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Overview of the Lecture

® Part 1 — Curvature-Constrained Data Collection Planning

= Dubins Vehicle and Dubins Planning

= Dubins Touring Problem (DTP)

= Dubins Traveling Salesman Problem

= Dubins Traveling Salesman Problem with Neighborhoods
= Dubins Orienteering Problem

= Dubins Orienteering Problem with Neighborhoods

= Planning in 3D — Examples and Motivations
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Dubins Vehicle and Dubins Planning DTP DTSP DTSPN DOP DOPN Planning in 3D

Part |

Part 1 — Curvature-Constrained Data Collection
Planning
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Dubins Vehicle and Dubins Planning DTP DTSP DTSPN DOP DOPN Planning in 3D

Outline

= Dubins Vehicle and Dubins Planning
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Dubins Vehicle and Dubins Planning DTP DTSP DTSPN DOP DOPN Planning in 3D

Motivation — Surveillance Missions with Aerial Vehicles

® Provide curvature-constrained path to collect the most valuable measurements with shortest
possible path/time or under limited travel budget.

® Formulated as routing problems with Dubins vehicle:
® Dubins Traveling Salesman Problem with Neighborhoods; %
® Dubins Orienteering Problem with Neighborhoods.

Jan Faigl, 2025 B4M36UIR — Lecture 08: Data Collection with Dubins Vehicles 5/ 69



Dubins Vehicle and Dubins Planning

Dubins Vehicle

® Non-holonomic vehicle such as car-like or aircraft can be modeled as Dubins vehicle:

Constant forward velocity;

Limited minimal turning radius p;

Vehicle state is represented by a triplet g = (x, y, ), where

Position is (x,y) € R?, vehicle heading is § € S?, and thus g € SE(2).

The vehicle motion can be described by the

equation
X cos 6 I
y |=v]sing |, |u<1, y
0 u

p

where u is the control input.

0
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Dubins Vehicle and Dubins Planning

Optimal Maneuvers for Dubins Vehicle

m For two states g1 € SE(2) and g2 € SE(2) in the environment without obstacles
W = R?, the optimal path connecting g1 with g» can be characterized as one of two
main types

= CCC type: LRL, RLR;
= CSC type: LSL, LSR, RSL, RSR;

where S — straight line arc, C — circular arc oriented to left (L) or right (R).
L. E. Dubins (1957) — American Journal of Mathematics

® The optimal paths are called Dubins maneuvers.

m Constant velocity: v(t) = v and minimum turning radius p.
m Six types of trajectories connecting any configuration in SE(2). (Without obstacles)
m The control u is according to C and S type one of three possible values u € {—1,0,1}.
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Dubins Vehicle and Dubins Planning

Parametrization of Dubins Maneuvers
m Parametrization of each trajectory phase connecting go with g:

{LaRsLy, RalgRy, LoSqly, LaSgRy, RaSaly, RuSqRy}

for a € [0, 271'), ﬂ S (71', 27‘(’), d >0. Notice the prescribed orientation at qo and qr.

Ry,SqL,
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Dubins Vehicle and Dubins Planning

Multi-goal Dubins Path

® Minimal turning radius p and constant forward velocity v. X cos 0
® State of Dubins vehicle is ¢ = (x,y,0), ¢ € SE(2), y|=v| sinb
(x,y) € R? and 6 € S*. 0

C

a2

q:

Smooth Dubins path connecting a sequence of locations is also suitable for multi-
rotor aerial vehicle.

® Optimal path connecting g; € SE(2) and g2 € SE(2) consists only of straight line arcs and
arcs with the maximal curvature, i.e., two types of maneuvers CCC and CSC and the solution
can be found analytically. (Dubins, 1957)

= In multi-goal Dubins path planning, we need to solve the underlying TSP.
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Dubins Vehicle and Dubins Planning DTP DTSP DTSPN DOP DOPN

Planning in 3D

Difficulty of Dubins Vehicle in the Solution of the TSP

m For the minimal turning radius p, the optimal path connecting
q; € SE(2) and g, € SE(2) can be found analytically.

L. E. Dubins (1957) — American Journal of Mathematics
® Two types of optimal Dubins maneuvers: CSC and CCC.

® The length of the optimal maneuver £ has a closed-form solution.

m |t is piecewise-continuous function; Can be computed in less than 0.5 jis
= (continuous for ||(p1, po)|| > 4p).

istance functi (d = 1.00)

Maneuver types (d = 1.00)

angle 6,

-2 0 2
Initial heading angle 6

il 2 3 4 5 6 LSL LSR RSL RSR RLR LRL
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Dubins Vehicle and Dubins Planning

Dubins Traveling Salesman Problem (DTSP)

= Determine (closed) shortest Dubins path visiting each p; € R?
of the given set of n locations P = {py,...,p,}.
1. Permutation © = (04,...,0,) of visits (sequencing).
Combinatorial optimization
2. Headings © = {05,,05,,...,05,}, 0; €[0,27), for p,, € P.
Continuous optimization
m DTSP is an optimization problem over all possible sequences

Y and headings © at the states (q,,,q,,,---,4,,) such that
qO',' = (po','700'i)' po’,- € P
n—1

minimizes o Y £(q,,,4,,,) + £(q,, 9,,)
i=1
subject to
qi:(phai) i=1,...,n,

where £(q,,, q,,) is the length of Dubins path between q,,
and q,,..

The continuous domain of the heading angles is simular to the regions in the TSPN-like problem formulations.
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Dubins Vehicle and Dubins Planning

Challenges of the Dubins Traveling Salesman Problem

® The key difficulty of the DTSP is that the path length
mutually depends on

= Order of the visits to the locations;
= Headings at the target locations.

