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Overview of the Lecture

® Part 1 — Randomized Sampling-based Motion Planning Methods
= Sampling-Based Methods
= Probabilistic Road Map (PRM)
= Characteristics
= Rapidly Exploring Random Tree (RRT)
® Part 2 — Optimal Sampling-based Motion Planning Methods
= Optimal Motion Planners
= Rapidly-exploring Random Graph (RRG)
= Informed Sampling-based Methods
= Part 3 — Multi-Goal Motion Planning (MGMP)
= Multi-Goal Motion Planning
= Physical Orienteering Problem (POP)
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Part |

Part 1 — Sampling-based Motion Planning
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Sampling-Based Methods

(Randomized) Sampling-based Motion Planning

It uses an explicit representation of the obstacles in C-space.

A "black-box" function is used to evaluate if a con-
figuration q is a collision-free using geometrical
models of the objects (robot and environment).

2D or 3D shapes of the robot and environment
can be represented as sets of triangles — tesselated
models.

Collision test is then a test of for the intersection
of the triangles.

Collision free configurations form a discrete rep-
resentation of Cree.

Configurations in Cgee can be sampled randomly and connected to a (probabilistic) roadmap.

Rather than the full completeness they provide probabilistic completeness or resolution com-
pleteness.

It is probabilisticaly complete if for increasing number of samples, an admissible solution would be found (if exists).
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A collision test library RAPID http://gamna. cs.unc. edu/0BB/
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Sampling-Based Methods

Probabilistic Roadmaps
A discrete representation of the continuous C-space generated by randomly sampled
configurations in Cfee that are connected into a graph.
= Nodes of the graph represent admissible configurations of the robot.
u Edges represent a feasible path (trajectory) between the particular configurations.

Having the graph, the final path (trajectory) can be found by a graph search technique.
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Sampling-Based Methods

Incremental Sampling and Searching

u Single query sampling-based algorithms incrementally create a search graph (roadmap).
1. Initialization — G(V, E) an undirected search graph, V may contain gstart, qgoas and/or
other points in Cree.
. Vertex selection method — choose a vertex g, € V for the expansion.
. Local planning method — for some Gnew € Cfree, attempt to construct a path 7 : [0,1] —
Cfree such that 7(0) = gcur and 7(1) = Gpew, 7 must be checked to ensure it is collision
free.

w N

= |f 7 is not a collision-free, go to Step 2.
. Insert an edge in the graph — Insert 7 into E as an edge from gcyr to gnew and insert
Gew 10 V if Gpey ¢ V.
. Check for a solution — Determine if G encodes a solution by using a single search tree
or graph search technique.
. Repeat Step 2 — iterate unless a solution has been found or a termination condition is
satisfied.

How to test gney is in V?

LaValle, S. M.: Planning Algorithms (2006), Chapter 5.4.
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Sampling-Based Methods

Probabilistic Roadmap Strategies
Multi-Query strategy is to create a roadmap that can be used for several queries.
= Generate a single roadmap that is then used for repeated planning queries.
= An representative technique is Probabilistic RoadMap (PRM).

Kavraki, L., Svestka, P., Latombe, J.-C., Overmars, M. H.B: Probabilistic Roadmaps for Path Planning in
High Dimensional Configuration Spaces, |EEE Transactions on Robotics, 12(4):566-580, 1996.

Hsu, D., Latombe, J.-C., K .: On the of
The International Journal of Robotics Research, 25(7):627-643, 2006.

ti, H

Roadmap Planning

Single-Query strategy is an incremental approach.

= For each planning problem, it constructs a new roadmap to characterize the subspace
of C-space that is relevant to the problem.
= Rapidly-exploring Random Tree — RRT; LaValle, 1998

= Expansive-Space Tree — EST; Hsu et al., 1997

= Sampling-based Roadmap of Trees — SRT.
A bii

of multipl ry and singl y approaches.

Plaku et al., 2005

q q
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Probabilistic Road Map (PRM)
Multi-Query Strategy

Build a roadmap (graph) representing the environment.
1. Learning phase

1.1 Sample n points in Cree.

1.2 Connect the random configurations using a local planner.
2. Query phase

2.1 Connect start and goal configurations with the PRM.

Using a local planner.

2.2 Use the graph search to find the path.

ﬁ Probabilistic Roadmaps for Path Planning in High Dimensional Configuration Spaces
Lydia E. Kavraki and Petr Svestka and Jean-Claude Latombe and Mark H. Overmars,
IEEE Transactions on Robotics and Automation, 12(4):566-580, 1996.

First planner that demonstrates ability to solve general planning problems in more than 4-5 dimensions.

