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Overview of the Lecture

= Data Collection Planning

= Close Enough TSP and TSPN

= Generalized Traveling Salesman Problem (GTSP)
= Orienteering Problem (OP)

= Orienteering Problem with Neighborhoods (OPN)

= Prize Collecting TSP — Combined Profit with Shortest Path
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= Data Collection Planning

Jan Faigl, 2025 B4M36UIR — Lecture 07: Data Collection Goal Planning 3/ 44



Data Collection Planning Close Enough TSP and TSPN GTSP oP OPN Prize Collecting TSP

Data Collection Planning as a Solution of the Routing Problem

® Provide cost-efficient path to collect all or the most valuable data (measurements) with
shortest possible path/time or under limited travel budget.

Visiting all locations Limited travel budget

m The Traveling Salesman Problem (TSP). = We need to prioritize some locations — routing
® Well-studied combinatorial routing problem problem with profits.

with many existing approaches. ® The Orienteering Problem (OP).

= |n both problems, we can improve the solution by exploiting non-zero sensing range.
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Data Collection Planning

Data Collection Planning as the Traveling Salesman Problem
®m Let S be a set of n sensor locations S = {s1,...,s,}, s; € R? and c(s;, s;) is a cost

of travel from s; to s;.
m The problem is to determine a closed tour visiting each s € S such that the total tour

length is minimal, i.e., determine a sequence of visits ¥ = (01,...,05).
n—1
minimize y L= (Z c(so;, sgi“)) + c(Ss,,S0,)
i-1
subject to

)::(01,...,0,,),1§a,~§n,a,-§£0j forl#.f

® The TSP is a pure combinatorial optimization problem
to find the best sequence of visits .
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Data Collection Planning

Data Collection Planning with Non-zero Sensing Range — the Traveling

Salesman Problem with Neighborhood

m The travel cost can be saved by remote data collection using wireless communication
or range measurements; instead visiting s € S, we can visit p within ¢ distance from s.
® |n addition to X, we need to determine n waypoint locations P = {p;,...,p,}.
n—1

minimize P L= (Z C(pa,‘7p0'i+1)> + C(pon’p(n)

i=1
subject to
Y =(01,...,0n),1<0i<no;#0cjfori#}j
P = {pl?' .. 7pn}7 H(piaSi)H <9

= The problem becomes a combination of combinatorial and
continuous optimization with at least n-variables.

= The problem is a variant of the TSP with Neighborhoods or
Close Enough TSP for disk-shaped neighborhoods.
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Data Collection Planning

Orienteering Problem (OP) — Routing with Profits

m Let each of nsensors S = {s1,...,s,}, 5; € R? be associated with a score ¢;
characterizing the reward if data from s; are collected. \\

® The vehicles start at s1, terminates at s, its travel cost between p; and p;is N ‘/\\
the Euclidean distance |(p; — p;)|. and it has limited travel budget Ta,. J AN

® The OP stands to determine a subset of k locations Sy C S maximizing the < B
collected rewards while the tour cost visiting S, does not exceed T ax- —/

®m The OP combines the problem of determining the most valuable locations Sy with finding the
g g
shortest tour T visiting the locations Sk. . ) o )
. m Optimal solution (ILP-based) and heuristics exist.
I _ ® 4-phase heuristic algorithm. Ramesh & Brown, 1991
MaxIMIze.s,.x R Z;QT" 5 CGW (Chao, Golden, and Wasil). Chao, et al., 1996
= ® Guided local search algorithm.

subject to Vansteenwegen et al., 2009
K .
m Standard benchmarks have been established, such as
Z |(SU«'71 - SU;)‘ < Trmax . S s
— instances by Tsiligirides and Chao.

and s;, = S1,S,, = Sp.
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Data Collection Planning

Data Collection with Limited Travel Budget
OP with Neighborhoods (OPN) and Close Enough OP (CEOP)

® Data collection using wireless data transfer or remote sensing allows to reliably
retrieve data within some sensing range 6.

® The OP becomes the Orienteering Problem with Neighborhoods (OPN).
m For the disk-shaped d-neighborhood, we call it the Close Enough OP (CEOP).

® In addition to Sk and X, we need to determine the most suitable waypoint
locations P, that maximize the collected rewards and the path connecting Py
does not exceed T nax.

5 OPN/CEOP has been firstly tackled by SOM-based approach.
(Best, Faigl & Fitch, 2016)

k
imi R= .
Maximizes, Pz ;C‘T’ ® Later addressed by the GSOA and Variable Neighborhoods

b' Search (VNS) (Pénicka, Faigl & Saska, 2016)
subject to X = and optimal solution of the discrete Set OP.

