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Part 1 — Sampling-based Motion Planning
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Sampling-Based Methods

(Randomized) Sampling-based Motion Planning

It uses an explicit representation of the obstacles in C-space.

A “black-box" function is used to evaluate if a con-
figuration ¢ is a collision-free using geometrical
models of the objects (robot and environment).

2D or 3D shapes of the robot and environment
can be represented as sets of triangles — tesselated
models.

Collision test is then a test of for the intersection
of the triangles.

Collision free configurations form a discrete rep-
resentation of Cpee.

A collision test library RAPID http://gamma.cs.unc.edu/0BB/.

Configurations in Cgee can be sampled randomly and connected to a (probabilistic) roadmap.

Rather than the full completeness they provide probabilistic completeness or resolution com- ¢
pleteness. issibl J%

It is probabilisticaly complete if for increasing ber of ples, an ad solution would be found (if exists). | “‘f, 5]
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Sampling-Based Methods

Probabilistic Roadmaps
A discrete representation of the continuous C-space generated by randomly sampled
configurations in Csee that are connected into a graph.
= Nodes of the graph represent admissible configurations of the robot.

m Edges represent a feasible path (trajectory) between the particular configurations.

Having the graph, the final path (trajectory) can be found by a graph search technique.
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Sampling-Based Methods

Incremental Sampling and Searching

® Single query sampling-based algorithms incrementally create a search graph (roadmap).

1. Initialization — G(V/, E) an undirected search graph, V may contain Gstart, qgoas and/or

other points in Csree.

2. Vertex selection method — choose a vertex g, € V for the expansion.

3. Local planning method — for some gpew € Cfree, attempt to construct a path 7 : [0,1] —
Ctree such that 7(0) = geyr and 7(1) = Gnew, T must be checked to ensure it is collision
free.

= |f 7 is not a collision-free, go to Step 2.

4. Insert an edge in the graph — Insert 7 into E as an edge from gcur t0 Grew and insert
Gnew tO Vif Gnew §é V. How to test gpey is in V?

5. Check for a solution — Determine if G encodes a solution by using a single search tree
or graph search technique.

6. Repeat Step 2 — iterate unless a solution has been found or a termination condition is

satisfied.
LaValle, S. M.: Planning Algorithms (2006), Chapter 5.4.
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Sampling-Based Methods

Probabilistic Roadmap Strategies
Multi-Query strategy is to create a roadmap that can be used for several queries.
m Generate a single roadmap that is then used for repeated planning queries.
® An representative technique is Probabilistic RoadMap (PRM).

Kavraki, L., Svestka, P., Latombe, J.-C., Overmars, M. H.B: Probabilistic Roadmaps for Path Planning in
High Dimensional Configuration Spaces, IEEE Transactions on Robotics, 12(4):566—-580, 1996.

Hsu, D., Latombe, J.-C., Kurniawati, H.: On the Probabilistic Foundations of Probabilistic Roadmap Planning.
The International Journal of Robotics Research, 25(7):627-643, 2006.

Single-Query strategy is an incremental approach.

m For each planning problem, it constructs a new roadmap to characterize the subspace
of C-space that is relevant to the problem.

= Rapidly-exploring Random Tree — RRT; LaValle 1998

m Expansive-Space Tree — EST; Hsu et al., 1997

= Sampling-based Roadmap of Trees — SRT.

A combination of multiple-query and single—query approaches.
Plaku et al., 2005
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Probabilistic Road Map (PRM)
Multi-Query Strategy

Build a roadmap (graph) representing the environment.
1. Learning phase

1.1 Sample n points in Cyree.

1.2 Connect the random configurations using a local planner.
2. Query phase

2.1 Connect start and goal configurations with the PRM.

Using a local planner.

2.2 Use the graph search to find the path.

@ Probabilistic Roadmaps for Path Planning in High Dimensional Configuration Spaces
Lydia E. Kavraki and Petr Svestka and Jean-Claude Latombe and Mark H. Overmars,
IEEE Transactions on Robotics and Automation, 12(4):566-580, 1996.

First planner that demonstrates ability to solve general planning problems in more than 4-5 dimensions.

8 /72

Jan Faigl, 2025 B4M36UIR — Lecture 09: Sampling-based Motion Planning




Probabilistic Road Map (PRM)

PRM Construction

#1 Given problem domain

Cres

#2 Random configuration

#3 Connecting samples

Cets
Cose

Covs

Cots

#4 Connected roadmap

Ciee

Probabilistic Road Map (PRM)

Practical PRM

Incremental construction.

Connect nodes in a radius r.

Local planner tests collisions up to se-
lected resolution 4.

Path can be found by Dijkstra’s algo-
rithm.

What are the properties of the PRM algorithm?

We need a couple of more formalisms.
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Probabilistic Road Map (PRM) Characteristics
Path Planning Problem Formulation Path Planning Problem
® Path planning problem can be defined by a triplet m Feasible path planning
P = (Ctreer Qinit> Lgoal), Where For a path planning problem (Cfree, Ginit, Qgoal):
8 Chee = cl(C\ Cobs), C =(0,1)%, for d €N, d > 2; (scaling) ® Find a feasible path 7 : [0, 1] = Cree such that m(0) = ginir and 7(1) € cl(Qgoar), if such

B Ginit € Cree is the initial configuration (condition);
B Qg is the goal region defined as an open subspace of Cpree.