Jan Faigl, 2025 B4M36UIR — Lecture 09: Sampling-based Motion Planning

Probabilistic Road Map (PRM)

PRM Construction

#1 Given problem domain #2 Random configuration

#3 Connecting samples

.
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Probabilistic Road Map (PRM)

Practical PRM

Rapidly Exploring Random Tree (

Sampling-Based Methods Characteristics

= Incremental construction.

= Connect nodes in a radius r.

® Local planner tests collisions up to se-
lected resolution 6.

® Path can be found by Dijkstra’s algo-
rithm.

What are the properties of the PRM algorithm?
We need a couple of more formalisms.
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Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT)
Path Planning Problem Formulation
m Path planning problem can be defined by a triplet
P = (Crees Ginit> Qgoal), Where
8 Cpee = l(C\ Cops), C = (0,1), for d € N, d > 2; (scaling)

= ginit € Cree is the initial configuration (condition);
= Qo is the goal region defined as an open subspace of Cree.

= Function  : [0,1] — R? of bounded variation is called:
= path - if it is continuous;
= collision-free path - if it is a path and 7(7) € Cfee for 7 € [0,1];
= feasible — if it is a collision-free path, and m(0) = ginit and 7(1) € cl(Qgoar)-
= A function 7 with total variation TV(7) < oo is said to have bounded variation, where TV(7) is the

total variation
TV(r) = SUP{neN,0=ro <71 <...<Ta=s} Sy Im(n) = w(rica)].

= Total variation TV(r) is de facto a path length.
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Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (

Path Planning Problem

m Feasible path planning
For a path planning problem (Cfree, Ginit; Qgoal):
= Find a feasible path 7 : [0, 1] = Cfee such that 7(0) = ginir and 7(1) € cl(Qgoar), if such
path exists;
= Report failure if no such path exists.

= Optimal path planning
The optimality problem asks for a feasible path with the minimum cost.
For (Cfree, Ginit» Qgoar) and a cost function ¢ : ¥ — Rxo:
= Find a feasible path 7* such that c(7*) = min{c(x) : 7 is feasible};
= Report failure if no such path exists.

The cost function is assumed to be monotonic and bounded.
There exists ke such that c(r) < ke TV ().
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Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree

Probabilistic Completeness 1/2

First, we need robustly feasible path planning problem (Cfee, Ginit, Qgoal)-
8 g € Cfree is O-interior state of Cpee if the closed ball
of radius J centered at q lies entirely inside Cfree.
= g-interior of Cfree is ints(Crree) = {q € Crree|B/s C

Cfree}-
® A collision free path 7 has strong d-clearance,
if 7 lies entirely inside ints(Cpree)-

A collection of all §-interior states.

q.;
'~ s-interior state

= (Cree> Ginit, Dgoar) is robustly feasible if a solution exists and it is a feasible path with
strong d-clearance, for § > 0.
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Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tr

Probabilistic Completeness 2/2
An algorithm ALG is probabilistically complete if, for any robustly feasible path
planning problem P = (Cfree7 Qinit, ngal)-

lim Pr(ALG returns a solution to P) = 1.
n—oo

® |t is a “relaxed” notion of the completeness.
= Applicable only to problems with a robust solution.

We need some space where random configurations can be sampled.
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Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree

Asymptotic Optimality 1/4 — Homotopy

Asymptotic optimality relies on a notion of weak §-clearance.

Notice, we use strong §-clearance for probabilistic completeness.
® We need to describe possibly improving paths (during the planning).
® Function 1 : [0, 1] — Cee is called homotopy, if ¢(0) = m; and ¢(1) = m2 and ¥(7)
is collision-free path for all 7 € [0, 1].

® A collision-free path 71 is homotopic to 7 if there exists homotopy function .
A path homotopic to 7 can be continuously transformed to m through Cfree.
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Asymptotic Optimality 2/4 — Weak d-clearance

= A collision-free path 7 : [0,s] — Cpee has weak d-clearance if there exists a path 7’
that has strong d-clearance and homotopy ¢ with ¥(0) = &, (1) = 7/, and for all
a € (0, 1] there exists d, > 0 such that ¢)() has strong d-clearance.

(RRT)

Weak §-clearance does not require points along a path to be at least

a distance § away from obstacles.

int 8( Cfree )

m A path 7 with a weak d-clearance.

® 7/ lies in int5(Cree) and it is the same homotopy
class as 7.

We need the strong §-clearance to find ' (by randomized sam-
pling). Then, such a path can be (localy) improved (shorten)
towards the shortest 7. w' must be within the same homotopy
class (passing obstacles at the same way as the optimal path
) to guarantee such a path 7 can be the optimal path.
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Asymptotic Optimality 3/4 — Robust Optimal Solution

® Asymptotic optimality is applicable with a robust optimal solution that can be ob-
tained as a limit of robust (non-optimal) solutions.

m A collision-free path 7* is robust optimal solution if it has weak ¢-clearance and for
any sequence of collision free paths {m,}nen, Tn € Chree such that limp_oo mp = 7%,

lim c(mp) = ¢(7*).

lim_c(m) = (")
There exists a path with strong §-clearance, and * is homotopic to such
path and ©* is of the lowest cost.