Z |(Pg,-,17 Pa,-)\ < TmaX7 - (P-éni(:ka, Faigl & Saska, 2019)

i— = The currently best performing method is based on the Greedy

Randomized Adaptive Search Procedure (GRASP).

2
|(pa,-7 sUi)‘ < 67 pa; ER ) (étefanikové & Faigl, 2020)
pal = slvpak = Sn.
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Close Enough TSP and TSPN

Approaches to the Close Enough TSP and TSP with Neighborhoods

m A direct solution of the TSPN

m Approximation algorithms for special cases with particular shapes of the neighborhoods.

In general, the TSPN is APX-hard, and cannot be approximated to within a factor
2 — €, € > 0, unless P=NP. (Safra, S., Schwartz, O. (2006))

m Heuristic algorithms such as evolutionary techniques or unsupervised learning.
= Decoupled approach

1. Determine sequence of visits X independently on the locations P.
E.g., Solution of the TSP for the centroids of the (convex) neighborhoods.
2. For the sequence ¥ determine the locations P to minimize the total tour length, e.g.,
® Solving the Touring polygon problem (TPP);
® Sampling possible locations and use a forward search for finding the best locations;
= Continuous optimization such as hill-climbing.

= Sampling-based approaches

® Sample possible locations of visits within each neighborhood into a discrete set of locations.
® Formulate the problem as the Generalized Traveling Salesman Problem (GTSP).
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Close Enough TSP and TSPN

Decoupled Approach with Locations Sampling
® Solve the problem as a regular TSP using centroids of the regions (disks)
to get the sequence of visits .

® Sample each neighborhood with k samples (e.g., k = 6) and find the
shortest tour by forward search in O(nk?) for nk? edges in the sequence.

m For k possible initial locations, the optimal solution can be found in
O(nk3).

S1

p! ps| | D,
o ° .
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for all combinations A
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Close Enough TSP and TSPN

Sampling-based Solution of the TSPN

= For an unknown sequence of the visits to the regions, there are O(n*k?) possible edges.

® Finding the shortest path is NP-hard, we need to determine the sequence of visits, which is the
solution of the TSP.

R
/WSy

The descrite variant of the TSPN can be formulated as the GTSP.
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= Generalized Traveling Salesman Problem (GTSP)
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GTSP

Generalized Traveling Salesman Problem (GTSP)

® For sampled neighborhoods into discrete sets of locations, we can formulate the problem as the
Generalized Traveling Salesman Problem (GTSP). Also known as the Set TSP.

® For a set of n sets S = {S1,...,5,}, each
with particular set of locations (nodes) S; =
{si,....s}}, determine the shortest tour visit-
ing each set S;.

n—1
minimizey L= Z c(s77,s71) | 4+ c(s7,s71)
i=1

subject to
Y =(01,...,00),1 <0 <no; #0jfori#j
s7 € Sp,, So; = {7, .. .,Sg;i},sgi es

m Optimal ILP-based solution and heuristic algorithms exists.
® GLKH - http://akira.ruc.dk/ “keld/research/GLKH/

Helsgaun, K (2015), Solving the Equality Generalized Traveling Salesman Problem Using the Lin-Kernighan-Helsgaun Algorithm.

® GLNS — https://ece.uwaterloo.ca/"s12smith/GLNS (in Julia)

Smith, S. L., Imeson, F. (2017), GLNS: An effective large neighborhood search heuristic for the Generalized
Traveling Salesman Problem, Computers and Operations Research.

Jan Faigl, 2025 B4M36UIR — Lecture 07: Data Collection Goal Planning



http://akira.ruc.dk/~keld/research/GLKH/
https://ece.uwaterloo.ca/~sl2smith/GLNS

GTSP

Transformation of the GTSP to the Asymmetric TSP

® The Generalized TSP can be transformed into the Asymmetric TSP that can be then solved,
e.g., by LKH or exactly using Concorde with further transformation of the problem to the TSP.

L--==_S, - --_S,

- Pt e P2

GTSP GATSP

m A transformation of the GTSP to the ATSP has been proposed by Noon and Bean in 1993,
and it is called as the Noon-Bean Transformation.