Function 7 : [0,1] — R of bounded variation is called:

® path - if it is continuous;

m collision-free path — if it is a path and 7(7) € Cfee for 7 € [0, 1];

m feasible - if it is a collision-free path, and 7(0) = gjnix and 7(1) € cl(Qgoar)-

A function 7 with total variation TV(7) < oo is said to have bounded variation, where TV(r) is the
total variation

TV(7r) = sup{nGN,0:70<1'1<.“<T,,:s} Z,"’:l ‘ﬂ-(T") - 71-(7-"*1)|'
® Total variation TV(7) is de facto a path length.
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path exists;
® Report failure if no such path exists.

m Optimal path planning
The optimality problem asks for a feasible path with the minimum cost.
For (Cree Ginits Qgoar) and a cost function ¢ : ¥ — R>o:
= Find a feasible path 7* such that c(7*) = min{c(x) : 7 is feasible};
® Report failure if no such path exists.

The cost function is assumed to be monotonic and bounded.
There exists ke such that c(m) < ke TV(7).
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Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT)

Probabilistic Completeness 1/2

First, we need robustly feasible path planning problem (Cfree, Ginit; Qgoal)-

- —-;\\\ilits( Cfree)

B g € Cpee is 0-interior state of Cyee if the closed ball
of radius § centered at g lies entirely inside Crree. -

= o-interior of Cfree is ints(Crree) = {q € Cree| B/ 5 C "
Cfree}-
m A collision free path 7 has strong d-clearance, N .

. . . ey q,- Tee— - -7
if 7 lies entirely inside ints(Cfree)- \:)8—interior state

® (Cfree; Ginits Qgoal) is robustly feasible if a solution exists and it is a feasible path with
strong o-clearance, for § > 0.

A collection of all §-interior states.

ft
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Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT)

Probabilistic Completeness 2/2
An algorithm ALG is probabilistically complete if, for any robustly feasible path
planning problem P = (Ctree, Ginit, Qgoal)

lim Pr(ALG returns a solution to P) = 1.
n—oo

® |t is a “relaxed” notion of the completeness.
= Applicable only to problems with a robust solution.

ft

17 /72

We need some space where random configurations can be sampled.
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Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT)

Asymptotic Optimality 1/4 — Homotopy

Asymptotic optimality relies on a notion of weak o-clearance.

Notice, we use strong d-clearance for probabilistic completeness.
® We need to describe possibly improving paths (during the planning).
® Function v : [0,1] — Cfee is called homotopy, if (0) = 71 and ¥(1) = 72 and ¥(7)
is collision-free path for all 7 € [0, 1].
m A collision-free path 1 is homotopic to 5 if there exists homotopy function 1.

A path homotopic to w can be continuously transformed to © through Cfee.

fet
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Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT)

Asymptotic Optimality 2/4 — Weak d-clearance

m A collision-free path 7 : [0,s] — Cgee has weak d-clearance if there exists a path 7/
that has strong d-clearance and homotopy ¢ with ¢(0) = 7, ¥(1) = 7/, and for all
a € (0,1] there exists &, > 0 such that ¥ («) has strong d-clearance.

Weak §-clearance does not require points along a path to be at least
a distance § away from obstacles.

= A path 7 with a weak §-clearance.

m 7/ liesin ints(Cgee) and it is the same homotopy
class as 7.

We need the strong §-clearance to find 7’ (by randomized sam-
pling). Then, such a path can be (localy) improved (shorten)
towards the shortest 7. w’ must be within the same homotopy
class (passing obstacles at the same way as the optimal path
7) to guarantee such a path w can be the optimal path.
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Characteristics

Asymptotic Optimality 3/4 — Robust Optimal Solution

m Asymptotic optimality is applicable with a robust optimal solution that can be ob-
tained as a limit of robust (non-optimal) solutions.

m A collision-free path 7 is robust optimal solution if it has weak d-clearance and for
any sequence of collision free paths {m,},en, Tn € Chree such that lim,_ o m, = 7%,

n|I_)I’T;o c(mn) = c(7*).

There exists a path with strong §-clearance, and ©* is homotopic to such
path and ©* is of the lowest cost.
m Weak §-clearance implies an existence of the strong d-clearance path within the some
homotopy, and thus robustly feasible solution problem.

Thus, it implies the probabilistic completeness.
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Characteristics

Asymptotic Optimality 4/4 — Asymptotically Optimal Algorithm

An algorithm ALG is asymptotically optimal if, for any path planning problem P =
(Cfree Qinit» Qgoar) and cost function ¢ that admits a robust optimal solution with the

finite cost c* such that
Pr <{.Iim Y,-Aﬁg = c*}) =1.
1—00

is the extended random variable corresponding to the minimum-cost solution
included in the graph returned by ALG at the end of the iteration J.

