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Dubins Vehicle and Dubins Planning

Motivation — Surveillance Missions with Aerial Vehicles

= Provide curvature-constrained path to collect the most valuable measurements with shortest
ed travel budget.

possible path/time or under limit

= Formulated as routing problems with Dubins vehicle:
® Dubins Traveling Salesman Problem with Neighborhoods;
= Dubins Orienteering Problem with Neighborhoods.
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Dubins Vehicle

= Non-holonomic vehicle such as car-like or aircraft can be modeled as Dubins vehicle:
= Constant forward velocity;
= Limited minimal turning radius p;
u Vehicle state is represented by a triplet ¢ = (x, y, 8), where
= Position is (x,y) € R?, vehicle heading is 6 € S?, and thus g € SE(2).

Dubins Vehicle and Dubins Planning DTP

in 3D

The vehicle motion can be described by the
equation
X cos 0
y | =v]| sing lul <1, y |
) u
(4 n
where u is the control input. |
0 X
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Optimal Maneuvers for Dubins Vehicle

= For two states g1 € SE(2) and g2 € SE(2) in the environment without obstacles
W = RR?, the optimal path connecting g; with g can be characterized as one of two
main types
= CCC type: LRL, RLR;
» CSC type: LSL, LSR, RSL, RSR;
where S - straight line arc, C — circular arc oriented to left (L) or right (R).
L. E. Dubins (1957) — American Journal of Mathematics
= The optimal paths are called Dubins maneuvers.
= Constant velocity: v(t) = v and minimum turning radius p.
= Six types of trajectories connecting any configuration in SE(2). (Without obstacles)
= The control u is according to C and S type one of three possible values u € {—1,0,1}.
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Parametrization of Dubins Maneuvers
= Parametrization of each trajectory phase connecting qo with gr:

{LaRsLy, RalgRy, LaSaly, LaSqRy, RaSaly, RaSaRy}

Notice the prescribed orientation at qo and qy.

for a € [0,27), B € (m,2m), d >0.

Dubins Vehicle and Dubins Planning DTP DTSP DTSPN DOP DOPN Planni

Multi-goal Dubins Path

= Minimal turning radius p and constant forward velocity v.
(x,y,0), g € SE(2),

m State of Dubins vehicle is g
(x,y) € R? and 0 € S

[

Smooth Dubins path connecting a sequence of locations is also suitable for
rotor aerial vehicle.

= Optimal path connecting g1 € SE(2) and g» € SE(2) consists only of straight line arcs and
arcs with the maximal curvature, i.e., two types of maneuvers CCC and CSC and the solution
can be found analytically. (Dubins, 1957)

g in 3D

multi-

Dubins Vehicle and Dubins Planning f DTS DTS oF

Difficulty of Dubins Vehicle in the Solution of the TSP

= For the minimal turning radius p, the optimal path connecting

q, € SE(2) and g, € SE(2) can be found analytically. O e DY
L. E. Dubins (1957) — American Journal of Mathematics d
. K P
= Two types of optimal Dubins maneuvers: CSC and CCC.
= The length of the optimal maneuver £ has a closed-form solution.
c
= |t is piecewise-continuous function; Can be computed in less than 0.5 us e
. LA 92
= (continuous for ||(py, po)|| > 4p). c
n £ (d = L00) Maseuver types (d = 1.00]
= 3
C
c c
i ' a:

2B . . . . T ————
R.S,L "}%‘? = |n multi-goal Dubins path planning, we need to solve the underlying TSP.

aYd -y /i
Jan Faigl, 2025 B4M36UIR — Lecture 08: Data Collection with Dubins Vehicles 8 / 69 Jan Faigl, 2025 B4M36UIR — Lecture 08: Data Collection with Dubins Vehicles 9 /69 Jan Faigl, 2025 B4M36UIR — Lecture 08: Data Collection with Dubins Vehicles 10 / 69




Dubins Vehicle and Dubins Planning

Dubins Traveling Salesman Problem (DTSP)

= Determine (closed) shortest Dubins path visiting each p; € R?
of the given set of n locations P = {p;,...,p,}.
1. Permutation ¥ = (01,...,0,) of visits (sequencing).
Combinatorial optimization
<105}, 0; €[0,27), for p,, € P.
Continuous optimization
= DTSP is an optimization problem over all possible sequences
¥ and headings © at the states (q,,,, q,,; - - -, q,,) such that
45, = (Ps,,05,), Py, € P

n-1

> 24, 90,,) + £(40,. 95,)

i=1

2. Headings © = {0s,,00,,.

minimizey o

subject to

q;=(p.0;)i=1....n

where £(q,,,q,,) is the length of Dubins path between gq,,
and g, .
d

The continuous domain of the heading angles is simular to the regions in the TSPN-like problem formulations.
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Dubins Vehicle and Dubins Planning

Challenges of the Dubins Traveling Salesman Problem

= The key difficulty of the DTSP is that the path length
mutually depends on
® Order of the visits to the locations;
= Headings at the target locations.
We need the h ings, but h
influence the sequence

= The Dubins TSP is sequence dependent problem.