We need the sequence to determine headings, but headings may
influence the sequence.

® The Dubins TSP is sequence dependent problem.

®m Two fundamental approaches can be found in literature.

1. Decoupled approach based on a given sequence of the locations, e.g., found by a solution of
the Euclidean TSP.

2. Sampling-based approach with sampling of the headings at the locations into discrete sets of
values and considering the problem as the variant of the Generalized TSP.

Besides, further approaches are

® Genetic and memetic techniques (evolutionary algorithms);

® Unsupervised learning based approaches.
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Dubins Vehicle and Dubins Planning

Existing Approaches to the DTSP(N)

® Heuristic (decoupled & evolutionary) approaches ® Sampling-based approaches
B Savla et al., 2005 B Obermeyer, 2009
m Ma and Castanon, 2006 m Oberlin et al., 2010
m Macharet et al., 2011 m Macharet et al., 2016
m Macharet et al., 2012 o
= Ny et al., 2012 = Convex optimization
® Yu and Hung, 2012 B (Only if the locations are far enough)
m Macharet et al., 2013 m Goac et al., 2013
m Zhang et al., 2014
® Macharet and Campos, 2014 m Lower bound for the DTSP
" Vér'ia and Falgl, 2015 = Dubins Interval Problem (DIP)
m [saiah and Shima, 2015 ® Manyam et al., 2016

= DIP-based inform sampling
® Vana and Faigl, 2017

= Lower bound for the DTSPN

= Using Generalized DIP (GDIP)
m Vana and Faigl, 2018, 2020
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Dubins Vehicle and Dubins Planning

Jan Faigl,

Planning with Dubins Vehicle — Summary

The optimal path connecting two configurations can be found analytically.

E.g., for UAVs that usually operates in environment without obstacles.
Dubins maneuvers can also be used in randomized-sampling based motion planners, such as
RRT, in the control based sampling.
The Dubins vehicle model can be considered in the multi-goal path planning such as surveillance,
inspection or monitoring missions to periodically visits given target locations (areas).
Dubins Touring Problem (DTP)

Given a sequence of locations, what is the shortest path visting the locations, i.e., what are the
headings of the vehicle at the locations.

Dubins Traveling Salesman Problem (DTSP)

Given a set of locations, what is the shortest Dubins path that visits each location exactly once and
returns to the origin location.

Dubins Orienteering Problem (DOP)

Given a set of locations, each with associated reward, what is Dubins path visiting the most rewarding
locations and not exceeding the given travel budget.

2025 B4M36UIR — Lecture 08: Data Collection with Dubins Vehicles



Dubins Vehicle and Dubins Planning DTP DTSP DTSPN DOP DOPN Planning in 3D

Outline

= Dubins Touring Problem (DTP)
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DTP

Dubins Touring Problem — DTP

= For a sequence of the n waypoint locations P = (pi,... p,), pi € R?, the Dubins Touring
Problem (DTP) stands to determine the optimal headings T = {04, ...,60,} at the waypoints
g; such that

n—1
minimize L(T,P)= Zﬁ(qi,qiﬂ)"‘ﬁ(qul)
i=1
subject to
qi = (pi,0:), 0; €[0,27), pi € P,
where £(q;, g;) is the length of Dubins maneuver connecting g; with g;.
m The DTP is a continuous optimization problem.
® The term £(qn, q1) is for possibly closed tour that can be for example requested in the TSP
with Dubins vehicle (Dubins TSP - DTSP).

On the other, the DTP can also be utilized for open paths such as solutions of the OP with Dubins vehicle.

= |n some cases, it may be suitable to relax the heading at the first/last location in finding closed /i
tours, and thus solving the DTSP.
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DTP

Sampling-based Solution of the DTP
m For a closed sequence of the waypoint locations
P = (plu"'apn)~

® We can sample possible heading values at each location i
into a discrete set of k headings ©' = {6},...,6,}, and
create a graph of all possible Dubins maneuvers.

P1 p2 p3
01 03
o< Toa < Tog

10

For open sequence we do not need to evalute all pos-
for all combinations sible initial headings, and the complexity is O(nk?).

m The problem is to determine the
most suitable heading samples.

m For a set of heading samples, the optimal solution can
be found by a forward search of the graph in O(nk3).
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DTP

Example of Heading Sampling — Uniform vs. Informed

Uniform sampling Informed sampling

6 5 6 5

2 2
1

N = 224, Tpy = 128 ms N =128, Tepy = 76 ms
L£=19.8 Ly =13.8 L =14.4, Ly = 14.2.

m [N is the total number of samples, for example 32 samples per waypoint for uniform sampling.
m L is the length of the tour (blue) and Ly is the lower bound path (red) determined as a solution i

of the Dubins Interval Problem (DIP).
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DTP

Dubins Interval Problem (DIP)
® Dubins Interval Problem (DIP) is a generalization of Dubins maneuvers to the shortest path

connecting two points p; and p;.
® In the DIP, the leaving interval ©; at p; and the arrival interval ©; at p; are consider (not a

single heading value).

= The optimal solution can be found analytically. Manyam et al. (2015)
gmazx gmzn
i i

m Solution of the DIP is a tight lower bound for the DTP.

m Solution of the DIP is not a feasible solution of the DTP.
Notice, for ©; = ©; = (0, 2w) the optimal maneuver for DIP is a straight line segment.
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DTP

Lower Bound of the DTP

m For a discrete set of heading intervals H = {Hy,..., H,}, where
H; = {©},02,...,05}, a similar graph as for the DTP can be 6 5

1
constructed with the edge cost determined by the solution of the

associated DIP.