® Weak d-clearance implies an existence of the strong d-clearance path within the some

homotopy, and thus robustly feasible solution problem.

Thus, it implies the probabilistic completeness.
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Asymptotic Optimality 4/4 — Asymptotically Optimal Algorithm

An algorithm ALG is asymptotically optimal if, for any path planning problem P =
(Cfrees Ginit; Qgoat) and cost function ¢ that admits a robust optimal solution with the

finite cost c* such that
Pr ({ }) -1

L] Y,.ALQ is the extended random variable corresponding to the minimum-cost solution
included in the graph returned by ALG at the end of the iteration i.

lim YALO = ¢t

i—00
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Characteristics

Properties of the PRM Algorithm

= Completeness for the standard PRM has not been provided when it was introduced.
= A simplified version of the PRM (called sPRM) has been most studied.
= sPRM is probabilistically complete.

What are the differences between PRM and sPRM?
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PRM vs. simplified PRM (sPRM)
Algorithm 2: sPRM

Input: ginie, the number of samples n, and
radius r

Algorithm 1: PRM

Input: gjnie, the number of samples n, and radius r
Output: PRM - G = (V, E)

Ve 0E « 0; Output: PRM = G = (V, E)
fori=0,....ndo V & {qini}U{SampleFree;};_1,.. n—1; E « 0;

Grand  SampleFree; foreach v € V do

U+ Near(G = (V, E), Grana: )i U Near(G = (v E),v, )\ {v}

V + VU{qnd}; foreach u € U di

foreach u € U with increasing ||u— q|| do if cou.s.onpree(v, u) then

if Grand and u are not in the same | E<Euf(v,u),(uv)}k
connected component of G = (V,E)

then

L if CollisionFree(dyang, u) then return G = (V. E):

L E < EU{(arm u), (v Grana) = Connections between vertices in the same con-

nected component are allowed.
return G = (V, E); = The radius r is fixed and can be relatively long;
thus sPRM can be very demanding.

Several ways for the set U of vertices to connect them can improved the performance, such as k-nearest
neighbors to v; or variable connection radius r as a function of n at the cost of lost of asymptotical optimality
or even probabilistic completeness.
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Characteristics

PRM — Properties

® sPRM (simplified PRM):
= Probabilistically complete and asymptotically optimal.
= Processing complexity can be bounded by O(n?).
= Query complexity can be bounded by O(n?).
= Space complexity can be bounded by O(n?).
m Heuristics practically used are not necessarily probabilistic complete and asymptotically
optimal.
= k-nearest sSPRM is not probabilistically complete for k = 1.
= Variable radius sSPRM is not probabilistically complete; with the radius r(n)

1

=yn"d.
See Karaman and Frazzoli: Sampling-based Algorithms for Optimal Motion Planning, IJRR 2011.

PRM algorithm
+ It has very simple implementation.
It provides completeness (for sSPRM).
— Differential constraints (car-like vehicles) are not straightforward (but possible).
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Characteristics
Comments about Random Sampling 1/2

= Different sampling strategies (distributions) may be applied.

= Notice, one of the main issues of the randomized sampling-based approaches is the
narrow passage.

= Several modifications of sampling-based strategies have been proposed in the last decades.
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Characteristics

Comments about Random Sampling 2/2
® A solution can be found using only a few samples.

Using the Oraculum.
= Sampling strategies are important: Near obstacles; Narrow passages; Grid-based;

Uniform sampling must be carefully considered.
James J. Kuffner (2004): Effective Sampling and Distance Metrics for 3D Rigid Body
Path Planning, ICRA, 2004.

FIR0 Wl R
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Uniform sampling of SO(3) using Euler angles
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Naive sampling
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Rapidly Exploring Random Tree (RRT)

Rapidly Exploring Random Tree (RRT)

Single—Query algorithm.
u |t incrementally builds a graph (tree) towards the goal area.
It does not guarantee precise path to the goal configuration.
1. Start with the initial configuration go, which is a root of the constructed graph (tree).
2. Generate a new random configuration gnew in Cree-
3. Find the closest node Gnear t0 Gnew in the tree.
KD-tree implementation like ANN or FLANN libraries can be utilized.

4. Extend @pear towards gnew-
Extend the tree by a small step or using a direct control u € U that will move
the robot to the position closest to qnew applied for §t.

5. Go to Step 2 until the tree is within a sufficient distance from the goal configuration.

Or terminates after dedicated running time.
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Rapidly Exploring Random Tree (RRT)

RRT Construction
#2 the closest node

V.

#1 new random configuration

/
e PN .