-

quence to determin may

= Two fundamental approaches can be found in literature.

1. Decoupled approach based on a given sequence of the locations, e.g., found by a solution of
the Euclidean TSP.
2. Sampling-based approach with sampling of the headings at the locations into discrete sets of

values and considering the problem as the variant of the Generalized TSP.
Besides, further approaches are
= Genetic and memetic techniques (evolutionary algorithms);
= Unsupervised learning based approaches.
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Dubins Vehicle and Dubins Planning

Existing Approaches to the DTSP(N)
= Heuristic (decoupled & evolutionary) approaches
Savla et al., 2005
Ma and Castanon, 2006
Macharet et al., 2011
Macharet et al., 2012
Ny et al., 2012
Yu and Hung, 2012
Macharet et al., 2013
Zhang et al., 2014
Macharet and Campos, 2014
Vana and Faigl, 2015
Isaiah and Shima, 2015

= Sampling-based approaches
B Obermeyer, 2009
= Oberlin et al., 2010
® Macharet et al., 2016

= Convex optimization
B (Only if the locations are far enough)
= Goac et al., 2013

= Lower bound for the DTSP

= Dubins Interval Problem (DIP)
= Manyam et al., 2016

= DIP-based inform sampling
® Vana and Faigl, 2017

= Lower bound for the DTSPN

= Using Generalized DIP (GDIP)
® Vana and Faigl, 2018, 2020
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Dubins Vehicle and Dubins Planning

Planning with Dubins Vehicle — Summary

The optimal path connecting two configurations can be found analytically.
E.g., for UAVs that usually op in

in without ob le

DTP

Dubins Touring Problem — DTP

= For a sequence of the n waypoint locations P = (p1,... pn), p; € R?, the Dubins Touring
Problem (DTP) stands to determine the optimal headings T = {6, f,} at the waypoints

DTP

Sampling-based Solution of the DTP

m For a closed sequence of the waypoint locations

P=(p1,....pn)

L g;l_)rlns n:;neuvetrs Iczn a:jso be :J_sed in randomized-sampling based motion planners, such as g; such that = We can sample possible heading values at each location i
 In the control based sampling. 1 into a discrete set of k headings ©' = {61,...,0,}, and
= The Dubins vehicle model can be considered in the multi-goal path planning such as surveillance, - : i
| ! e me an| red multi-goal path p g minimize 1 £(T,P) = Eﬁ(q"’ Gi1) + £(qn, q1) create a graph of all possible Dubins maneuvers.
inspection or monitoring missions to periodically visits given target locations (areas). P o » .
= Dubins Touring Problem (DTP) subject to o 0 0
Given a sequence of locations, what is the shortest path visting the locations, i.e., what are the C—(p B . .
headings of the vehicle at the locations. N he | hof bql (P 83), 8i €[0,2m), pi EhP’ 03 03 2;%
N N where L(q;, g;) is the len of Dubins maneuver connecting g; with g;.
= Dubins Traveling Salesman Problem (DTSP) (qf’ %) . gth of Dub g i 9 ( : : 10
- > - - — - ® The DTP is a continuous optimization problem. o » M
2;’;;:t?:g::i;:?g:'a:::t s e diris: Dt e diEk oEfis e (beion easty ene an ‘ ® The term £(qn, q1) is for possibly closed tour that can be for example requested in the TSP 4z N4 N . oot et o cvalite ol
- - - o with Dubins vehicle (Dubins TSP - DTSP). for all combinations sible itial headings, and the complesity 15 O(nk%)
® Dubins Orienteering Problem (DOP) On the other, the DTP can also be utilized for open paths such as solutions of the OP with Dubins vehicle. = For a set of heading samples, the optimal solution can = The problem is to determine the
Given a set of locations, each with associated reward, what is Dubins path visiting the most rewarding . . ) . . e " ) H H
locations and not exceeding the given travel budget. ‘ = |n some cases, it may be suitable to relax the heading at the first/last location in finding closed be found by a forward search of the graph in O(nk3). most suitable heading samples.
tours, and thus solving the DTSP.
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DTP DTP DTP
Example of Heading Sampling — Uniform vs. Informed Dubins Interval Problem (DIP) Lower Bound of the DTP
Uniform samplin; Informed samplin, = Dubins Interval Problem (DIP) is a generalization of Dubins maneuvers to the shortest path . L
ping ping connecting two points p; and p;. = For a dlscirete2 set of P;eadmgl |n.tervals H = {Hi1,...,Hy}, where
6 5 6 5 = In the DIP, the leaving interval ©; at p; and the arrival interval ©; at p; are consider (not a Hi = {@,v,ei', -+, 0"}, a similar graPh as for the DTP can be 6 5
single heading value). constructed with the edge cost determined by the solution of the
4 4 = The optimal solution can be found analytically. Manyam et al. (2015) associated DIP. " i "
maz pmin — 4
i i ot o} o u
7 7 : No<To<Tos ‘
3 3 ver N < e
ROR maneV ( a7
. o o
| s ’ 3
2 2 Pi ej ()Jmum for all
1 1 in ® The forward search of the graph with dense samples provides
N =224, Tp, = 128 ms N =128, Tp, = 76 ms 9] a tight lower bound on the optimal solution cost of the DTP. H,
£=198, Ly =138 =144, Ly =142 . . . Manyam and Rathinam, 2015 2
® N is the total number of samples, for example 32 samples per waypoint for uniform sampling. = Solution of the DIP is a tight lower bound for the DTP. i
= [ is the length of the tour (blue) and Ly is the lower bound path (red) determined as a solution = Solution of the DIP is not a feasible solution of the DTP. H, 1