1 ’LTN 1 4
el el el I
6
O
oyl Nesf et H 3
fojcombinations
m The forward search of the graph with dense samples provides
a tight lower bound on the optimal solution cost of the DTP. H,
Manyam and Rathinam, 2015 2
H,
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DTP

Lower Bound and Feasible Solution of the DTP

® The arrival and departure angles may not be the same.

The lower bound solution is not a feasible solution of the DTP.

Lower bound

Feasible path

m DTP solution — use any particular heading of each interval in the lower bound solution. -
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DTP

The DIP-based Sampling of Headings in the DTP

m Using heading intervals for a sequence of waypoints and a solution of the DIP, we can determine
lower bound of the DTP using the forward search graph as for the DTP.

® The ratio between the lower bound and feasible solution of the DTP provides an estimation of
the solution quality.

2.0000+

1.10004

1.01004

1.00104

1.00014

Guaranteed quality of the solution

0.01 0.1 1 10 100 ok ¢
Computational time [s] Vana and Faigl (2016) | ®re)
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DTP

lteratively-Refined Informed Sampling (IRIS) of Headings in the Solution of
the DTP

m |terative refinement of the heading intervals H
up to the angular resolution €q.

Algorithm 1: Iterative Informed Sampling-based DTP Algorithm
Input: P — Target locations to be visited

Input: €q — Requested angular resolution

Input: oveq — Requested quality of the solution

® The angular resolution is gradually increased for

the most promising intervals. Output: T — A tour visiting the targets
. .. . €<+ 21 // initial angular resolution;
= refineDTP — divide the intervals of the lower 5/ " . iicvaic(Pe) 7/ initial intervals:
bOUnd SOlUtiOn. L+ 0 // init lower bound;

. . Ly 0 // init upper bound;
® s0lveDTP — solve the DTP using the heading while € > €eq and Ly/L; > yeq do
1 i €+ €/2;
from the refined intervals. T
(T, Ly) < solveDTP(P,H);

end
® It simultaneously provides feasible and lower return T;
bound solutions of the DTP. Faigl, J., Vana, P., Saska, M., Baca, T., and Spurny, V.:
The lower bound provides a tight estimation of the On solution of the Dubins touring problem, ECMR, 2017.

solution quality.

® The first solution is provided very quickly — any-time algorithm.
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DTP

Uniform vs Informed Sampling

6:271'/4,,\/:28, TCpU:8ms E:27T/4,N:21, Tch:8ms
L£=279, Ly =132 L£=299, Ly =132
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DTP

Uniform vs Informed Sampling

e =2m/8, N =56, Tcpy= 16 ms e=2m/8, N =28, Tcpy= 20 ms
L =208, Ly =132 L =210, Ly =132
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DTP

Uniform vs Informed Sampling

€ = 27‘(‘/16, N = 112, TCPU: 40 ms € = 271'/16, N = 35, Tch: 24 ms
£ =203, Ly =135 £=20.1, Ly =135
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Dubins Vehicle and Dubins Planning DTP DTSP DTSPN DOP DOPN Planning in 3D

Uniform vs Informed Sampling

nr:
"',"

€=271/32, N = 224, Tepy= 140 ms € =271/32, N = 44, Tepy= 32 ms %
£=198, Ly =138 £=109, Ly =138
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Dubins Vehicle and Dubins Planning DTP DTSP DTSPN DOP DOPN Planning in 3D

Uniform vs Informed Sampling

€ =2m/64, N = 448, Tcpy= 456 ms € =271/64, N =51, Tcpy= 48 ms %
L =145, Ly =145 £=199, Ly =13.9
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Dubins Vehicle and Dubins Planning DTP DTSP DTSPN DOP DOPN Planning in 3D

Uniform vs Informed Sampling

€ =2r/128, N = 896, Tcpy= 1620 ms €=2r/128, N = 70, Tcpy= 60 ms %
L =145, Ly =145 L£L=148 Ly =141
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Dubins Vehicle and Dubins Planning DTP DTSP DTSPN DOP DOPN Planning in 3D

Uniform vs Informed Sampling

€ =27/256, N = 1792, Tcpy= 6784 ms € =27/256, N = 100, Tcpy= 88 ms %
L=144, Ly =143 L£L=144, Ly =143

Jan Faigl, 2025 B4M36UIR — Lecture 08: Data Collection with Dubins Vehicles 24 / 69



DTP

Results and Comparison with Uniform Sampling

= Random instances of the DTSP with a sequence of visits to the targets determined as a solution
of the Euclidean TSP.

® The waypoints placed in a squared bounding box with the side s = (py/n)/d for the p = 1 and

density d = 05 Density of target locations influence the solution!
Quality of solution for increasing n Comparision with the uniform sampling

=] o] - .

' 200001 > 5 0000- Uniform

c c — Informed

h=l o

5 1100, 5 110m-

] ]

¥ 10100~ L

] ]

E E 1.0100

+ 10000- g

o 5]

2 10001 2 10000-

© ©

=] >

O D U . D . o 1.0001 - T \J T ) T

001 01 1 10 100 001 01 1 10 100
Computational time [s] Computational time [s]

® The informed sampling-based approach provides solutions up to 0.01% from the optima.
® A solution of the DTP is a fundamental building block for routing problems with Dubins vehicle.
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Dubins Vehicle and Dubins Planning DTP DTSP DTSPN DOP DOPN Planning in 3D

Outline

= Dubins Traveling Salesman Problem
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DTSP

Dubins Traveling Salesman Problem (DTSP)

1. Determine a closed shortest Dubins path visiting each location
pi € P of the given set of n locations P = {p1,...,pn},
pi € R2.