A G e
‘70/“\ e %/"\ !  new
#4 extended tree
VL
RN
e qﬂ/"\’
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Rapidly Exploring Random Tree (RRT)

RRT Algorithm

Motivation is a single query and control-based path finding.

It incrementally builds a graph (tree) towards the goal area.
Algorithm 3: Rapidly Exploring Random Tree (RRT)

Input: gjyjr, number of samples n
Output: Roadmap G = (V, E)
Vo {qinie}i E < 0;
fori=1,...,ndo
Grand + SampleFree;
Gnearest «— Nearest(G = (V, E), Grand);
Gnew <= Steer(qnearest, drand );
if CollisionFree(qgnearest, Gnew) then
[V VU {xmew}i E < E U {(xnearest, Xnew) }:

return G = (V, E);

B Rapidly-exploring random trees: A new tool for path planning
S. M. LaValle,
Technical Report 98-11, Computer Science Dept., lowa State University, 1998.
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Rapidly Exploring Random Tree (RRT)

Properties of RRT Algorithms

® The RRT algorithm rapidly explores the space.

Qnew will more likely be generated in large, not yet covered parts (voroni bias).
= Allows considering kinodynamic/dynamic constraints (during the expansion).
m Can provide trajectory or a sequence of direct control commands for robot controllers.
= A collision detection test is usually used as a “black-box.”

RAPID, Bullet libraries.

= Similarly to PRM, RRT algorithms have poor performance in narrow passage problems.
® RRT algorithms provide feasible paths.

It can be relatively far from an optimal solution; according to the
length of the path.

® Many variants of the RRT have been proposed in the literature.
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Rapidly Exploring Random Tree (RRT)

Examples 1/4 — Variants of RRT algorithms
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Examples 2/4 — Motion Planning Benchmarks

Alpha puzzle benchmark
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Rapidly Exploring Random Tree (RRT)

Bugtrap benchmark

Courtesy of V. Vonasek.
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Rapidly Exploring Random Tree (RRT)

Examples 3/4 — Planning on Terrain Considering Frictions

Planning on a 3D surface Planning with dynamics (friction forces)

Courtesy of V. Vonasek.
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Rapidly Exploring Random Tree (RRT)

Examples 4/4 — Motion Planning for Complex Shape and Car-like Robot

NS

Planning for a car-like robot
Courtesy of V. Vonasek and P. Vanék.

Apply rotations to reach the goal
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Car-like Robot

= Configuration

X o= |y

position and orientation.

= Controls

- ()

forward velocity, steering angle.

= System equation

Jan Faigl, 2025

X = vcos¢
y = wvsing .
¢ = {tang
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Rapidly Exploring Random Tree (RRT)

‘x‘\‘ |CC (Instantaneous Centre of Curvature)

Kinematic constraints dim(d) < dim(%).
Differential constraints on possible q:
xsin(¢) — y cos(¢) = 0.

Rapidly Exploring Random Tree (RRT)

Control-Based Sampling

= Select a configuration g from the tree T of the current configurations.

= Pick a control input @ = (v, ¢) and the inte-
grate system (motion) equation over a short

period At:
Ax AL 1 cos
Ay | = vsing | dt.
Ao A ftany

= |f the motion is collision-free, add the endpoint
to the tree.
Considering k configurations for kot = dt.
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Part I

Part 2 — Optimal Sampling-based Motion Planning
Methods
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Optimal Motion Planners

= |n 2011, a systematical study of the asymptotic behavior of randomized sampling-based

planners has been published. it shows, that in some cases, they converge to a non-optimal value with a probability 1.
It builds on properties of Random Geometric Graphs (RGG) introduced by Gilbert (1961) and further studied by Penrose (1999)
= Based on the study, new algorithms have been proposed: RRG and optimal RRT (RRT*).

Karaman, S., Frazzoli, E.: Sampling-based algorithms for optimal motion planning, IJRR, 30(7):846-894, 2011.
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Sampling-Based Motion Planning
= PRM and RRT are theoretically probabilistic complete.
® They provide a feasible solution without quality guarantee.
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However, they are successfully used in many practical applications.

http://sertac.scripts.mit.edu/rrestar

Optimal Motion Planners

RRT and Quality of Solution 1/2

m et Y,-RRT be the cost of the best path in the RRT at the end of the iteration i.
= YRRT converges to a random variable

. \RRT RRT
lim YRRT — yRRT,
1—00
= The random variable Y2RT is sampled from a distribution with zero mass at the opti-
mum, and
PrIYRRT > ¢*] =1.
Karaman and Frazzoli, 2011

= The best path in the RRT converges to a sub-optimal solution almost surely.
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Optimal Motion Planners Rapidly-exploring Random Graph (RRG)

RRT and Quality of Solution 2/2

Informed Sampling-based Methods

= RRT does not satisfy a necessary condition for the asymptotic optimality.
= For 0 < R < infgeq,, |1q — Ginit||, the event {lim, YRTT = c*} occurs only if the
k-th branch of the RRT contains vertices outside the R-ball centered at g for infinitely
many k.