of the Dubins Interval Problem (DIP).
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Notice, for ©j = ©; = (0,27) the optimal maneuver for DIP is a straight line segment.
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DTP

Lower Bound and Feasible Solution of the DTP

= The arrival and departure angles may not be the same.

The lower bound solution is not a feasible solution of the DTP.

Lower bound

Feasible path

= DTP solution — use any particular heading of each interval in the lower bound solution.
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DTP

The DIP-based Sampling of Headings in the DTP

m Using heading intervals for a sequence of waypoints and a solution of the DIP, we can determine
lower bound of the DTP using the forward search graph as for the DTP.

The ratio between the lower bound and feasible solution of the DTP provides an estimation of
the solution quality.

2.00004

1.10001

1.01004

1.00104

1.0001;

Guaranteed quality of the solution

0.01 0.1 1 10 100
Computational time [s]

Vaha and Faigl (2016)
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DTP

Iteratively-Refined Informed Sampling (IRIS) of Headings in the Solution of

the DTP
u |terative refinement of the heading intervals #
h | luti Algorithm 1 Iterative Informed Sampling-based DTP Algorithm

up to the angular resolution €req. Input: P - Target locations to be visited

= The angular resolution is gradually increased for ~ 'MPut: creq - Requested angular resolution
A N Input: g — Requested quality of the solution
the most promising intervals. Output: T - A tour visiting the targets
. .. . e« 2m // initial angular resolution;

® refineDTP — divide the intervals of the lower 3/ " . oivervata(Pie) /7 snivind sncervals:

bound solution. L0 // init lower bound;

. ) Ly // init upper bound;
® s0lveDTP — solve the DTP using the heading  while ¢ > e,eq and Ly/L0 > 1eq do
ned i o2
from the refined intervals. Gty o ratinsDTE(P,e,H):
(T.Ly) « solveDTP(P, H);
. . } end

® |t simultaneously provides feasible and lower  retumn T;

bound solutions of the DTP. Faigl, J., Vana, P., Saska, M., Baca, T., and Spurny, V.:

The lower bound provides a tight estimation of the On solution of the Dubins touring problem, ECMR, 2017.
solution quality.

= The first solution is provided very quickly — any-time algorithm.
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DTP

Uniform vs Informed Sampling

€=2r/4, N =28, Tepy=8 ms
L=279, Ly =132

e=2r/8, N =21, Tcpy=8 ms
L£=129.9, Ly =132
Jan Faigl, 2025
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DTP

Results and Comparison with Uniform Sampling

= Random instances of the DTSP with a sequence of visits to the targets determined as a solution
of the Euclidean TSP.

= The waypoints placed in a squared bounding box with the side s = (p\/n)/d for the p = 1 and
density d = 0.5. Density of target locations influence the solution!

Quality of solution for increasing n Comparision with the uniform sampling
- 8 — Uniform
& 2000} < 0 — Informed
2 2
5 10y 5 umo
Fl )
9 101001 a
g g 10100
& 1000 <
o o
2o Z o
© ©
3 3
=4 | | | i O 10001 | | ; ; !
o0 0 i o 10 oon 0 i 1 10
Computational time [s] Computational time [s]

The informed sampling-based approach provides solutions up to 0.01% from the optima.
A solution of the DTP is a fundamental building block for routing problems with Dubins vehicle.
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DTSP

Dubins Traveling Salesman Problem (DTSP)

1. Determine a closed shortest Dubins path visiting each location
pi € P of the given set of n locations P = {p1,...,pn},
pi € R2.

2. Permutation £ = (071,...,0,) of visits.

Sequencing part of the problem

3. Headings © = {0,,.0,,,...,0,,} for p,, € P.

Continuous optimization

= DTSP is an optimization problem over all possible permutations ¥ and headings © in the
states (Goy s Gos - - - » Go,) Such that g, = (po,,05,)
n—1

> L40,: Go11a) + £(do, d0)

i=1

minimizes o

subject to
qi=(pi,0i)i=1,...,n,
where £(q,;, qo,) is the length of Dubins path between g, and g,

DTSP

Decoupled Solution of the DTSP — Alternating Algorithm

Alternating Algorithm (AA) provides a solution of the DTSP for an even number of
targets n.

Savla, K., Frazzoli, E., Bullo, F.: On the point-to-point and traveling salesperson problems for Dubins vehicle,
IEE American Control Conference, 2005.