- »/i.Aﬁg
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Characteristics

Properties of the PRM Algorithm

m Completeness for the standard PRM has not been provided when it was introduced.
® A simplified version of the PRM (called sPRM) has been most studied.
m sPRM is probabilistically complete.

What are the differences between PRM and sPRM?
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Characteristics

PRM vs. simplified PRM (sPRM)
Algorithm 1: PRM Algorithm 2: sPRM

Input: gjir, the number of samples n, and radius r Input: gjnir, the number of samples n, and
Output: PRM - G = (V,E) radius r

V 0, E + 0; Output: PRM - G = (V,E)
fori=0,...,ndo V' < {qinit }U{SampleFree;}i—1, . n—1; E « 0;
Grand < SampleFree; foreach v € V do

U < Near(G = (V, E), Grand; 1); U «+Near(G = (V,E),v,r)\ {v};

V < VU{qrand}: foreach u € U do

foreach u € U with increasing ||u — q;|| do L if CollisionFree(v, u) then

if Grang and u are not in the same | E« EU{(v,u),(u,v)}
connected component of G = (V, E)
then
L if CollisionFree(gyand, u) then

L E+—EU {(qramh “)1 (Ll, qrand)};

return G = (V, E);

= Connections between vertices in the same con-
nected component are allowed.

return G = (V, E); ® The radius r is fixed and can be relatively long;

thus sPRM can be very demanding.

Several ways for the set U of vertices to connect them can improved the performance, such as k-nearest
neighbors to v; or variable connection radius r as a function of n at the cost of lost of asymptotical optimality
or even probabilistic completeness.
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Characteristics

PRM — Properties

® sPRM (simplified PRM):
Probabilistically complete and asymptotically optimal.
Processing complexity can be bounded by O(n?).
Query complexity can be bounded by O(n?).
Space complexity can be bounded by O(n?).
m Heuristics practically used are not necessarily probabilistic complete and asymptotically
optimal.
m k-nearest sSPRM is not probabilistically complete for k = 1.
= Variable radius sSPRM is not probabilistically complete; with the radius r(n) = yn~d.

See Karaman and Frazzoli: Sampling-based Algorithms for Optimal Motion Planning, 1JRR 2011.

PRM algorithm
+ It has very simple implementation.
+ It provides completeness (for sPRM).
— Differential constraints (car-like vehicles) are not straightforward (but possible).
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Characteristics

Comments about Random Sampling 1/2

= Different sampling strategies (distributions) may be applied.

o’ . ..o . :o o.. .' . ° : :: . : ‘ . .o:
Tt Tl S ayetas
. N i&
.o. .o.... ..o.. . ., ..o....oo'.o.

= Notice, one of the main issues of the randomized sampling-based approaches is the
narrow passage.

m Several modifications of sampling-based strategies have been proposed in the last decades
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Characteristics

Comments about Random Sampling 2/2

® A solution can be found using only a few samples.

Using the Oraculum.
® Sampling strategies are important: Near obstacles; Narrow passages; Grid-based;

Uniform sampling must be carefully considered.
James J. Kuffner (2004): Effective Sampling and Distance Metrics for 3D Rigid Body
Path Planning, ICRA, 2004.

Uniform sampling of SO(3) using Euler angles
B4M36UIR — Lecture 09: Sampling-based Motion Planning

Naive sampling
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Rapidly Exploring Random Tree (RRT)

Rapidly Exploring Random Tree (RRT)

Single-Query algorithm.
® |t incrementally builds a graph (tree) towards the goal area.
It does not guarantee precise path to the goal configuration.
Start with the initial configuration qo, which is a root of the constructed graph (tree).
Generate a new random configuration gpey in Crree.

Find the closest node gnear t0 Gnew in the tree.
KD-tree implementation like ANN or FLANN libraries can be utilized.
4. Extend gnear towards gnew -

Extend the tree by a small step or using a direct control u € U that will move
the robot to the position closest to qnew applied for §t.

5. Go to Step 2 until the tree is within a sufficient distance from the goal configuration.

Or terminates after dedicated running time.
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Rapidly Exploring Random Tree (RRT)

RRT Construction

#1 new random configuration

J
e N

q new

#2 the closest node
L

- 9 near e
_— ~ 9 new

Jan Faigl, 2025
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Rapidly Exploring Random Tree (RRT)

RRT Algorithm

® Motivation is a single query and control-based path finding.

® |t incrementally builds a graph (tree) towards the goal area.

Algorithm 3: Rapidly Exploring Random Tree (RRT)

Input: gj,ir, number of samples n
Output: Roadmap G = (V,E)

V < {qinit}; E < 0;
fori=1,...,ndo
Grand < SampleFree;
Qnearest <— NeareSt(G = (V7 E)7 qrand);

Qnew <— Steer(q;waresh Chand);
if CollisionFree(qnearest; Gnew) then
L V+Vu {Xnew}; E+ EU {(Xnearestyxnew)};

return G = (V, E);

@ Rapidly-exploring random trees: A new tool for path planning

S. M. LaValle,
Technical Report 98-11, Computer Science Dept., lowa State University, 1998.

Jan Faigl, 2025
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Rapidly Exploring Random Tree (RRT)

Properties of RRT Algorithms

Rapidly Exploring Random Tree (RRT)

Examples 1/4 — Variants of RRT algorlthms

The RRT algorithm rapidly explores the space.