Noon, C.E., Bean, J.C.: An efficient transformation of the generalized traveling salesman problem, INFOR: Information

Systems and Operational Research, 31(1):39-44, 1993. )
Ben-Arieg, D., Gutin, G., Penn, M., Yeo, A., Zverovitch, A.: Transformations of generalized ATSP into ATSP, Operations |

Research Letters, 31(5):357-365.
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GTSP

Noon-Bean Transformation

® Noon-Bean transformation to transfer GTSP to ATSP.

= Modify weight of the edges (arcs) such that the optimal
ATSP tour visits all vertices of the same cluster before

moving to the next cluster.
= Adding a large a constant M to the weights of
arcs connecting the clusters, e.g., a sum of the n
heaviest edges.
m Ensure visiting all vertices of the cluster in pre-
scribed order, i.e., creating zero-length cycles
within each cluster.

= The transformed ATSP can be further transformed to

the TSP.
m For each vertex of the ATSP created 3 vertices in
the TSP, i.e., it increases the size of the problem
three times.

Noon, C.E., Bean, J.C.: An efficient transformation of the generalized traveling salesman problem, INFOR: Information
Systems and Operational Research, 31(1):39-44, 1993.
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GTSP

Example — Noon-Bean transformation (GATSP to ATSP)

1. Create a zero-length cycle in each set and set all other arcs to co (or 2M).
To ensure all vertices of the cluster are visited before leaving the cluster.
2. For each edge (g™, q7') create an edge (q/", qu_7+1) with a value increased by sufficiently large M.

To ensure visit of all vertices in a cluster before the next cluster.
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GTSP

Example — Noon-Bean transformation (GATSP to ATSP)

1. Create a zero-length cycle in each set and set all other arcs to co (or 2M).
To ensure all vertices of the cluster are visited before leaving the cluster.
2. For each edge (g™, q7') create an edge (q/", q}'H) with a value increased by sufficiently large M.

To ensure visit of all vertices in a cluster before the next cluster.
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GTSP
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GTSP

Noon-Bean transformation — Matrix Notation

= 1. Create a zero-length cycle in each set; and 2. for each edge (q/", qJ”) create an edge (q/", qu’*l)

increased by sufficiently large M.

with a value

ad & g|d B|d

q% 00 00 00 - | -

@|loo o0 oo - 1 |-

= q% © oo oo | 4 — | -

@G| - - —|o o5

Bl —- - —]oo |2

q% 6 3 8 |- —|x

oo represents there are not edges inside the same set; and '—' denotes unused edge.
Original GATSP Transformed ATSP (using “Big M" as co representation)

|ad & & |a &|d | d & & | & & | d
g |oo o - - gt | 2m 0 2M - T+M | -
@ loo 00 oo - 1 |- @ | 2M 2M 0 1+M — -
G loo 0 oo 4 — |- @G| 0 2M  2M - 4+M | -
@l - - -] |5 a5 - - - 00 0 5+M
Bl - - —|oo oof2 A - - - 0 00 24+M
¢dl6 3 8- - G| 8+M 6+M 3+M | - - 0
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GTSP

Noon-Bean Transformation — Summary

® |t transforms the GATSP into the ATSP that can be further addressed as follows.
® Solved by existing solvers, e.g., the Lin-Kernighan heuristic algorithm (LKH).

http://www.akira.ruc.dk/“keld/research/LKH
® The ATSP can be further transformed into the TSP and solve it optimaly, e.g., by the
COnCOrde solver. http://www.tsp.gatech.edu/concorde.html

= It runs in O(k?n?) time and uses O(k?n?) memory, where n is the number of sets
(regions) each with up to k samples.

® The transformed ATSP problem contains kn vertices.

Noon, C.E., Bean, J.C.: An efficient transformation of the generalized traveling salesman problem, INFOR: Information
Systems and Operational Research, 31(1):39-44, 1993.
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GTSP

Generalized Traveling Salesman Problem with Neighborhoods (GTSPN)
®m The GTSPN is a multi-goal path planning problem to determine a cost-efficient path to visit
a set of 3D regions.

m A variant of the TSPN, where a particular neighborhood may
consist of multiple (possibly disjoint) 3D regions.

®m Redundant manipulators, inspection tasks with multiple
views, multi-goal aircraft missions. Gentilini, 1., et al. (2014)

® Regions are polyhedron, ellipsoid, and combination of both.

m We proposed decoupled approach Centroids-GTSP and
GSOA-based methods with post-processing optimization.