1. Solve the related Euclidean TSP.
Relaxed motion constraints.
2. Establish headings for even edges us-
ing straight line segments.

3. Determine optimal maneuvers for odd
edges using the analytical form for

Dubins maneuvers.
Headings are known.

P3

Courtesy of P. Vana
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DTSP

DTSP with the Given Sequence of the Visits to the Targets

u If the sequence of visits ¥ to the target locations P is given, the planning problem is
to determine the optimal vehicle heading at each location p; € P, and the problem
becomes the Dubins Touring Problem (DTP).

u Let for each location g; € G sample possible heading to k values, i.e., for each g; the
set of headings be h; = {6}, ...,60f}.

= Since X is given, we can construct a graph connecting two consecutive locations in the
sequence by all possible headings.

® For such a graph and particular headings {h1,. .., h,}, we can find an optimal

headings and thus, the optimal solution of the DTP.
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DTSP
DTSP as a Solution of the DTP
h, h, h h, h,
0 0 0
0370 4
pal ~
—/

= The edge cost corresponds to the length of Dubins maneuver.
= Better solution of the DTP can be found for more samples, which will also improve the DTSP
but only for the given sequence.
Two questions arise for a practical solution of the DTP.
= How to sample the headings? More samples makes finding solution more demanding.
We need to sample the headings in a “smart” way, i.e., guided sampling using lower bound of the DTP?
= What is the solution quality? Is there a tight lower bound? A

Yes, the lower bound can be computed as a solution of the Dubins Interval Problem (DIP).
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DTSP

DTP Solver in Solution of the DTSP

= The solution of the DTP can be used to solve DTSP for the given sequence of the waypoints.

E.g., determined as a solution of the Euclidean TSP as in the Alternating Algorithm.

= Comparision with the Alternating Algorithm (AA), Local lIterative Optimization (LIO), and
Memetic algorithm.

AA - Savla et al., 2005, LIO — Vana & Faigl, 2015, Memetic — Zhang et al. 2014

ETSP + AA
i
I‘
100

1 ETSP + LIO
] ETSP + Proposed Lower bound (10 s)

ETSP + Proposed (10 s)
Ii
II
7

I Memetic (1 hour)

Solution length

DTsP

DTSP — Sampling-based Approach

= Sampled heading values can be directly utilized to find the sequence as a solution of the
Generalized Traveling Salesman Problem (GTSP).
Notice that for Dubins vehicle, it is the Generalized Asymmetric TSP (GATSP).

The problem is to determine a shortest tour in a graph that visits all specified subsets
of the graph's vertices.

The TSP is a special case of the GTSP when each subset to be visited consists just a single vertex.

GATSP — ATSP;
Noon and Bean (1991)

DTSP

DTSP — Evolutionary Approach with Surrogate Model
= Use standard genetic operators with tournament selection and OX1 crossover method.
= The population is evaluated using learned surrogate model based on multi-layer perceptron.
= The surrogate model estimates solution cost of candidate sequences (instances of the DTP).
= Massive speedup of the evaluation yields improved solutions and scalability.

grsees
Mo

Lo+

zed cost - C,

]

