Steering RRG roadmap expansion by unsupervised learning for the TSP.
m Steering PRM* expansion using VNS-based routing planning in the Physical Orienteering Problem (POP).
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Multi-Goal Motion Planning Physical Orienteering Problem (POP)

Outline

= Physical Orienteering Problem (POP)
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Multi-Goal Motion Planning Physical Orienteering Problem (POP)

Multi-Goal Trajectory Planning with Limited Travel Budget
Physical Orienteering Problem (POP)

= Orienteering Problem (OP) in an environment with obstacles and
. . . . - o ts t fi at i ard
motion constraints of the data collecting vehicle. poniories R
—— found path

= A combination of motion planning and routing problem with profits. iz frajectoty

= VNS-PRM* — VNS-based routing and motion planning is ad- ° e
dressed by PRM*.

= An initial low-dense roadmap is continuously expanded during the
VNS-based POP optimization to shorten paths of promising solu-
tions.

o & o

A 8
070 o B\ |2 1O Q8
0o S [0 o0k

®  Pénicka, Faigl and Saska: Physical Orienteering Problem for Unmanned
Aerial Vehicle Data Collection Planning in Environments with Obstacles.
IEEE Robotics and Automation Letters 4(3):3005-3012, 2019.
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Multi-Goal Motion Planning Physical Orienteering Problem (POP)

Multi-Goal Trajectory Planning with Limited Travel Budget
Physical Orienteering Problem (POP) — Real Experimental Verification

Planting usify tl
1 onfig

< ohstacles

path length = 24.18

collosted roward = 75 %
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Topics Discussed

Summary of the Lecture
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Topics Discussed

Jan Faigl,

Topics Discussed — Randomized Sampling-based Methods

Single and multi-query approaches
Probabilistic Roadmap Method (PRM); Rapidly Exploring Random Tree (RRT).

Optimal sampling-based planning — Rapidly-exploring Random Graph (RRG).

Properties of the sampling-based motion planning algorithms:

Path, collision-free path, feasible path;

Feasible path planning and optimal path planning;

Probabilistic completeness, strong d-clearance, robustly feasible path planning problem;

Asymptotic optimality, homotopy, weak §-clearance, robust optimal solution;
PRM, RRT, RRG, PRM*, RRT*.

Improved randomized sampling-based methods

= |nformed sampling — Informed RRT*; Improving by batches of samples and reusing previous searches using
Lifelong Planning A* (LPA*).

® Improving local search strategy to improve convergence speed.

= Planning in dynamic environments — RRTX.

Multi-goal motion planning (MGMP) problems are further variants of the robotic TSP.

Next: Semestral project assignment.
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