Qnew Will more likely be generated in large, not yet covered parts (voroni bias).

Allows considering kinodynamic/dynamic constraints (during the expansion).

Can provide trajectory or a sequence of direct control commands for robot controllers.

A collision detection test is usually used as a “black-box.”

RAPID, Bullet libraries.

Similarly to PRM, RRT algorithms have poor performance in narrow passage problems.

RRT algorithms provide feasible paths.
It can be relatively far from an optimal solution; according to the
length of the path.

= Many variants of the RRT have been proposed in the literature.

¥

Courtesy of P. Vanék.
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Rapidly Exploring Random Tree (RRT)

Rapidly Exploring Random Tree (RRT)

Examples 2/4 — Motion Planning Benchmarks

Bugtrap benchmark

Alpha puzzle benchmark
Courtesy of V. Vonasek.
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Rapidly Exploring Random Tree (RRT)

R
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Examples 3/4 — Planning on Terrain Considering Frictions

Planning with dynamics (friction forces)

Planning on a 3D surface

Courtesy of V. Vonasek. A
L >
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Rapidly Exploring Random Tree (RRT)
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Examples 4/4 — Motion Planning for Complex Shape and Car-like Robot

¢ 3
r ® - =

s . " . > & -
- W=

i . -« it

-~ “

Planning for a car-like robot
Courtesy of V. Vonasek and P. Vanék.

e
i

Apply rotations to reach the goal
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Car-like Robot

-, ICC (Instantaneous Centre of Curvature)

\

m Configuration

X = |v

position and orientation.

)

forward velocity, steering angle.

=

= Controls (

m System equation
Kinematic constraints dim(d) < dim(X).

X = vcos¢
'){ = vsin ¢ Differential constraints on possible §: i@
_ v A%
¢ = [ tangp xsin(¢) — ycos(¢) =0. |
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Rapidly Exploring Random Tree (RRT)

Control-Based Sampling

m Select a configuration g from the tree T of the current configurations.

® Pick a control input @ = (v, ¢) and the inte- T T S s W W
grate system (motion) equation over a short Q.f O '\@ £ Lt Part [l
period At: . E . \ '
Ay G coss ' Part 2 — Optimal Sampling-based Motion Planning
Ay | = vsing | dt. Methods
A ¢ ftang

® |f the motion is collision-free, add the endpoint
to the tree.
Considering k configurations for kit = dt.
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Optimal Motion Planners Optimal Motion Planners
Sampling-Based Motion Planning RRT and Quality of Solution 1/2
®m PRM and RRT are theoretically probabilistic complete.

They provide a feasible solution without quality guarantee.

However, they are successfully used in many practical applications.

_ _ _ : . Let YRRT be the cost of the best path in the RRT at the end of the iteration i.
In 2011, a systematical study of the asymptotic behavior of randomized sampling-based yRRT
i

p|anners has been pub|IShed. It shows, that in some cases, they converge to a non-optimal value with a probability 1.
It builds on properties of Random Geometric Graphs (RGG) introduced by Gilbert (1961) and further studied by Penrose (1999).

converges to a random variable

lim Y-RRT _ YRRT
Based on the study, new algorithms have been proposed: RRG and optimal RRT (RRT™). isoo ! o

Karaman, S., Frazzoli, E.: Sampling-based algorithms for optimal motion planning, 1JRR, 30(7):846—894, 2011.

YRRT is sampled from a distribution with zero mass at the opti-

The random variable
mum, and

PriYERT > ¢*] = 1.

Karaman and Frazzoli, 2011

The best path in the RRT converges to a sub-optimal solution almost surely.

http://sertac.scripts.mit.edu/rrtstar
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Optimal

Motion Planners

RRT and Quality of Solution 2/2

RRT does not satisfy a necessary condition for the asymptotic optimality.
® For 0 < R < infgeq,., 1|9 — qinit||. the event {limn_,oc YXTT = c*} occurs only if the
k-th branch of the RRT contains vertices outside the R-ball centered at g, for infinitely

many k.

See Appendix B in Karaman and Frazzoli, 2011.
It is required the root node will have infinitely many subtrees that extend at least a
distance € away from gjp;z.

The sub-optimality is caused by disallowing new better paths to be discovered.