WIRISEAZ,
4

u ™ sy
. . . —— » WIS EA]
o B ATSP can be solved by LKH; I e § t By .
- i:. = ATSP — TSP, which can be solved opti- T o 0 T 0 o
o- L mally, e.g., by Concorde. Computational time - Tepy [5] Computational time - Tepy [5]
% Y o GATSP Instances with low density d and n = 100 target locations Instances with high density d and n = 500 target locations
Number of targets - n Drchal, J., Vaia, P., and Faigl, J.. WiSM: Windowing Surrogate Model for Evaluation of Curvature-Constrained Tours with
Dubins vehicle, |EEE Transactions on Cybernetics, 52(2):1302-1311, 2022.
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DTSPN DTSPN DTSPN
Dubins Traveling Salesman Problem with Neighborhoods DTSPN — Approches and Examples of Solution DTSPN — Decoupled Sampling-based Approach
= In surveillance planning, it may be required to visit a set of target regions G = {Ry,.... R} = Decoupled approach for which a sequence of visits to the regions can be found as a solution of the ETSP(N). 1. Determine a sequence of visits to the n target regions as the solution of the ETSP.
by Dubins vehicle 2. Sample possible waypoint locations and for each such a location sample possible heading values, e.g., s locations
i i : . . ) it of . = Sampling-based approach and formulation as the GATSP. per each region and h heading per each location.
® Then, for each target region Ri, we .have to determine a pamcu.lar point o the visit p; € R; and m Clusters of sampled waypoint locations each with sampled possible heading values. 3. Construct a search graph and determine a solution in O(n(sh)?).
DTSP becomes the Dubins Traveling Salesman Problem with Neighborhoods (DTSPN). X . . . . . . 4. An example of the search graph for n =6, s =6, and h = 6.
» Decoupled solution of the sequence of visits and sampling waypoint locations and sampling heading angles
In addition to ¥ and headings ©, waypoint locations P have to be determined. for each such location sample. R —o—
. . . . . 1
= DTSPN is an optimization problem over all permutations X, headings © = {f,,,...,60,,} and = Soft-computing techniques such as memetic algorithms. F—lT
points P = (poy; - - -, Po,) for the states (o, . - -, qs,) such that g5, = (ps,,05,) and ps, € Ry;: = Unsupervised learning techniques. Vana and Faigl (IROS 2015), Faigl and Vana (ICANN 2016, IJCNN 2017) Ch
. = " 4
o P, /R <]
5 0:
- QAN X% " AA
I . H
minimizes.0p > £(doss o) + Loy doy) 5 @ ]
i=1 : . g AL
= ~ £ *¥ o
subject to =+ - k 1 . i ‘%;
. ] %
qi=(pi,0;).pi €ERi=1,....n DISLC : VX
- ‘[:(qUi7 qaj) is the Iength of the shortest possible Dubins maneuver connecting the states = Similarly to the lower bound of the DTSP based on the Dubins Interval Problem (DIP) a lower bound for the — forattcombinations—
9o; and Go;- DTSPN can be computed using the Generalized DIP (GDIP). Dubins Touring Region Problem (DTRP)
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DTSPN DTSPN DTSPN
DTSPN — Decoupled with Local Iterative Optimization (LIO) Lower Bound for the DTSP with Neighborhoods Generalized Dubins Interval Problem (GDIP
. . = Determine the shortest Dubins maneuver connecting P; and P; given the angle intervals 6; €
o ) Generalized Dubins Interval Problem 0™, 9m>] and 6 € [omn, oma<]
® Instead of sampling into a discrete set of way- Algorithm 2: Local Iterative Optimization (LIO) for ) . . . i land b 100l . .
point locations each with sampled possible the DTSPN = In the DTSPN, we need to determine the headings and also the waypoint locations. Full problem (GDIP) One-side version (OS-GDIP)
headings, we can perform local optimization, Data: Input sequence of the goal regions ] Pof
e.g., hill-climbing technique. G= (R‘,‘], ...+ Rs,), for the permutation T
. . . Result: Waypoints (o, .- n), G = (pi-0i),
= At each waypoint location p;, the heading can i € 6R;

be 0; € [0,27).

A waypoint location p; can be parametrized as
a point on the bounday of the respective region
R;, i.e., as a parameter « € [0,1) measuring a

initialization() // random assignment of g; € 6R;;
while global solution is improving do
for every R; € G do
0; := optimizeHeadingLocally(6;);
i

normalized distance on the boundary of R;. 3[ - :::::T&ec:mﬂ:?:;o(zai[léf); )
® The multi-variable optimization is treated inde- end
pendenly for each particular variable 6; and «; end
iteratively.
Vana, P. and Faigl, J.: On the Dubins Traveling Salesman Problem with , IROS, 2015, pp.
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The Dubins Interval Problem (DIP) is not sufficient to provide tight lower bound.

® Generalized Dubins Interval Problem (GDIP) can be utilized for the DTSPN similarly as
the DIP for the DTSP.

Vaha, P. and Faigl, J.: Optimal Solution of the Generalized Dubins Interval Problem,
RSS 2018, best student paper finalist.

Jan Faigl, 2025

s gpin

gpax guin

Oz gpax

i

= Optimal solution - Closed-form expressions for (1-6) and convex optimization (7).

1)'S type 2)CStype  3) Cy type Average computational time

P B Problem Time [s] _Ratio
’ 7) CCy type Dubins maneuver 04 10
4) CSC type 5)CSCtype  6) CTyC type [G’:;P ;z 1§.2

.

Vaha, P. and Faigl, J.: Optimal Solution of the Generalized Dubins Interval Problem Finding the Shortest
Curvature-constrained Path Through a Set of Regions, Autonomous Robots, 44(7):1359-1376, 2020.

https://github. con/comrob/gdip
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Dubins Vehicle and Dubins Planning DTP DTSP DTSPN DOP DOPN Planning in 3D Dubins Vehicle and Dubins Planning DTP DTSP DTSPN DOP DOPN Planning in 3D Dubins Vehicle and Dubins Planning DTP DTSP DTSPN popP DOPN Planning in 3D

GDIP-based Informed Sampling for the DTSPN GDIP-based Informed Sampling for the DTSPN GDIP-based Informed Sampling for the DTSPN

= [terative refinement of the neighborhood samples and heading samples. ® [terative refinement of the neighborhood samples and heading samples. = [terative refinement of the neighborhood samples and heading samples.

Resolution: 4 Gap: 69.3 % Time: 0.079 s

Resolution: 8 Gap: 39.4 % Time: 0.211s Resolution: 16 Gap: 19.9 % Time: 0.552 s
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Dubins Vehicle and Dubins Planning DTP DTSP DTSPN DOP DOPN Planning in 3D Dubins Vehicle and Dubins Planning DTP DTSP DTSPN DOP DOPN

Planning in 3D Dubins Vehicle and Dubins Planning DTP DTSP DTSPN DoP DOPN Planning in 3D

GDIP-based Informed Sampling for the DTSPN GDIP-based Informed Sampling for the DTSPN GDIP-based Informed Sampling for the DTSPN

= |terative refinement of the neighborhood samples and heading samples. u |terative refinement of the neighborhood samples and heading samples. u |terative refinement of the neighborhood samples and heading samples.