2. Permutation ¥ = (01, ...,0,) of visits.

Sequencing part of the problem

3. Headings © = {0,,,0,,...,0,,} for ps, € P.

Continuous optimization

m DTSP is an optimization problem over all possible permutations * and headings © in the
states (4o, s Goas - - - 5 Go,) SUch that g, = (ps,, 0s,;)
n—1
minimize s o Z[ﬁ(qg,, Goiia) + L(9o,: Goy)
i=1
subject to
qi=(pi,0i)i=1,....n,

where £(qo,, qo,) is the length of Dubins path between g, and gy,.
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DTSP

Decoupled Solution of the DTSP — Alternating Algorithm

Alternating Algorithm (AA) provides a solution of the DTSP for an even number of

targets n. Savla, K., Frazzoli, E., Bullo, F.: On the point-to-point and traveling salesperson problems for Dubins’vehicle,
IEE American Control Conference, 2005.

1. Solve the related Euclidean TSP.
Relaxed motion constraints.
2. Establish headings for even edges us-
ing straight line segments.

3. Determine optimal maneuvers for odd Py - - - - -
edges using the analytical form for
Dubins maneuvers.

Headings are known.

i of B R R pep——

3

Courtesy of P. Vana
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DTSP

DTSP with the Given Sequence of the Visits to the Targets

If the sequence of visits X to the target locations P is given, the planning problem is
to determine the optimal vehicle heading at each location p; € P, and the problem
becomes the Dubins Touring Problem (DTP).

Let for each location g; € G sample possible heading to k values, i.e., for each g; the
set of headings be h; = {0},...,0}.

Since ¥ is given, we can construct a graph connecting two consecutive locations in the
sequence by all possible headings.

For such a graph and particular headings {hi,..., h,}, we can find an optimal
headings and thus, the optimal solution of the DTP.
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DTSP

DTSP as a Solution of the DTP

The first layer is duplicated layer to support the forward search method

hZ h} hrz
0: 0:] (6,

X
R
= >

(&
/e
2

® The edge cost corresponds to the length of Dubins maneuver.
m Better solution of the DTP can be found for more samples, which will also improve the DTSP
but only for the given sequence.
Two questions arise for a practical solution of the DTP.
® How to sample the headings? More samples makes finding solution more demanding.

We need to sample the headings in a “smart” way, i.e., guided sampling using lower bound of the DTP?

®m What is the solution quality? Is there a tight lower bound?

Yes, the lower bound can be computed as a solution of the Dubins Interval Problem (DIP).

L VRS
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Dubins Vehicle and Dubins Planning DTP DTSP DTSPN DOP DOPN Planning in 3D

DTP Solver in Solution of the DTSP

® The solution of the DTP can be used to solve DTSP for the given sequence of the waypoints.
E.g., determined as a solution of the Euclidean TSP as in the Alternating Algorithm.

® Comparision with the Alternating Algorithm (AA), Local Iterative Optimization (LIO), and
Memetic algorithm.

AA — Savla et al., 2005, LIO — Vana & Faigl, 2015, Memetic — Zhang et al. 2014

[ ETSP + AA
4004 B ETSP + LIO
| ETSP + Proposed Lower bound (10 s)
3004 ETSP + Proposed (10 s)
[ Memetic (1 hour) T
1 T
-
100-
-
| ia-a M
10 2 0 7 100

Number of targets - n %
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DTSP

DTSP — Sampling-based Approach

® Sampled heading values can be directly utilized to find the sequence as a solution of the

Generalized Traveling Salesman Problem (GTSP).
Notice that for Dubins vehicle, it is the Generalized Asymmetric TSP (GATSP).

The problem is to determine a shortest tour in a graph that visits all specified subsets

of the graph's vertices.
The TSP is a special case of the GTSP when each subset to be visited consists just a single vertex.

= GATSP — ATSP;
Noon and Bean (1991)
m ATSP can be solved by LKH;

m ATSP — TSP, which can be solved opti-

mally, e.g., by Concorde. et
GTSP GATSP
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DTSP

DTSP — Evolutionary Approach with Surrogate Model

m Use standard genetic operators with tournament selection and OX1 crossover method.
® The population is evaluated using learned surrogate model based on multi-layer perceptron.
® The surrogate model estimates solution cost of candidate sequences (instances of the DTP).
m Massive speedup of the evaluation yields improved solutions and scalability.
WiSM-EA
14 ‘\\[_10 © 95 @
&) (STl
=13 = |
o) > 2.0 |
< M S @ LIO+ fﬂ
g 12 SATH He i 3 g i S-EA i
= 1 © ' S5 | MR,
= 1 8 < 4 8
E L] wiswe g Ak
5 . ‘B C 310
= o basclie - H‘ﬂ'j.‘ o WIRISEA+ Z L
iwisseEA LB % ————— F —
10° 10! 102 10! 10% 10° 10
Computational time - Tepy [s] Computational time - Tepy [3]
Instances with low density d and n = 100 target locations Instances with high density d and n = 500 target locations

Drchal, J., Vaha, P., and Faigl, J.: WIiSM: Windowing Surrogate Model for Evaluation of Curvature-Constrained Tours with
Dubins vehicle, IEEE Transactions on Cybernetics, 52(2):1302-1311, 2022.

Jan Faigl, 2025
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Dubins Vehicle and Dubins Planning DTP DTSP DTSPN DOP DOPN Planning in 3D

Outline

= Dubins Traveling Salesman Problem with Neighborhoods
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DTSPN

Dubins Traveling Salesman Problem with Neighborhoods

® In surveillance planning, it may be required to visit a set of target regions G = {Ry,...,R,}
by Dubins vehicle.

® Then, for each target region R;, we have to determine a particular point of the visit p; € R; and
DTSP becomes the Dubins Traveling Salesman Problem with Neighborhoods (DTSPN).

In addition to ¥ and headings ©, waypoint locations P have to be determined.