Rapidly-exploring Random Graph (RRG)

Rapidly-exploring Random Graph (RRG)

Algorithm 4: Rapidly-exploring Random Graph (RRG)
Input: gjnit, the number of samples n
Output: G =(V,E)
V—0,E+0
fori=0,...,ndo
Grand < SampleFree
Qnearest <— NeareSt(G = (V, E): qrand)
Anew Steer(qnearestz Qrand)
if CollisionFree(qnearest, Gnew) then

Qpear + Near(G = (V, E), Gnew, min{yrre(log(card(V))/ card(V))/9 n})

V«Vu {qnew}; E+EU {(qnearesh qnew): (qnew» qnearest)}

foreach gpear € Qpear do

if CollisionFree(qnear, Gnew) then
L L E<+ EU {(qneah qnew)v (QneW7 qnear)}

// Connect Qpear With Gnew -

return G = (V, E)

Proposed by Karaman and Frazzoli (2011). Theoretical results are related to properties of Random Geometric Graphs (RGG)
introduced by Gilbert (1961) and further studied by Penrose (1999).
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Rapidly-exploring Random Graph (RRG) Rapidly-exploring Random Graph (RRG)
RRG Expansions RRG Properties
® At each iteration, RRG tries to connect new sample to all vertices in the r,, ball centered

Jan Faigl,

at it.
The ball of radius
. log (card(V 1/d
r(card(V)) = min < Ygrre (W) b
where

® 1) is the constant of the local steering function;
® YRRG > VRrG = 2(1+ l/d)l/d(ﬂ(cfree)/Cd)l/d;

- d — dimension of the space;
- 11(Cfree) — Lebesgue measure of the obstacle—free space;
- (4 — volume of the unit ball in d-dimensional Euclidean space.

The connection radius decreases with n.
The rate of decay ~ the average number of connections attempted is proportional to _
log(n).

2025
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Probabilistically complete;
Asymptotically optimal;
Complexity is O(log n).

(per one sample)

Computational efficiency and optimality:

m |t attempts a connection to ©(log n) nodes at each iteration;
In average

= Reduce volume of the “connection” ball as log(n)/n;
® Increase the number of connections as log(n).
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Informed Sampling-based Methods

Optimal Motion Planners Rapidly-exploring Random Graph (RRG)

Other Variants of the Optimal Motion Planning

m PRM* follows the standard PRM algorithm where connections are attempted between
roadmap vertices that are the within connection radius r as the function of n:

r(n) = vpru(log(n)/n) /.

m RRT* is a modification of the RRG, where cycles are avoided.
It is a tree version of the RRG.

® A tree roadmap allows considering non-holonomic dynamics and kinodynamic constraints.
® |t is basically the RRG with “rerouting” the tree when a better path is discovered.
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Informed Sampling-based Methods

ft
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Optimal Motion Planners

Rapidly-exploring Random Graph (RRG)

Example of Solution 1/

RRT, n=250

RRT, n=500

NN
7
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RRT*, n=250

RRT*, n=500
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RRT*, n=2500

Rapidly-exploring Random Graph (RRG)

RRT*, n=10000
Karaman & Frazzoli, 2011
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Informed Sampling-based Methods

Rapidly-exploring Random Graph (RRG)

Optimal Motion Planners

Example of Solution 2/3
U = TR

RRT*, n=20000

RRT, n=20000
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Informed Sampling-based Methods

Optimal Motion Planners

Jan Faigl, 2025

Example of Solution 3/3

fet

B4M36UIR — Lecture 09: Sampling-based Motion Planning

https://www.youtube.com/watch?v=YKiQTJpPFkA
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Rapidly-exploring Random Graph (RRG) Informed Sampling-based Methods

Overview of Randomized Sampling-based Algorithms Improved Sampling-based Motion Planners

) Probabilistic  Asymptotic Although asymptotically optimal sampling-based motion planners such as RRT* or RRG
Algorithm Completeness  Optimality may provide high-quality or even optimal solutions to the complex problem, their per-
formance in simple scenarios (such as 2D) is relatively poor.

In a comparison to the ordinary approaches such as visibility graph.

PRM 4 X

<PRM v v ® The computational performance can be improved similarly as for the RRT.

knearest SPRM X X u th;Zigregcc;iagnlzlaz;%l)s.upportmg sampling in narrow passages, multi-tree growing

RRT v X m The general idea of improvements is based on informing the sampling process.

RRG 4 v = Many modifications of the algorithms exists, selected representative modifications are
PRM* v (4 ® Informed RRT#*;

RRT* v v ® Batch Informed Trees (BIT*);

m Regionally Accelerated BIT* (RABIT*).

. . . . 1/d . It shows an evolution of the improvements.
sPRM with connection radius r as a function of n; r(n) = yprm(log(n)/n) with

YeRM > VpRm = 21+ 1/d)* 4(1(Chee) /<) 9.
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Informed Sampling-based Methods Informed Sampling-based Methods

Algorithm 1: Informed RRT*(Xgtart; Xgoa1)

* %
Informed RRT* 17w Informed RRT* — Demo
2 K 3
3 Xooln — 0;
. T B 000909 000462
® Focused RRT* search to increase the convergence rate. $ o ot 1N do
. . .. .. 6 Chest = Milx ), € X, {COSt (Xso1n) }5 iy ; .
m Use Euclidean distance as an admissible heuristic. 7| Xeana + Sample (Xetart Xgonl, Coest): /
) ' - . 8 Xnearest < Nearest (7, Xrana)}

= Ellipsoidal informed subset — the current best solution cpest 9 | Xnew ¢~ Steer (Xnoarost, Xrand): |
10 if CollisionFree (Xnearest, Xnew) then
u V 4 U{Xnew}:

Xnear + N T Xnews TRRT* )5
Xz = {x € X||xstart = X|[2 + |[x = Xgoat|l2 < Chest} . i e (T e )
1 Conin, = COE (Xpnin) + ¢ Line (Xpeasest. Xuew): E
15 for ¥Yxnear € Xnear do
' Algorithm 2: Sample (Xgtart; Xgoal: Cmax) 16 Cnew 4 COst (Xnear) + ¢ - Line (Xnear, Xnew);
if Cax < oo then 17 if cnew < €min then
Vest — Cuin Cmin  |[Xgont — Xetare|[ 3 18 if CollisionFree (Xnear;, Xnew) then
Xeentre = (Xstart + Xgoal) /25 1 L Xmin ¢ Xnear} _
C+ Rotan‘a‘nTawor]dFrams (Xstart, xg,,‘,); 20 Cmin 4 Cnew;

2;
P Ve ) B = B U{Gpin, Xnew):

2
2 for Yxnear € Xnear do
9 | Xeand < (CLXban + Xeontre) N X; 3 Cnear < CoSt (Xnear):
10 else u Cnew = Cost (Xnew) + ¢ - Line (Xnew, Xnear);
25
26
27

Chest

0
2
3
N
s | meem B
.

7| Lediag{rmn. ok

8 Xpall +— SampleUnitNBall;
= Directly based on the RRT*.
4 L o U if Coew < Cocar then
2 retum Xrend; if CollisionFree (Xnew, Xncar) then
Xparent ¢~ Parent (Xnear);

® Having a feasible solution; item sample
inside the ellipse.

P E + E\ {(Xparent, Xnear) };
Gammell, J. B., Srinivasa, S. S., Barfoot, T. D.: Informed RRT*: 2 E 4+ EU {(Xnew; Xnear) }:
Optimal Sampling-based Path Planning Focused via Direct Sampling L =
of an Admissible Ellipsoidal Heuristic. IROS, 2014. 30 if InGoalRegion (Xpew) then

i 'I nfolrmed RRT*'

32 return T
https://www.youtube.com/watch?v=d7dX5MvDYTc
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Informed Sampling-based Methods Informed Sampling-based Methods

Batch Informed Trees (BIT*) Batch Informed Trees (BIT*) — Demo

® Combining RGG (Random Geometric Graph) with the heuristic in incremental graph search RRT* Iy ’! Tme” - .'-
technique, e.g., Lifelong Planning A* (LPA*) The properties of the RGG are used in the RRG and RRT*. t = 00.034344s N ‘,I t = 00.034295s
c = 01.724808 | .5 c=0a

® Batches of samples — a new batch starts with denser implicit RGG.
® The search tree is updated using LPA* like incremental search to reuse existing information.

During each batch, the search| [When a.solution is found, the| [A new batch of samples is then| [The process repeats indefinitely,
expands outwards -around the| |batch finishes and ‘th_(: éxpansion
minimum  solution using-. a| |stops. g * ™ il
heuristic. : . : R :

€
_—

@) e “(b) - () (d)

Fig. 3. An illustration of the informed search procedure used by BIT*. The start and goal states are shown as green and red, respectively. The current
solution is highlighted in magenta. The subproblem that contains any better solutions is shown as a black dashed line, while the progress of the current
batch is shown as a grey dashed line. Fig. (a) shows the growing search of the first batch of samples, and (b) shows the first search ending when a solution
is found. After pruning and adding a second batch of samples, Fig. (c) shows the search restarting on a denser graph while (d) shows the second search
ending when an improved solution is found. An animated illustration is available in the attached video.

restarting each time an im-
proved solution is found.

Informed RRT*
t = 00.034316s
= 01.724528

17 ¢ = 00.034406s

',] c = 01.518589

Gammell, J. B., Srinivasa, S. S., Barfoot, T. D.: Batch Informed Trees (BIT*): Sampling-based optimal
planning via the heuristically guided search of implicit random geometric graphs, ICRA, 2015. :

https://www.youtube.com/watch?v=TQIoCC48gp4
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Informed Sampling-based Methods Informed Sampling-based Methods

Regionally Accelerated BIT* (RABIT*) Regionally Accelerated BIT* (RABIT*) — Demo
RABIT* matches BIT* performance on easy problems (R2)
=Y i b S T =78

m Use local optimizer with the BIT* to improve the convergence speed.

® Local search Covariant Hamiltonian Optimization for Motion Planning (CHOMP) is utilized to
connect edges in the search graphs using local information about the obstacles.

i o x] z o x‘l i o X‘;
4 o e ? e P
Xstart % 8&031 Xstart , Xgoal| | Xstart , Xgoal i
® .. —& |\ o ® --- N P o .- /
X; X _ X; - " "
O ° O ; O N Informed RRT* BIT# RABIT*
Xk XE N X N o oe - - . Al
(a) o (b) o (c) o 5100 s 1.67 51 107
Saluticm oot v, time

Fig. 2. An illustration of how the RABIT* algorithm uses a local optimizer to exploit obstacle information and improve a global search. The global search
is performed, as in BIT*, by incrementally processing an edge queue (dashed lines) into a tree (a). Using heuristics, the potential edge from x; to xy, is
processed first as it could provide a better solution than an edge from x; to x;. The initial straight-line edge is given to a local optimizer which uses
information about obstacles to find a local optima between the specified states (b). If this edge is collision free, it is added to the tree and its potential
outgoing edges are added to the queue. The next-best edge in the queue is then processed in the same fashion, using the local optimizer to once again
propose a better edge than a straight-line (c).