Resolution: 32 Gap: 10.7 % Time: 1.292 s

Resolution: 64 Gap: 53 % Time: 3.183 s

Resolution: 128 Gap: 2.6 % Time: 8.994 s
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Dubins Vehicle and Dubins Planning DTP DTSP DTSPN DOP DOPN Planning in 3D Dubins Vehicle and Dubins Planning DTP DTSP DTSPN DoP DOPN Planning in 3D Dubins Vehicle and Dubins Planning DTP DTSP DTSPN porP DOPN Planning in 3D
GDIP-based Informed Sampling for the DTSPN DTSPN — Convergence to the Optimal Solution Data Collection / Surveillance Planning with Travel Budget
= [terative refinement of the neighborhood samples and heading samples. = For a given sequence of visits to the target regions (locations). ® Visit the most important targets because of .hmlted 'travel budget. . . .
) . 40 108 = The problem can be formulated as the Orienteering Problem with Dubins vehicle, a.k.a.
Resolution: 256 Gap: 13% Time: 33.474 5 v 3'5 _,I vvvvvv I.., — Ulpperlboum; : ,,.I vvvvvv T T“ 10t = Dubins Orienteering Problem (DOP). Robert Pénicka, Jan Faigl, Petr Vafia and Martin Saska, RA-L 2017
{ : — Lower bound 5 2 1
f‘;‘ 30N — Computational time[ """ 10 £
LN\ imation k'8 |- 7] 2 =
E 25 Approximation k 10° =
g 20 2
. 515 £
i &0 . 2
e 5
05} 102§
0.0 L L L L L . . L L n 1o~3
1 2 4 8 16 32 64 128 256 512
- Maximal resolution Kmax
= The algorithm scales linearly with the number of locations.

= Complexity of the algorithm is approximately O(nk'8).
https://github.com/comrob/gdip
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https://mrs.felk.cvut.cz/icrai7dop
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DOP

Dubins Orienteering Problem

DOP

Variable Neighborhood Search (VNS)

poP C F

Variable Neighborhood Search (VNS) for the DOP

- Cu:vaturg-con?ramed ddata COHSC“?" pat: relspgctlng the Dubins vehicle model with the mini- = The solution is the first k locations of the sequence of all target locations satisfying Tmax-
ma tl.lrnlng radius p ani constant forward vel OCIty v. Sevkli Z., Sevilgen F.E.: Variable Neighborhood Search for the Orienteering Problem. SCIS. 2006.
= The path is a sequence of waypoints q; € SE(2), q; = (s, 0;), s: € R?, 0; € S'. . . . P - . Insert
! — - . . . L. . . = [t is an improving heuristics, i.e., an initial solution has to be !nse ﬂ
= In addition to Sy, k, ¥ (OP) determine headings = Variable Neighborhood Search (VNS) is a general metaheuristic for combinatorial provided proving (s>l 54 54
= . optimization (routing problems). ) . . .
© = (0 0,) such that P ( " seg E @M de) i€, N. (2001): Variable neighborhood search: Principles and applicati = A set of predefined neighborhoods are explored to find a better
P ansen, P. and Miadenovié, N. : Variable neighborhood search: Principles and applications. European g Exchange
o R Z Journal of Operational Research. solution. & ﬁ
maximizex s, ¥ =) 1y i . .
Sk 2 o ® The VNS is based on shake and local search procedures. u Shake — explores the configuration space and escape from a s = 5
. - ® Shake procedure aims to escape from local optima by changing the solution within the local minima using
subject to . neighborhoods Ny . k... . The neighborhoods are particular operators. = Insert — moves one random element; Path inse
m Local search procedure searches fully specific neighborhoods of the solution using /.. = Exch — exct two random el m
> G0, 1 0) < Tras defined t ) i : ; 1 g e s
— predefined operators. = Local Search — optimizes the solution using
= (S9,,00.), S, € S,0,, € st = Path insert — moves a random sub-sequence;
g”’ B ilu’s ”2 s”’ i = Path exchange — exchanges two random sub-sequences. Path excl
Ty T 120, T <n I . . .
. . ' X i . fot e - = Randomized VNS — examines only n? changes in the Local (55> > {s:| >~ B~ BB
Thet Rrob!em combines fi|§crete comlv)matorlalv optimization (OP) with the continuous Search procedure in each iteration.
optimization for determining the vehicle headings.
Jan Faigl, 2025 B4M36UIR — Lecture 08: Data Collection with Dubins Vehicles 51 / 69 Jan Faigl, 2025 B4M36UIR — Lecture 08: Data Collection with Dubins Vehicles 52 / 69 Jan Faigl, 2025 B4M36UIR — Lecture 08: Data Collection with Dubins Vehicles 53 / 69
TF T DT DOP OF L S| S DoP F i D C C DOPN F
Evolution of the VNS Solution to the DOP Possible Solutions of the Dubins Orienteering Problem Dubins Orienteering Problem with Neighborhoods
1. Solve the Euclidean OP (EOP) and then determine Dubins path. = Curvature-constrained path respecting the Dubins vehicle model.