See Appendix B in Karaman and Frazzoli, 2011.

= |t is required the root node will have infinitely many subtrees that extend at least a
distance € away from gjpj¢.

The sub-optimality is caused by disallowing new better paths to be discovered.

Optimal Planners

Rapidly-exploring Random Graph (RRG)

Rapidly-exploring Random Graph (RRG)
Algorithm 4: Rapidly-exploring Random Graph (RRG)
Input: gjpit, the number of samples n
Output: G = (V,E)
V0 E«0
fori=0,...,ndo
Grand < SampleFree
Gnearest < Nearest(G = (V, E), Grand)
Gnew < Steer(nearest, drand)
if CollisionFree(gnearest: Gnew) then
Qnear + Near(G = (V, E), Gnew, min{7vrre (log(card(V))/ card(V))*/?, n})
V = VU {Gnew}; E < EU{(anearest: Gnew): (Gnew: Gnearest) }
foreach gpear € Qnear do

if CollisionFree(gnear: Gnew) then
| E « EU{(nears Gnew): (Gnew: Gnear) }

Informed Sampling

// Connect Qpear With Gnew -

return G = (V,E)

Proposed by Karaman and Frazzoli (2011). Theoretical results are related to properties of Random Geometric Graphs (RGG)
introduced by Gilbert (1961) and further studied by Penrose (1999).

Optimal Motion Planners Rapidly-exploring Random Graph (RRG)

RRG Expansions

= At each iteration, RRG tries to connect new sample to all vertices in the r, ball centered
at it.

® The ball of radius

r(card(V)) = min ¢ YrrG <

Informed Sampling

log (card(V))\ /¢
card(V) e
where

® 7 is the constant of the local steering function;
= Yrre > Vire = 2(1+ 1/d)4(u(Crree) /Ca) M4
- d - dimension of the space;
- 1(Cfree) — Lebesgue measure of the obstacle—free space;
- (4 — volume of the unit ball in d-dimensional Euclidean space.

® The connection radius decreases with n.
® The rate of decay ~ the average number of connections attempted is proportional to
log(n).
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RRG Properties Other Variants of the Optimal Motion Planning Example of Solution 1/3
[ I o ek |

= Probabilistically complete;
= Asymptotically optimal;
= Complexity is O(log n).
(per one sample)
= Computational efficiency and optimality:
= |t attempts a connection to ©(log n) nodes at each iteration;
In average
= Reduce volume of the “connection” ball as log(n)/n;
® Increase the number of connections as log(n).
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1 PRM* follows the standard PRM algorithm where connections are attempted between
roadmap vertices that are the within connection radius r as the function of n:

r(n) = ~prum(log(n)/n)*/*.

= RRT* is a modification of the RRG, where cycles are avoided.
It is a tree version of the RRG.
= A tree roadmap allows considering non-holonomic dynamics and kinodynamic constraints.
® |t is basically the RRG with “rerouting” the tree when a better path is discovered.
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RRT, n=250 RRT, n=500

=X

)E‘«,ﬁ/

\‘\\
N ‘\\‘
N

RRT*, n=10000
Karaman & Frazzoli, 2011
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RRT*, n=250 RRT*, n=500 RRT*, n=2500
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Optimal Motion Planners Rapidly-exploring Random Graph (RRG)

Informed Sampling-based Methods

/3

10

Example of Solution 2
e

RRT, n=20000

RRT*, n=20000
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Optimal Motion Planners Rapidly-exploring Random Graph (RRG) Informed Sampling-based Methods

Example of Solution 3/3

11000

https: //wuw.youtube . com/watch?v=YKiQTIpPFkA
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Optimal Motion Planners Rapidly-exploring Random Graph (RRG) Informed Sampling-based Methods

Overview of Randomized Sampling-based Algorithms

Algorithm Probabilistic Asyn'rlpto'tic

Completeness  Optimality
PRM v X
sPRM v v
k-nearest sPRM X X
RRT v X
RRG v v
PRM* v v
RRT* v v

SPRM with connection radius r as a function of n; r(n) = yprm(log(n)/n)*/ with
VPRM > Vhgm = 2(1+ 1/ 4 (1(Chee) /<) 7.
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Informed Sampling-based Methods Informed Sampling-based Methods Informed Sampling-based Methods

Algorithm 1: Informed RRT*(Xqtart. Xgon1)