; K RABIT* has 1.8 times

\ : .t faster convergence on
: hard problems (R8)

Choudhury, S., Gammell, J. D., Barfoot, T. D., Srinivasa, S. S., Scherer, S.: Regionally
Accelerated Batch Informed Trees (RABIT*): A Framework to Integrate Local Information
into Optimal Path Planning. ICRA, 2016.

wt w

Cromptaticnal e

« RET * RET-

— LT

https://www.youtube.com/watch?v=mgq-DW36jSo
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Informed Sampling-based Methods Informed Sampling-based Methods

Covariant Hamiltonian Optimization for Motion Planning (CHOMP) Overview of Improved Algorithm

® Trajectory optimization based on functional gradient techniques to improve the trajectory with = Optimal path/motion planning is an active research field.
trade-off between trajectory smoothness and obstacle avoidance. ‘?‘"’“’“"‘“ o irain SRR Flonivg od o} Kinmalrdod IS ing S em oy e
. . . . . ) + - RRT*[7] Holonomic Offline Point Uniform Euclidean
TraJeCtory funCtlon T [0’ T] - C Wlth a cost funCtlon u M —R". 2. Anytime RRT*[4] Non-holonomic ~ Online Dubin Car Uniform Euclidean + Velocity
M H M H * M _ J—
The trajectory optimization 7% = argmin, . U(ﬂ')v s.t. 77(0) = (Qinit and 71'(T) = (goal- 3. BRRT* [58] Holonomic Offline Rigid Body Local bias Goal biased
Function gradient descent 7, < %Vﬁu(w,). 4 RRT*FN [33] Holonomic Offline Robotic Arm Uniform Cumulative Euclidean
™1 CHOMP instantiates functional gradient descent for the cost 5. RRT*Smart[35]  Holonomic Offline Point Intelligent Euclidean
6. Optimal B-RRT* [36]Holonomic Offline Point Uniform Euclidean
L{(r) = usmooth(ﬂ') + /\Llobs(w). (].) 7. RRT#[50) Holonomic Offline Point Uniform Euclidean
h be defined 1T 5 8. Af‘;}"“’d RRT* 104} Non-holonomic ~ Offline Carlke and UV Uniform A* Heuristic
Smoothness cost can be defined as u5m°°th(7r) =2 fO ”7T (t)” dt. 9. SRRT* [44] Non-holonomic ~ Offline UAV Uniform Geometric + dynamic constraint
Obstacle cost d 10 Jnformed RRT* [34] Holonomic Offline Point Diret Sampling Euclidean
_ L IBRRT* [37] Holonomic Offline Point Intelligent Greedy + Euclidean
Uobs() = c(a(n(t))) - OT?/)A(W(t)) dadt. (2) 5 , : — ; —
ceJa t - DT-RRT [39] Non-holonomic ~ Offline Car-like Hybrid Angular + Buclidean
. . . . . 13. RRT¥i [3] Non-holonomic ~ Online UAV Local Sampling A* Heuristic
® The cost function in W, ¢ : W — R that uses signed distance field to computed distance to the closes obstacle. T - - - -
3 L © RTR+CS* [43] Non-holonomic  Offline Car-like Uniform + Local Planning ~ Angular + Euclidean
Return higher cost the closer the point is to an obstacle. T —— - - - - -
= Computing the cost for each point of the trajectory, thus integral over time. 16- Mitsubishi RRT* [2] Nnn-hnlnnnmfc Onlfnc Autonon’f(\us Car Tw.o»s!agc sampling Weighted Euclidean
= Integral over body points a using forward kinematics mapping ¥ 4 to get robot's points for 7(t). ”' CARRT" [65] Non-holonomic _ Online Humanoid Uniform MW Encrgy Cost
Zucker, M., Ratliff, N., Dragan, A. D., Pivtoraiko, M., Klingensmith, M., Dellin, C. M., Bagpnell, J. A., and Srinivasa, S. S.: CHOMP: * PRRT* [48] Non-holonomic _ Offtine P3-DX Uniform Euclidean

Covariant Hamiltonian optimization for motion planning. The International Journal of Robotics Research. 32(9-10):1164-1193, 2013. Noreen, I., Khan, A., Habib, Z.: Optimal path planning using RRT* based approaches: a survey and future directions. |IJACSA, 2016.
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Informed Sampling-based Methods

Motion Planning for Dynamic Environments — RRT*

= Refinement and repair of the search graph during the navigation (quick rewiring of the shortest path).