4790th iteration
(12th improvement)

4710th iteration 5560th iteration

(4th improvement)

Initial solution

e

Tepy = 10.9's,
£ =796, R = 960

N

Tepy = 144.8 s, Tepy = 170.0's,

L =797, R =990

Tcpu = 1473 s,
L =793, R = 1008
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(16th improvement)

L =791, R = 1050
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The final path may exceed the budget and the vehicle can miss the locations because of motion control.
2. Directly solve the Dubins Orienteering Problem (DOP) such as
= Sample posslble headlng values and use Variable Neighborhood Search (VNS);

R., Faigl, J., Vana, P., and Saska, M.: Dubins Orienteering Problem, IEEE Robotics and Automation
Lenm 2(2):1210-1217, 2017.

= Unsupervised Iearnlng based on Self-Organizing Maps (SOM);
Faigl, J.: Self-organizing map for orienteering problem with dubins vehicle, Advances in Self-Organizing Maps,
Leammg Vector Quantization, Clustering and Data Visualization, 2017, pp. 125-132

Requred camputational

iy

L0

The VNS-based approach provides better solutions than the SOM-based solution, but it tends to be more demanding.

= Each waypoint consists of location p € R? and the heading 6 € S*.
= |n addition to Sy, k, = determine locations

Pi = (Poys---» P, ) and headings © = (0,,, ..., 0s,)

such that

maximizey s, ¥

K
=3

i=1
subject to

Z L(4o;-1,95,) < Timax,

qa, = (Poi+00,), Po, € R2,6,, € S
[|Poss 53| < 6,55, € Sk

Poy = 51, Poy, = Sn
We need to solve the continuous optimization for determining the vehicle heading at each waypoint and the
waypoint locations Py = {poy , ..., Po, }. Po; € R2.
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DOPN

Variable Neighborhoods Search (VNS) for the DOPN

Algorithm 3: VNS based method for the DOPN

Tnput © 5 — Set of the target locations the shake procedure are:
IAPUE. T, — Maximal allowed budget

Input : o - Initial number of position waypoints for each target . . .
Input  : m ~ Initial number of heading values for each waypoints Waypoint Shake (/ = 1);
Input : r; — Local waypoint improvement ratio o

Input. : /. — Maximal neighborhood number = Path Move (/ =2);

Output: P ~ Found data collecting path

S, - getReachableLocations(S, Tonax)

P« createlnitialPath(S;, Tomax)

while Stopping condition is not et do
Ie1

= Path Exchange (/ = 3).
/7 greedy

while 1< Iy, do
P’ shake(P, I)
P« localSearch(P", I, r;)
i Ly(P") < Ty and
[IR(P") > R(P)] or [R(P") == (P) and
Lo(P") < L(P)La(P")]) then
PP

erators of the local search procedure are:

= Waypoint Improvement (/ = 1);

= One Point Move (/ = 2);

= One Point Exchange (/ = 3).
Pénicka, R., Faigl, J., Saska, M., and Vana, P.: Data collection
planning with non-zero sensing distance for a budget and curva-

ture constrained unmanned aerial vehicle, Autonomous Robots,
43(8):1937-1956, 2019.

end
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The particular / for the individual operators of

The local search procedure consists of three op-
erators and the particular / for the individual op-

58 / 69
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VNS for DOPN — Example of the Shake Operators

Path Move Path Exchange

S50 (end)

L
Bl
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DOPN

DOPN — Example of Solution and Practical Deployment

= VNS-based solution of the DOPN.
Pénicka, R., Faigl, J., Vana, P., and Saska, M.: Dubins Orienteering Problem with Neighborhoods,
International Conference on Unmanned Aircraft Systems (ICUAS), 2017, pp. 1555-1562.

E a . !

https://mrs. felk.cvut.cz/jint17dopn
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Planning in 3D

3D Data Collection Planning with Dubins Airplane Mode

= Dubins Airplane model describes the vehicle state

Cey
q=(p,0,%), pcR3and 0,7 € S as

'L\‘ X

X cos 6 - cos 1)

Y| _ sin 0 - cos 1

z |- sin ¢ d
0 ug-pt

H. Chitsaz and S. M. LaValle: Time-optimal paths for a Dubins airplane,
IEEE Conference on Decision and Control, 2007, pp. 2379-2384.

= Constant forward velocity v, the minimal turn-
ing radius p, and limited pitch angle, ie., ¢ €
[%mins Ymax]-
= uy controls the vehicle heading, |ug| < 1, and v is y
the forward velocity.
= Generation of the 3D trajectory is based on the 2D
Dubins maneuver.