® DTSPN is an optimization problem over all permutations ¥, headings © = {6,,,...,6,,} and
points P = (py,, - .-, Ps,) for the states (q,,, - ., g5, ) such that g,, = (ps;, 05,) and p,;, € Ry,;:

n—1
minimizey g p Zﬁ(qai,qgiﬂ) + L(9s,, 9oy )
i=1
subject to
qi = (pivei)vpi S Ri = 1,...,[1
® L(9o;, qo;) is the length of the shortest possible Dubins maneuver connecting the states . .,
qUi and qO'j-
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DTSPN

DTSPN — Approches and Examples of Solution

= Decoupled approach for which a sequence of visits to the regions can be found as a solution of the ETSP(N).

= Sampling-based approach and formulation as the GATSP.
m Clusters of sampled waypoint locations each with sampled possible heading values.

= Decoupled solution of the sequence of visits and sampling waypoint locations and sampling heading angles
for each such location sample.

m Soft-computing techniques such as memetic algorithms.

® Unsupervised learning techniques. Vana and Faigl (IROS 2015), Faigl and Vana (ICANN 2016, IJCNN 2017)

B Y,

= Similarly to the lower bound of the DTSP based on the Dubins Interval Problem (DIP) a lower bound for the {57
DTSPN can be computed using the Generalized DIP (GDIP).
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DTSPN

DTSPN — Decoupled Sampling-based Approach

1. Determine a sequence of visits to the n target regions as the solution of the ETSP.

2. Sample possible waypoint locations and for each such a location sample possible heading values, e.g., s locations
per each region and h heading per each location.

3. Construct a search graph and determine a solution in O(n(sh)3).

4. An example of the search graph for n =6, s =6, and h = 6.
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2 » .
@ >} ot oh
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gt/ &g ot
——  foraftcombinations”

Dubins Touring Region Problem (DTRP)
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DTSPN

DTSPN — Decoupled with Local Iterative Optimization (LIO)

" Ins_tead of s.ampling into _a discrete set of V\{ay' Algorithm 2: Local Iterative Optimization (LIO) for
point locations each with sampled possible the DTSPN
headings, we can perform local optimization, Data: Input sequence of the goal regions

G = (Rs,,...,Rs,), for the permutation ¥

. . . Result: Waypoints (qoy, - - -, dn), qi = (pi, i),
m At each waypoint location p;, the heading can pi € 6R; '

be 0; € [O, 27T). initialization() // random assignment of gq; € 6R;;
while global solution is improving do

e.g., hill-climbing technique.

= A waypoint location p; can be parametrized as
a point on the bounday of the respective region
R;, i.e., as a parameter « € [0,1) measuring a
normalized distance on the boundary of R;.

for every R; € G do
0; := optimizeHeadingLocally(6;)
a; := optimizePositionLocally(«;
gi := checkLocalMinima(«;, 6;);

)i
® The multi-variable optimization is treated inde- end
pendenly for each particular variable 6; and «; end

iteratively.
Vana, P. and Faigl, J.: On the Dubins Traveling Salesman Problem with Neighborhoods, IROS, 2015, pp. 4029—4034.
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DTSPN

Lower Bound for the DTSP with Neighborhoods
Generalized Dubins Interval Problem

= In the DTSPN, we need to determine the headings and also the waypoint locations.

® The Dubins Interval Problem (DIP) is not sufficient to provide tight lower bound.

® Generalized Dubins Interval Problem (GDIP) can be utilized for the DTSPN similarly as
the DIP for the DTSP.

Vana, P. and Faigl, J.: Optimal Solution of the Generalized Dubins Interval Problem, kﬁi
RSS 2018, best student paper finalist. i

Jan Faigl, 2025 B4M36UIR — Lecture 08: Data Collection with Dubins Vehicles 39 / 69



DTSPN

Generalized Dubins Interval Problem (GDIP)

= Determine the shortest Dubins maneuver connecting P; and P; given the angle intervals §; €
[9min. 9max] and ¢; € [9;"’",9}”“].
Full problem (GDIP) One-side version (OS-GDIP)

gmax  pmin P,=Py& P
1 1 gmax  gmin .
H 1 i

aneuver

=
(C] a
eg‘in Génax eén_m ) 95““

= Optimal solution - Closed-form expressions for (1-6) and convex optimization (7).

1) S type 2) CS type 3) C¢ type Average computational time

/'H‘/‘,/.N:*.r_, @(—"f N ) -~ Problem Time [us] Ratio
B s 7) CCy, type Dubins maneuver 0.4 1.0

= = DIP 1.1 3.0

4 t t; 6 t

) CSC type 5) CSC type ) CCyC type ) GDIP 54 145

https://github.com/comrob/gdip

Vana, P. and Faigl, J.: Optimal Solution of the Generalized Dubins Interval Problem Finding the Shortest
Curvature-constrained Path Through a Set of Regions, Autonomous Robots, 44(7):1359-1376, 2020.
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Dubins Vehicle and Dubins Planning DTP DTSP DTSPN DOP DOPN Planning in 3D

GDIP-based Informed Sampling for the DTSPN

m |terative refinement of the neighborhood samples and heading samples.

Resolution: 4 Gap: 69.3 % Time: 0.079 s

N AN
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Dubins Vehicle and Dubins Planning DTP DTSP DTSPN DOP DOPN Planning in 3D

GDIP-based Informed Sampling for the DTSPN

m |terative refinement of the neighborhood samples and heading samples.

Resolution: 8 Gap: 39.4 % Time: 0.211 s
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Dubins Vehicle and Dubins Planning DTP DTSP DTSPN DOP DOPN Planning in 3D

GDIP-based Informed Sampling for the DTSPN

m |terative refinement of the neighborhood samples and heading samples.