Improved Sampling-based Motion Planners Informed RRT* Ty g Informed RRT* — Demo

)
54
. B 000462
. ) . . " Focused RRT* search to increase the convergence rate. ot =1 do
= Although asymptotically optimal sampling-based motion planners such as RRT* or RRG . . - - 6] e € i X, (G0t O}
. . . . . . ® Use Euclidean distance as an admissible heuristic. 7| rana < Sanp  Xgoaly Cheat)
may provide high-quality or even optimal solutions to the complex problem, their per- N . 5| ocaser ¢ Nearest (T, Xsuna :
o ; A N = Ellipsoidal informed subset — the current best solution Cpest 2 | ¢, Steer Cammest X ): ) hen
formance in simple scenarios (such as 2D) is relatively poor. H s et X
In a comparison to the ordinary approaches such as visibility graph. X; = {x € X||Ixstart — xl2 + X — %goatl[2 < Chest}- E f,_u:xnearv 7 o )
= The computational performance can be improved similarly as for the RRT. " e ¢ CoB% () | € iR (ot X )
. P . . . . . ] Algorithim 2: Sample (X Xpont (e 1 Coume 4= €08t (X} + € - Line (Xuusars Xnew )
= Using goal biasing, supporting sampling in narrow passages, multi-tree growing 1 M o s o -
idi N Chest ~ Conin i if Cu]])siun!‘ree Xnear, Xnew ) then
(Bidirectional RRT). v o { i - Xaar:
® The general idea of improvements is based on informing the sampling process. L e 4 N I
. . . . . e . 2 for ¥xpear € Xuear do.
= Many modifications of the algorithms exists, selected representative modifications are  Directly based on the RRT* B e S
" *. ® Having a feasible solution; item sample = i Cnow < Cnear the
Informed RRT*; e e et P 7 caTEatonPro (o, Kacar) then
= Batch Informed Trees (BIT*); H s - et (o)
. * * Gammell, J. B., Srinivasa, S. S., Barfoot, T. D.: Informed RRT* E 4+ EU {{Xpews Xnear) }i
= Regionally Accelerated BIT* (RABIT*). Optimal Sampling-based Path Planning Focused via Direct Sampling ” -
It shows an evolution of the improvements. of an Admissible Ellipsoidal Heuristic. IROS, 2014. M i TgostRegion(age) e
O e e e Informed RRT*
2 return 7 https://uww. youtube. com/vatch?y=d7dXSMVDYTc
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Batch Informed Trees (BIT*) Batch Informed Trees (BIT*) — Demo Regionally Accelerated BIT* (RABIT*)
= Combining RGG (Random Geometric Graph) with the heuristic in incremental graph search RRT* i : o FMT*
technique, e.g., Lifelong Planning A* (LPA*). The properties of the RGG are used in the RRG and RRT*. t = 000343445 3 ‘/l £ =00.0342955 = Use local optimizer with the BIT* to improve the convergence speed.
¢ = 01.724808 =00

= Local search Covariant Hamiltonian Optimization for Motion Planning (CHOMP) is utilized to
connect edges in the search graphs using local information about the obstacles.

% 8"&”&1 xeu..‘ Ks g"gm
Xk
(@ (b

= Batches of samples — a new batch starts with denser implicit RGG.
= The search tree is updated using LPA* like incremental search to reuse existing information.

the
round  the|
onitsing

During each batch,
expands outward
minimum  sol

Search] [When a-solufion is found, the] [A new batch of samples is then] [The process repeats mdefnitely,
Ibatch finishe ladded and t restarting each time an im-
proved solution is found.

heuristic.

BIT*

t = 00.034406s
¢ = 01.518589 Fig. 2. An illustration of how the RABIT* algorithm uses a local optimizer to exploit obstacle information and improve a global scarch. The global search
is performed, as in BIT*, by incrementally processing an edge queue (dashed lines) into a tree (a). Using heuristics, the potential edge from x; 10 Xy, is
processed first as it could provide a better solution than an edge from x; to x;. The initial straight-line edge is given to a local optimizer which uses
information about obstacles to find a local optima between the specified states (b). If this edge is collision free, it is added to the tree and its potential
outgoing edges are added to the queue. The next-best edge in the queue is then processed in the same fashion, using the local optimizer to once again
propose a better edge than a straight-line ()

Informed RRT*
t = 00.034316s
c=01.724528

Yo

@) .t ) M © (d)

Fig. 3. An illustration of the informed search procedure used by BIT*. The start and goal states are shown as green and red, respectively. The current
solution is highlighted in magenta. The subproblem that contains any better solutions is shown as a black dashed line, while the progress of the current
batch is shown as a grey dashed line. Fig. (a) shows the roving mnh of the first batch of samples, and (b) shows the first search ending when a solution
is found. After pruning and adding a second batch of samples, Fig. (¢) shows the search restarting on a denser graph while (d) shows the second search
ending when an improved solution is found. An animated lllu\ndnnn is available in the attached video.