= |f altitude changes are too high, additional helix segments are inserted.
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Planning in 3D

The DTSPN in 3D

= Using the same principles as for the DTSPN in 2D, we can
generalize the approaches for 3D planning using the Dubins
Airplane model instead of simple Dubins vehicle.

= The regions can be generalized to 3D and the problem can be
addressed by decoupled or sampling-based approaches, i.e.,
using GATSP formulation.

= |n the case of LIO, we need a parametrization of the possible
waypoint location, such as point on the object boundary.

CCC maneuver

(-

CSC maneuver

d

Pi
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OF Planning in 3D

Solutions of the 3D-DTSPN

Algorithm 4: LI0-based Solver for 30-DTSPN
Data: Regions R
Result: Solution represented by Q and ¥
¥ « getlnitialSequence(R);
Q « getlhnitialSolution(R, T);
while " terminal condition do
Q « optimizeHeadings(Q, R, T);
Q « optimizeAlpha(Q, R, £);
Q « optimizeBeta(Q, R. X);
end
return Q. ¥

= Solutions based on LIO (ETSP+LIO), TSP with the travel cost according to Dubins Airplane Model (DAM-TSP+LIO), and sampling-based
approach with transformation of the GTSP to the ATSP solved by LKH.
' .I

! o0
, ¢

Vana, P., Faigl, J., Slama, J., and Pénicka, R.: Data collection planning with Dubins airplane model and
limited travel budget European Conference on Mobile Robots (ECMR), 2017.
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Relative lenght of the solution
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Computationaitime(s)
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T i Planning in 3D

3D Surveillance Planning

Parametrization of smooth 3D multi-goal trajectory as a sequence of Bézier curves.

Unsupervised learning for the TSPN can be generalized for such trajectories.

During the solution of the sequencing part of the problem, we can determine a velocity profile along the curve

and compute the so-called Travel Time Estimation (TTE).

Bézier curves better fit the limits of the multi-rotor UAVs that are limited by the maximal accelerations and

velocities rather than minimal turning radius as for Dubins vehicle.
Low altitude differences

High altitude differences

Nz

20

£

Faigl, J. and Vana, P.: Surveillance Planning With Bézier Curves, IEEE Robotics and Automation Letters, 3(2
= Low altitude differences saturate horizontal velocity while high altitudes changes saturate vertical velocity.
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Planning in 3D

Multi-Vehicle Multi-Goal Planning with Limited Travel Budget —
Curvature-Constrained Team Orienteering Problem (with Neighborhoods)
= Operational time of multi-rotor aerial vehi-

cles is limited and only a subset of locations
can be visited.

= Planning multi-goal trajectories as a se-
quence of Bézier curves.

ing Prolem with Bézier cur oo

= Targets are missed in a case of colliding trajectories, because of local
collision avoidance and optimal trajectory following.

= There is a practical need to include coordination in multi-vehicle
multi-goal trajectory planning.

Fof}
Faigl, J., Vana, P., and Pénicka, R.: Multi-Vehicle Close Enough Orienteering Problem with Bézier Curves
for Multi-Rotor Aerial Vehicles. ICRA 2019, pp. 3039-3044.
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Summary

m Data collection planning with curvature-constrained paths/trajectories

= The Traveling Salesman Problem (TSP) and Orienteering Problem (OP) with Dubins Vehicle, i.e.,
DTSP and DOP.
ltisa bination of the bi ial and (determining optimal headings) optimization.
The continuous part can be solved using Dubins Touring Problem (DTP).
Using a solution of the Dubins Interval Problem (DIP) we can establish tight lower bound of the DTP
and DTSP with a particular sequence of visits.
= The probls can be further led to DTSP with Neighborhoods (DTSPN) and OP with Neigh-

borhoods (DOPN), and its Close Enough variants.

® The key ideas of the presented problems and approaches are as follows.

Consider proper assumptions that fits the original problem being solved.
= Suitability of the vehicle model, requirements on the solution quality, and benefit of optimal or computationally demanding

solutions.
Employing lower bound based on “a bit different problem" such as the DIP and GDIP, to find high quality
solutions, even using decoupled approaches.
Challenging problems with continuous optimization can be

1 | by d led and line-based

approaches.
= Be aware that the optimal solutions found for discretized problems, e.g., using ILP or combinatorial solvers, are not
optimal solutions of the original (continuous) problem!
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Topics Discussed

Topics Discussed

Dubins vehicles and planning — Dubins maneuvers
Dubins Interval Problem (DIP)
= Dubins Touring Problem (DTP)

Dubins Traveling Salesman Problem (DTSP) and Dubins Traveling Salesman with
Neighborhoods (DTSPN)

® Decoupled approaches — Alternating Algorithm
= Sampling-based approaches — GATSP

Generalized Dubins Interval Problem (GDIP)

Dubins Orienteering Problem (OP) and Dubins Orienteering Problem with
Neighborhoods (DOPN)

Data collection and surveillance planning in 3D

(Lower bound estimation to the DTP, DTSP)

(Lower bound estimation to the DTSPN)

m Next: Sampling-based motion planning
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