Resolution: 16 Gap: 19.9% Time: 0.552 s

2 J D Rl
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Dubins Vehicle and Dubins Planning DTP DTSP DTSPN DOP DOPN Planning in 3D

GDIP-based Informed Sampling for the DTSPN

m |terative refinement of the neighborhood samples and heading samples.

Resolution: 32 Gap: 10.7 % Time: 1.292 s

= s fes
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Dubins Vehicle and Dubins Planning DTP DTSP DTSPN DOP DOPN Planning in 3D

GDIP-based Informed Sampling for the DTSPN

m |terative refinement of the neighborhood samples and heading samples.

Resolution: 64 Gap: 53 % Time: 3.183 s
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Dubins Vehicle and Dubins Planning

DTP

DTSPN DOP

GDIP-based Informed Sampling for the DTSPN

m |terative refinement of the neighborhood samples and heading samples.

Resolution: 128

Gap: 2.6 %

S

Jan Faigl, 2025
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Time: 8.994 s
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DOPN

Planning in 3D
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Dubins Vehicle and Dubins Planning DTP DTSP DTSPN DOP DOPN Planning in 3D

GDIP-based Informed Sampling for the DTSPN

m |terative refinement of the neighborhood samples and heading samples.

Resolution: 256 Gap: 1.3% Time: 33.474 s

i SETN
=)

~ -.bz/ = =3
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DTSPN

DTSPN — Convergence to the Optimal Solution

m For a given sequence of visits to the target regions (locations).

4.0 T T T T T T T T T T 105
35L1 — Upperbound | 110* &
— Lower bound 3 I
g 30N —  Computational time|[ Ty 410 £
S 251 N\F- ---- Approximationk'® f----- 4102 2
o ©
Q20N g 410" §
=] 3 0 =
m 1O et 410° 8
5 =]
& 1.0 107 g-
05} 1102 §

0.0 I 1 1 ! I I I L 10-3

1 2 4 8 16 32 64 128 256 512
Maximal resolution kax
® The algorithm scales linearly with the number of locations.

= Complexity of the algorithm is approximately O(nk'#).
https://github.com/comrob/gdip
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Dubins Vehicle and Dubins Planning DTP DTSP DTSPN DOP DOPN Planning in 3D

Outline

= Dubins Orienteering Problem
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Dubins Vehicle and Dubins Planning DTP DTSP DTSPN DOP DOPN Planning in 3D

Data Collection / Surveillance Planning with Travel Budget

m Visit the most important targets because of limited travel budget.
®m The problem can be formulated as the Orienteering Problem with Dubins vehicle, a.k.a.
Dubins Orienteering Problem (DOP) Robert Pénicka, Jan Faigl, Petr Vana and Martin Saska, RA-L 2017.

EOP path traveled by UAV
DOP path traveled by UAV

EOP path plan
DOP path plan

https://mrs.felk.cvut.cz/icral7dop
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DOP

Dubins Orienteering Problem
m Curvature-constrained data collection path respecting the Dubins vehicle model with the mini-
mal turning radius p and constant forward velocity v.
= The path is a sequence of waypoints q; € SE(2), g; = (s, 6;), si € R?, §; € St.
® |n addition to Sy, k.~ (OP) determine headings
© = (0oy.....0,,) such that

k
maximizey s, ¥ R = E Iy,
i=1

subject to
k
E(q(f,‘717 qO',') S Tmaxa
i=2
Qo; = (50,'700,')750,' €S,0,, € St
So.

3 — S1,50, = Sn

The problem combines discrete combinatorial optimization (OP) with the continuous
optimization for determining the vehicle headings.
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DOP

Variable Neighborhood Search (VNS)

= Variable Neighborhood Search (VNS) is a general metaheuristic for combinatorial
optimization (routing problems).

Hansen, P. and Mladenovi¢, N. (2001): Variable neighborhood search: Principles and applications. European
Journal of Operational Research.

m The VNS is based on shake and local search procedures.

m Shake procedure aims to escape from local optima by changing the solution within the
neigh borhoods N17~--7kmax' The neighborhoods are particular operators.

® |ocal search procedure searches fully specific neighborhoods of the solution using /,ax
predefined operators.

Jan Faigl, 2025
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DOP

Variable Neighborhood Search (VNS) for the DOP

® The solution is the first k locations of the sequence of all target locations satisfying T pax.
Sevkli Z., Sevilgen F.E.: Variable Neighborhood Search for the Orienteerine Problem. SCIS. 2006.

® |t is an improving heuristics, i.e., an initial solution has to be
provided.

m A set of predefined neighborhoods are explored to find a better
solution. Exchange

m Shake — explores the configuration space and escape from a
local minima using

= Insert — moves one random element; Path inser
= Exchange — exchanges two random elements. ﬂ
o o -5
m Local Search — optimizes the solution using
= Path insert — moves a random sub-sequence;
q Path exch
® Path exchange — exchanges two random sub-sequences.

® Randomized VNS — examines only n® changes in the Local
Search procedure in each iteration.
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Initial solution

Tepy = 109s,
£ =796, R =960

Jan Faigl, 2025

4710th iteration
(4th improvement)

'y . . . ¢
. P .
o e .
'&\ .

Tepy = 144.8 s,
£ =797, R =990

B4M36UIR — Lecture 08: Data Collection with Dubins Vehicles

DOP

Evolution of the VNS Solution to the DOP

4790th iteration
(12th improvement)

o e e 4
S S
. 3 .
o o e e
$ e .
™. e

TCPU = 1473 s,
L =793, R =1008

5560th iteration
(16th improvement)

. e .