Method PDB [%] PDM [%] Tepu [s]
HRGKA  (Vicencio, et al, IROS 0.94 1.76 59.2
2014)
Centroids-GTSP 4.67 5.01 0.75
Centroids-GTSP* 0.06 0.47 0.76
GSOA 0.74 3.43 0.15

| GSOA-OPT 0.75 3.51 0.31

Faigl, J., Deckerova, J., and Véana, P.: Fast Heuristics for the 3D Multi-Goal Path Planning based on the Generalized Traveling L),

Salesman Problem wtth Neighborhoods, IEEE Robotics and Automation Letters, 4(3):2439-2446, 2019.
Deckerova, J., and Vana, P., and Faigl, J.: Combinatorial lower bounds for the Generalized Traveling Salesman Problem with / J
Neighborhoods, Systems with Applications, 258(15):125185, 2024.
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oP

The Orienteering Problem (OP)
® The problem is to collect as many rewards as possible within the given travel budget (T max),

which is suitable for robotic vehicles with limited operational time.

® The starting and termination locations are prescribed and can be different.
The solution may not be a closed tour as in the TSP.

\ \
N N
AL 4N N
4 B /J B
—/ - /
\ \
‘ \/\/
L]
Travel budget Tmax = 50, Collected rewards R = 190 Travel budget Tmax = 75, Collected rewards R = 270
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oP

Orienteering Problem — Specification

m Let the given set of n sensors be located in R? with the loca-

tions S = {s1,...,s,}, s; € R2.
m Each sensor s; has an associated score (; characterizing the \

reward if data from s; are collected. \
® The vehicle is operating in R?, and the travel cost is the ——\

Euclidean distance.

, NN \

m Starting and final locations are prescribed. \
m We aim to determine a subset of k locations S, C S that

maximizes the sum of the collected rewards while the travel s

cost to visit them is below T .. \ /_
The Orienteering Problem (OP) combines two NP-hard problems: T

m Knapsack problem in determining the most valuable locations S, C S;

® Travel Salesman Problem (TSP) in determining the shortest tour.
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oP

Orienteering Problem — Optimization Criterion

Let X = (01,...,0k) be a permutation of k sensor labels, 1 < o; < n and o; # o for i # j.

Y. defines a tour T= (s,,,...,Ss,) Visiting the selected sensors S.

Let the start and end points of the tour be oy = 1 and o4 = n.

The Orienteering problem (OP) is to determine the number of sensors k, the subset of sensors
Sk, and their sequence X such that

k
maximizey s, ¥ R = E Co
i=1

subject to
Z |(s<fi71 - sfff)’ < Tmax and
i=2
Soy = S1,S0, = Sn.

The OP combines the problem of determining the most valuable locations Sy with finding the shortest
tour T visiting the locations Sy. It is NP-hard, since for s = s, and particular Sy it becomes the TSP.
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oP

Existing Heuristic Approaches for the OP

® The Orienteering Problem has been addressed by several approaches, such as
RB 4-phase heuristic algorithm proposed in [3];
PL Results for the method proposed by Pillai in [2];
CGW  Heuristic algorithm proposed in [1];
GLS  Guided local search algorithm proposed in [4].

[1] I.-M. Chao, B. L. Golden, and E. A. Wasil.
A fast and effective heuristic for the orienteering problem.
European Journal of Operational Research, 88(3):475-489, 1996.

[2] R.S. Pillai.
The traveling salesman subset-tour problem with one additional constraint (TSSP+ 1).
Ph.D. thesis, The University of Tennessee, Knoxville, TN, 1992.

[3] R. Ramesh and K. M. Brown.
An efficient four-phase heuristic for the generalized orienteering problem.
Computers & Operations Research, 18(2):151-165, 1991.

[4] P. Vansteenwegen, W. Souffriau, G. V. Berghe, and D. V. Oudheusden.
A guided local search metaheuristic for the team orienteering problem.
European Journal of Operational Research, 196(1):118-127, 2009.
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oP

OP Benchmarks — Example of Solutions

Tmax=80, R=1248 Tmax=80, R =1278 Tmax=45, R=756

I
o

Trmax=95, R=1395 Trmax=95, R=1335 Trmax=60, R=845
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oP

Unsupervised Learning for the OP 1/2

= A solution of the OP is similar to the solution of the
PC-TSP and TSP.

= We need to satisfy the limited travel budget Tmax,
which needs the final tour over the sensing locations.

= During the unsupervised learning, the winners are asso-
ciated with the particular sensing locations, which can
be utilized to determine the tour as a solution of the
OP represented by the network.