150 o 1300
-
Part 11l
oo -
I Part 3 — Multi-goal Motion Planning (MGMP)
50 100
o
o o
RRTX - Robot in 2D RRTX - Robot in 2D
https://www.youtube.com/watch?v=S9pguCPUo3M https://www.youtube.com/watch?v=KxFivNgTV4o

Otte, M., & Frazzoli, E. (2016). RRTX: Asymptotically optimal single-query sampling-based motion planning
with quick replanning. International Journal of Robotics Research, 35(7), 797--822.
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Multi-Goal Motion Planning Multi-Goal Motion Planning

Multi-Goal Motion Planning Problem Statement — MGMP Problem
® In the previous cases, we consider existing roadmap or relatively “simple” collision free (shortest)
paths in the polygonal domain. = The working environment WW C R3 is represented as a set of obstacles @ C W and the

® However, determination of the collision-free path in high dimensional configuration space (C-

) ¢ robot configuration space C describes all possible configurations of the robot in W.
space) can be a challenging problem itself.

m Therefore, we can generalize the MTP to multi-goal motion planning (MGMP) considering = Forqec (.:' the. robot body A(q) at q is collision free if A(q) N O = () and all collision
motion planners using the notion of C-space for avoiding collisions. free configurations are denoted as Cree.
® An example of MGMP can be to plan a cost efficient trajectory for hexapod walking robot to ® Set of n goal locations is G = (g1, .., &n), & € Cree-

V’SIt a Set Of target locat’ons' #Expansions: 14900; Vertices: 8849; Edges: 25256 ]

Collision free path from Gstarr t0 Ggoar is & : [0,1] — Cfree With k(0) = @gstarr and
d(k(1), gend) < €, for an admissible distance e.

® Multi-goal path 7 is admissible if 7 : [0,1] — Cfree, 7(0) = 7(1) and there are n points
suchthat 0 < t; < t, <... < tp, d(7(t),vi) < e, and U1<,.Sn vi=G.

® The problem is to find the path 7* for a cost function ¢ such that c¢(7*) =
min{c(7) | 7 is admissible multi-goal path}.

Path fength: 125.7
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Multi-Goal Motion Planning Physical Orienteering Problem (POP)
MGMP — Existing Approches Multi-Goal Trajectory Planning with Limited Travel Budget
= Determining all paths connecting any two locations g;, g; € G is usually very computationally demanding. PhyS|ca| Or|enteer|ng Problem (POP)
= Considering Euclidean distance as an approximation in the solution of the TSP as the Minimum Spanning Tree = Orienteering Problem (OP) in an environment with obstacles and
(MST) — Edges in the MST are iteratively refined using optimal motion planner until all edges represent a motion constraints of the data collecting vehicle. e g contgurations vy
feasible solution.  saha, M., Roughgarden, T., Latombe, J.-C., Sanchez-Ante, G.: Planning Tours of Robotic Arms among. = A combination of motion planning and routing problem with profits. s

Partitioned Goals., International Journal of Robotics Research, 5(3):207-223, 2006 " : i i .
. . . . n - —_ - —
= Synergistic Combination of Layers of Planning (SyCLoP) — A combination of route and trajectory planning. VNS-PRM \iNS based routing and motion planning is ad
Plaku, E., Kavraki, L.E., Vardi, M.Y. (2010): Motion Planning With Dynamics by a Synergistic Combination dressed by PRM*.
of Layers of Planning, |IEEE Transactions on Robotics, 26(3):469-482, 2010. ® An initial low-dense roadmap is continuously expanded during the
m Steering RRG roadmap expansion by unsupervised learning for the TSP. VNS-based POP optimization to shorten paths of promising solu-
tions.

O targets

= Steering PRM* expansion using VNS-based routing planning in the Physical Orienteering Problem (POP).

L] Shorten trajectories allow visiting more locations within Tmax.

®  Pénicka, Faigl and Saska: Physical Onenteenng Problem for Unmanned
Aerial Vehicle Data Collection Planning in Environments with Obstacles.
IEEE Robotics and Automation Letters 4(3):3005-3012, 2019.
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Multi-Goal Motion Planning Physical Orienteering Problem (POP)

Multi-Goal Trajectory Planning with Limited Travel Budget
Physical Orienteering Problem (POP)

— Real Experimental Verification

- obstacles
+ samplos

—— found path
°  tangets

path length = 2118

collceted reward = 75 %
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Summary of the Lecture
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Topics Discussed

Topics Discussed — Randomized Sampling-based Methods

® Single and multi-query approaches
Probabilistic Roadmap Method (PRM); Rapidly Exploring Random Tree (RRT).

® Optimal sampling-based planning — Rapidly-exploring Random Graph (RRG).

® Properties of the sampling-based motion planning algorithms:

m Path, collision-free path, feasible path;

m Feasible path planning and optimal path planning;

= Probabilistic completeness, strong J-clearance, robustly feasible path planning problem;
= Asymptotic optimality, homotopy, weak J-clearance, robust optimal solution;

= PRM, RRT, RRG, PRM*, RRT*,

= Improved randomized sampling-based methods

® Informed sampling — Informed RRT*; Improving by batches of samples and reusing previous searches using
Lifelong Planning A* (LPA*).

= Improving local search strategy to improve convergence speed.

= Planning in dynamic environments — RRTX.

= Multi-goal motion planning (MGMP) problems are further variants of the robotic TSP.

m Next: Semestral project assignment. %
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