Y

Tepy = 170.0 s,
£ =179.1, R = 1050
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Dubins Vehicle and Dubins Planning

DTSP DTSPN DOP DOPN

Possible Solutions of the Dubins Orienteering Problem
1. Solve the Euclidean OP (EOP) and then determine Dubins path.

The final path may exceed the budget and the vehicle can miss the locations because of motion control.

2. Directly solve the Dubins Orienteering Problem (DOP) such as
= Sample possible heading values and use Variable Neighborhood Search (VNS);

m Unsupervised learning based on Self-Organizing Maps (SOM);

EOP path trave]e? by UAV
DOP path traveled by UAV
EOP path plan

DOP patfplan &

- | @ som h-o

Collected rewards - R
=
.
[}
=
:

Set3, Toae50 Set 64, Tay=45 Set 66, Tira=60

ime [s]

Required computati

Set 3, Tra=50 Set 64, Tpu=45 Set 66, Tra=60

Planning in 3D

Pénicka, R., Faigl, J., Vana, P., and Saska, M.: Dubins Orienteering Problem, IEEE Robotics and Automation
Letters, 2(2):1210-1217, 2017.

Faigl, J.: Self-organizing map for orienteering problem with dubins vehicle, Advances in Self-Organizing Maps,
Learning Vector Quantization, Clustering and Data Visualization, 2017, pp. 125-132.
s

The VNS-based approach provides better solutions than the SOM-based solution, but it tends to be more demanding. %

Jan Faigl, 2025
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Dubins Vehicle and Dubins Planning DTP DTSP DTSPN DOP DOPN Planning in 3D

Outline

= Dubins Orienteering Problem with Neighborhoods
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DOPN

Dubins Orienteering Problem with Neighborhoods

m Curvature-constrained path respecting the Dubins vehicle model.
= Each waypoint consists of location p € R? and the heading 6 € S*.
® |n addition to Sy, k, > determine locations
P« = (Poys- -+ Po,) and headings © = (04, ...,0,,)
such that

k
maximizey s, s R = E Iy,
i=1

subject to
k

Z‘C(qm—l?qﬂi) S Tmaxa

i=2

do; = (pG'HeO',');po'[ S Rz,eg, e St
[|Po:, So;|| < 9,55, € Sk

Poy = 51, Poy = Sn

We need to solve the continuous optimization for determining the vehicle heading at each waypoint and the
waypoint locations Py = {poy, ..., Po, }, Po; € R2.
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DOPN

Variable Neighborhoods Search (VNS) for the DOPN

Algorithm 3: VNS based method for the DOPN The particular / for the individual operators of
Input : S — Set of the target locations the shake procedure are:

Input : T.x — Maximal allowed budget

Input : o — Initial number of position waypoints for each target - Waypoint Shake (/ — 1)_

Input : m — Initial number of heading values for each waypoints
Input : r; — Local waypoint improvement ratio

Input  : /s — Maximal neighborhood number

Output: P - Found data collecting path

= Path Move (/ = 2);

S, « getReachableLocations(S, Tmax) = Path Exchange (/ = 3)
P < createlnitialPath(S,, Tmax) // greedy
while Stopping condition s not met do The local search procedure consists of three op-
while /< I, do erators and the particular / for the individual op-
P’ « shake(P, 1)
P" « localSearch(P", I, r;) erators of the local search procedure are:
if L4(P") < Topax and .
[[R(P") > R(P)] or [R(P") == (P) and = Waypoint Improvement (/ = 1);
La(P") < La(P)La(P")]] then
Pepr = One Point Move (/ = 2);
1
e‘lse/H /a1 = One Point Exchange (/ = 3).
de"d Pénicka, R., Faigl, J., Saska, M., and VaRa, P.: Data collection
den planning with non-zero sensing distance for a budget and curva-
en

ture constrained unmanned aerial vehicle, Autonomous Robots,
43(8):1937-1956, 2019.
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DOPN

VNS for DOPN — Example of the Shake Operators
Path Move Path Exchange

Jan Faigl, 2025



Dubins Vehicle and Dubins Planning DTP DTSP DTSPN DOP DOPN Planning in 3D

DOPN — Example of Solution and Practical Deployment

= VNS-based solution of the DOPN.
Pénicka, R., Faigl, J., Vana, P., and Saska, M.: Dubins Orienteering Problem with Neighborhoods,
International Conference on Unmanned Aircraft Systems (ICUAS), 2017, pp. 1555-1562.

[— DOPN Planwith 6=4,R=ma | & \ K e SRR IR s %
https://mrs.felk.cvut.cz/jint17dopn
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Dubins Vehicle and Dubins Planning DTP DTSP DTSPN DOP DOPN Planning in 3D

Outline

= Planning in 3D — Examples and Motivations
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Planning in 3D

3D Data Collection Planning with Dubins Airplane Model

® Dubins Airplane model describes the vehicle state — " A
q=(p,0,%), pcR3and 0,9 € S as
X cos 6 - cos ¢
y | _ sin @ - cos v
|7V sin 9
0 up-pt

H. Chitsaz and S. M. LaValle: Time-optimal paths for a Dubins airplane,
IEEE Conference on Decision and Control, 2007, pp. 2379—2384.

m Constant forward velocity v, the minimal turn-
ing radius p, and limited pitch angle, ie., ¢ €
[¢mina wmax]-

® uy controls the vehicle heading, |ug| < 1, and v is

the forward velocity. /
|

® Generation of the 3D trajectory is based on the 2D
Dubins maneuver.

m |f altitude changes are too high, additional helix segments are inserted.
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Planning in 3D

The DTSPN in 3D

m Using the same principles as for the DTSPN in 2D, we can
generalize the approaches for 3D planning using the Dubins
Airplane model instead of simple Dubins vehicle.

m The regions can be generalized to 3D and the problem can be
addressed by decoupled or sampling-based approaches, i.e.,
using GATSP formulation.