Choudhury, S., Gammell, J. D., Barfoot, T. D., Srinivasa, S. S., Scherer, S.: Regionally
Accelerated Batch Informed Trees (RABIT*): A Framework to Integrate Local Information
into Optimal Path Planning. |CRA, 2016 R

Gammell, J. B., Srinivasa, S. S., Barfoot, T. D.: Batch Informed Trees (BIT*): Sampling-based optimal
planning via the heuristically guided search of implicit random geometric graphs, ICRA, 2015.

https://uwu. youtube. con/watch?v=TqLoCC48gp4
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Regionally Accelerated BIT* (RABIT*) — Demo Covariant Hamiltonian Optimization for Motion Planning (CHOMP) Overview of Improved Algorithm

RABIT* mdtches BIT* performance on easy problems (R2) Trajectory optimizatic.?n based on functional gradient techqiques to improve the trajectory with = Optimal path/motion P'a""in‘g is an 3Ctive‘ fese?fch .ﬁ‘eH- i : i
trade-off between trajectory smoothness and obstacle avoidance. Approaches (Consirata N riwsog Mode] Kise matie o M Surwltie Stx ey MENMENTE

. . . . L RRT*[7) Holonomic Offline Point Uniform Euclidean
- . . +
Trajectory function 7 : [0, T] — C with a cost function I/ : I — R T pnyine KT (0 Norbomone_onne e o Fucin Voo
. L . . _ _
® The trajectory optimization 7* = argmin.cn U(), s.t. 7(0) = Ginie and 7(T) = ggoar- TpRRTN omeme  Ofme  Rgdbody | Loalbis Gostbised
Function gradient descent ;.1 4 RRT*FN [33] Holonomic Offline Robotic Arm Uniform Cumulative Euclidean
= CHOMP instantiates functional gradient descent for the cost > RRT*Smart(35) Holonomic  Offline Point Ioneligemt Euclidom
6. Optimal B-RRT* [36Holonomic Offline Point Uniform Euclidean
Ur) = Usmooth(ﬂ') + Mobs(7). (1) T RRT# [50) Holonomic __ Ofline Point Uniform Fuclidean
B AGPEARRTT O N holonomic _ Offine s Uniform A® Heuristc
1.67 = Smoothness cost can be defined a5 Usmootn(m) = 3 J; 1/(8)] dt. TSRRT ] Novlolmemic_Ofine Uniom [y Er—
[ ——— = Obstacle cost 10 Lnformed RRT* (34] Holonomic Offine Point Direet Sampling Euclidean
1 -| o lolonomic line Poin Intelligen reedy + Euclidean
Z’{Qbs C(l/)A( UA 7r(t,)) dadt (2) 5 IB-RRT* [37] Holonomi O Point Intelligent Greedy + Euclidean
RABIT* has 1.8 times e Ja 2 DTRRT(9]  Nomhoknomic  Offline Hybrid Angular + Euclidean
o ’ . Th + function in W W — R that caned dist field t ted dist to the cl bstacl B3 RRTei 3] Non-holonomic _ Online Local Sampling A* Heuristic
e cost function In s C at uses signe Istance fiel 0 compute istance to e closes obstacle. [y -
+CS* N fMine An
faster convergence on Return higher cost the closer the point is to an obstacle. L of v
e - hard pn)blems (RS) = Computing the cost for each point of the trajectory, thus integral over time. & Mitsubishi RRT® 2] Non-hoknomic_ Ouline - Weighted B
: . : ; f . CARRT*(65] _ Non-holonomic _ Online Humanoid Uniform MW Encrgy Cost
Compn e o] = Integral over body points a using forward kinematics mapping 14 to get robot's points for 7(t). ‘ =
L IamsIRET =T = Zucker, M., Ratliff, N., Dragan, A. D., Pivtoraiko, M., Klingensmith, M., Dellin, C. M., Bagnell, J. A., and Srinivasa, S. S.: CHOMP. PRRT* [48] N Offline PI-DX Uniform Euclidean

Wttps /s youtube. con/ watch?v-ngd-DH36]S0 Covariant Hamiltonian optimization for motion planning. The International Journal of Robotics Research. 32(9-10):1164-1193, 2013 Noreen, I., Khan, A., Habib, Z.: Optimal path planning using RRT* based approaches: a survey and future directions. 1JACSA, 2016.
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Informed Sampling-based Methods

Motion Planning for Dynamic Environments — RRT*

= Refinement and repair of the search graph during the navigation (quick rewiring of the shortest path).