® |n the case of LIO, we need a parametrization of the possible
waypoint location, such as point on the object boundary. I,

CCC maneuver

CSC maneuver
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Solutions of the 3D-DTSPN

Algorithm 4: LIO-based Solver for 3D-DTSPN

Data: Regions R
Result: Solution represented by Q and ¥
¥ < getlnitialSequence(R);
Q ¢ getlnitialSolution(R, X);
while terminal condition do
Q < optimizeHeadings(Q, R, X);
Q < optimizeAlpha(Q, R, X);
Q < optimizeBeta(Q, R, ¥);
end
return Q,%;

Planning in 3D

= Solutions based on LIO (ETSP+LIO), TSP with the travel cost according to Dubins Airplane Model (DAM-TSP+LIO), and sampling-based
approach with transformation of the GTSP to the ATSP solved by LKH.

Jan Faigl, 2025
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Vana, P., Faigl, J., Slama, J., and Pénicka, R.: Data collection planning with Dubins airplane model and

limited travel budget European Conference on Mobile Robots (ECMR), 2017.

B4M36UIR — Lecture 08: Data Collection with Dubins Vehicles




Planning in 3D

3D Surveillance Planning

Parametrization of smooth 3D multi-goal trajectory as a sequence of Bézier curves.

Unsupervised learning for the TSPN can be generalized for such trajectories.

During the solution of the sequencing part of the problem, we can determine a velocity profile along the curve

and compute the so-called Travel Time Estimation (TTE).

Bézier curves better fit the limits of the multi-rotor UAVs that are limited by the maximal accelerations and

velocities rather than minimal turning radius as for Dubins vehicle.
Low altitude differences

High altitude differences

0
y [m] x [m] y [m] x [m]

6 — Velocity ~— Aceelerationt
Max. velocity (curvature)

0 40 60 s 100 120 140
Time [5]

Horizontal accel

5 Rl AN
0 0 2 0 o 0
0 20 40 60 S0 100 120 140 0 20 40 6 0 100 120 140 0 20 40 60 80 100 120 140 )
Time (5] Time [s] Time [s]

Faigl, J. and Vana, P.: Surveillance Planning With Bézier Curves, IEEE Robotics and Automation Letters, 3(2):750-757, 2018.

® Low altitude differences saturate horizontal velocity while high altitudes changes saturate vertical velocity.
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Dubins Vehicle and Dubins Planning DTP DTSP DTSPN DOP DOPN Planning in 3D

Multi-Vehicle Multi-Goal Planning with Limited Travel Budget —
Curvature-Constrained Team Orienteering Problem (with Neighborhoods)

= Operational time of multi-rotor aerial vehi-
cles is limited and only a subset of locations
can be visited.

30 trajectory sxecution

= Planning multi-goal trajectories as a se-
quence of Bézier curves.

Pranneg sn ral rajctenes

X 2 F)

Orienteering Problem with Bézier curves: Non-crossing field experiment with 3 multi-rotor drones

= Targets are missed in a case of colliding trajectories, because of local
collision avoidance and optimal trajectory following.

m There is a practical need to include coordination in multi-vehicle
multi-goal trajectory planning.

Xfm] 2 0 %
Faigl, J., Vana, P., and Pénicka, R.: Multi-Vehicle Close Enough Orienteering Problem with Bézier Curves
for Multi-Rotor Aerial Vehicles. ICRA 2019, pp. 3039-3044.
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Topics Discussed

Summary of the Lecture
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Summary

m Data collection planning with curvature-constrained paths/trajectories

® The Traveling Salesman Problem (TSP) and Orienteering Problem (OP) with Dubins Vehicle, i.e.,
DTSP and DOP.

® |t is a combination of the combinatorial and continuous (determining optimal headings) optimization.

The continuous part can be solved using Dubins Touring Problem (DTP).

= Using a solution of the Dubins Interval Problem (DIP) we can establish tight lower bound of the DTP
and DTSP with a particular sequence of visits.

® The problems can be further extended to DTSP with Neighborhoods (DTSPN) and OP with Neigh-
borhoods (DOPN), and its Close Enough variants.

® The key ideas of the presented problems and approaches are as follows.

= Consider proper assumptions that fits the original problem being solved.

= Suitability of the vehicle model, requirements on the solution quality, and benefit of optimal or computationally demanding
solutions.

= Employing lower bound based on “a bit different problem” such as the DIP and GDIP, to find high quality
solutions, even using decoupled approaches.

= Challenging problems with continuous optimization can be addressed by decoupled and sampling-based
approaches.

= Be aware that the optimal solutions found for discretized problems, e.g., using ILP or combinatorial solvers, are not
optimal solutions of the original (continuous) problem!

Jan Faigl, 2025 B4M36UIR — Lecture 08: Data Collection with Dubins Vehicles



Topics Discussed

Topics Discussed

® Dubins vehicles and planning — Dubins maneuvers
u Dubins InterVaI Pr0b|em (DIP) (Lower bound estimation to the DTP, DTSP)
m Dubins Touring Problem (DTP)

® Dubins Traveling Salesman Problem (DTSP) and Dubins Traveling Salesman with
Neighborhoods (DTSPN)

m Decoupled approaches — Alternating Algorithm
m Sampling-based approaches — GATSP

m Generalized Dubins Interval Problem (GDIP) (Lower bound estimation to the DTSPN)

® Dubins Orienteering Problem (OP) and Dubins Orienteering Problem with
Neighborhoods (DOPN)

® Data collection and surveillance planning in 3D

m Next: Sampling-based motion planning
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