RRTX — Robot in 2D RRTX - Robot in 2D
https://www. youtube. com/watch?v=59pguCPUo3M https://www. youtube. con/watch?v=KxFivNgTVio
Otte, M., & Frazzoli, E. (2016). RRT ically optimal single-query ing-based motion planning |
with quick replanning. International Journal of Robotics Research, 35(7), 797--822.
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Part Ill
Part 3 — Multi-goal Motion Planning (MGMP)
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Multi-Goal Motion Planning

Multi-Goal Motion Planning
In the previous cases, we consider existing roadmap or relatively “simple” collision free (shortest)
paths in the polygonal domain.
However, determination of the collision-free path in high dimensional configuration space (C-
space) can be a challenging problem itself.
Therefore, we can generalize the MTP to multi-goal motion planning (MGMP) considering
motion planners using the notion of C-space for avoiding collisions.
An example of MGMP can be to plan a cost efficient trajectory for hexapod walking robot to
visit a set of target locations.

#Expansions: 14900; Vertices: 8849; Edges: 25256

Path lengih 125.7
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Multi-Goal Motion Planning

Problem Statement — MGMP Problem

= The working environment W C R3 is represented as a set of obstacles O C W and the
robot configuration space C describes all possible configurations of the robot in W.

® For g € C, the robot body A(q) at q is collision free if A(q) N O = 0 and all collision
free configurations are denoted as Cpee.

= Set of n goal locations is G = (g1,...,8n), & € Cree-

= Collision free path from Gstart t0 Ggoar is £ @ [0,1] — Cfree With £(0) = gstare and
d(K(1), end) < €, for an admissible distance e.

® Multi-goal path 7 is admissible if 7 : [0,1] — Cfree, 7(0) = 7(1) and there are n points
suchthat 0 <ty <t <... <ty d(7(t;), vi) < ¢, and U1<,-Sn vi=g.

= The problem is to find the path 7* for a cost function ¢ such that c(7*)
min{c(7) | 7 is admissible multi-goal path}.
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Multi-Goal Motion Planning

MGMP — Existing Approches

= Determining all paths connecting any two locations gj, gj € G is usually very computationally demanding.
= Considering Euclidean distance as an app in the solution of the TSP as the Minimum Spanning Tree
(MST) — Edges in the MST are iteratively refined using optimal motion planner until all edges represent a
feasible solution.

Saha, M., Roughgarden, T., Latombe, J.-C., Sinchez-Ante, G.: Planning Tours of Robotic Arms among
Partitioned Goals., International Journal of Robotics Research, 5(3):207-223, 2006 .

= Synergistic Combination of Layers of Planning (SyCLoP) — A combination of route and trajectory planning.

Plaku, E., Kavraki, L.E., Vardi, M.Y. (2010): Motion Planning With Dynamics by a Synergistic Combination
of Layers of Planning, |EEE ions on Robotics, 26(3): , 2010.

= Steering RRG roadmap expansion by unsupervised learning for the TSP.
® Steering PRM* expansion using VNS-based routing planning in the Physical Orienteering Problem (POP).
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Physical Orienteering Problem (POP)

Multi-Goal Trajectory Planning with Limited Travel Budget
Physical Orienteering Problem (POP)

Orienteering Problem (OP) in an environment with obstacles and
motion constraints of the data collecting vehicle.

A combination of motion planning and routing problem with profits.
= VNS-PRM* — VNS-based routing and motion planning is ad-
dressed by PRM*.

An initial low-dense roadmap is continuously expanded during the
VNS-based POP optimization to shorten paths of promising solu-
tions.

= Shorten trajectories allow visiting more locations within Tmax.

{
Lo . {01
= Pénicka, Faigl and Saska: Physical Orienteering Problem for Unmanned “ 00 o™ | oo \ A O
Aerial Vehicle Data Collection Planning in Environments with Obstacles.

IEEE Robotics and Automation Letters 4(3):3005-3012, 2019.
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Physical Orienteering Problem (POP)

Multi-Goal Trajectory Planning with Limited Travel Budget

Physical Orienteering Problem (POP) — Real Experimental Verification

Jan Faigl, 2025
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Summary of the Lecture
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Topics Discussed

Topics Discussed — Randomized Sampling-based Methods

= Single and multi-query approaches
Probabilistic Roadmap Method (PRM); Rapidly Exploring Random Tree (RRT).
® Optimal sampling-based planning — Rapidly-exploring Random Graph (RRG).
= Properties of the sampling-based motion planning algorithms:
= Path, collision-free path, feasible path;
= Feasible path planning and optimal path planning;
= Probabilistic completeness, strong i-clearance, robustly feasible path planning problem;
= Asymptotic optimality, homotopy, weak J-clearance, robust optimal solution;
= PRM, RRT, RRG, PRM*, RRT*.
= Improved randomized sampling-based methods
= Informed sampling — Informed RRT*; Improving by batches of samples and reusing previous searches using
Lifelong Planning A* (LPA*).
= Improving local search strategy to improve convergence speed.
= Planning in dynamic environments — RRTX.

= Multi-goal motion planning (MGMP) problems are further variants of the robotic TSP.

® Next: Semestral project assignment.
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