Learning epoch 7 Learning epoch 55 Learning epoch 87 Final solution

= This is utilized in the conditional adaptation of the network towards the sensing location and the adaptation is |
performed only if the tour represented by the network after the adaptation would satisfy Tmax. :
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oP

Unsupervised Learning for the OP 2/2

® The winner selection for s’ € S is conditioned according to T max.
® The network is adapted only if the tour T, represented by the current winners would be
shorter or equal than T ..
L(Twin) = (51, = su,)| + (50, = ') + (8" = 50,)| < Trmax-
® The unsupervised learning performs a stochastic search steered by the rewards and the length
of the tour to be below T ax.

= \ \
— A0

\T _\_\ \‘ AN \/-‘ \\/

) / —
\\/
L]
L] L] L] L]
Epoch 155, R=150 Epoch 201, R=135 Epoch 273, R=125 Final solution, R=190
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oP

Comparison with Existing Algorithms for the OP

m Standard benchmark problems for the Orienteering Problem represent various scenarios with
several values of T ax.
® The results (rewards) found by different OP approaches presented as the average ratios (and

standard deviations) to the best-known solution.
Instances of the Tsiligirides problems

Unsupervised

Problem Set RB PL CGW .
Learning
Set 1,5 < Tmax < 85 0.99/0.01 1.00/0.01 1.00/0.01 1.00/0.01
Set 2, 15 < Trax < 45 1.00/0.02 0.99/0.02 0.99/0.02 0.99/0.02
Set 3, 15 < Tmax <110 1.00/0.00 1.00/0.00 1.00/0.00 1.00/0.00

Diamond-shaped (Set 64) and Square-shaped (Set 66) test problems

Unsupervised

Problem Set RBf PL CGW .
Learning

Set 64, 5 < Tmax < 80 0.97/0.02 1.00/0.01 0.99/0.01 0.97/0.03

Set 66, 15 < Tmax < 130 0.97/0.02 1.00/0.01 0.99/0.04 0.97/0.02

Required computational time is up to units of seconds, but for small problems tens or hundreds of milliseconds.
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OPN

Orienteering Problem with Neighborhoods

= Similarly to the TSP with Neighborhoods and PC-TSPN we can formulate the Orienteering
Problem with Neighborhoods.

Tmax=60, §=1.5, R=1600 Tmax=45, 6=1.5, R=1344
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OPN

Orienteering Problem with Neighborhoods

m Data collection using wireless data transfer allows to reliably retrieve data within some
communication radius 9.
® Disk-shaped d-neighborhood — Close Enough OP (CEOP).

m We need to determine the most suitable locations Py such that

k
maximizey p, ¥ R = E Co;

subject to

k
Zl pa’, 1 g,—)' S Tmaxa
i=2

(Po»50)| <6, po, € R,
p slapak = Sp. <

.
Tmax = 50, R =270
Introduced by Best, Faigl, Fitch (IROS 2016, SMC 2016, IJCNN 2017).

m More rewards can be collected than for the OP formulation with the same travel budget T ax.
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OPN

Generalization of the Unsupervised Learning to the Orienteering Problem
with Neighborhoods
® The same idea of the alternate location as in the TSPN.
® ® O o
O Comnected ne O

_
connected neurons connected neurons

P \/'s P

o —

° ‘\

® The location p’ for retrieving data from s’ is determined as the alternate goal location during %{%&5

the conditioned winner selection.
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OPN
Influence of the §-Sensing Distance

® |nfluence of increasing communication range to the sum of the collected rewards.

Problem Solution of the OP S o
Rpest Rsom S |-e T§|I|g|r|des Set 3, Thax=50
Diamond—shaped Set 64, T,,,,=45
Set 3, Tmax=50 520 510 = Square—shaped Set 66, T,,x=60
Set 64, Tmax=45 860 750 < A
Set 66, Tmax=60 915 845 o 7
2o
0 o
m Allowing to data reading within the com- 5 9
munication range § may significantly in- _;
creases the collected rewards, while keeping @ o g - - 8- -0~ 77 ---¢
the budget under Tmax. $ Q1 7 =
°
O
o J

[ T T T T T T T
0.0 0.2 0.5 0.7 1.0 1.2 1.5 1.7

Communication range - &
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OPN

OP with Neighborhoods (OPN) — Example of Solutions

= Diamond-shaped problem Set 64 — SOM solutions for Tmax and &

;/?/O > e T
</\\> < < / g / >
\ O NS \ /
O oS {
Tmax=80, §=0.0, R=1278 Tmax=45, 6=0.0, R=756 Tmax=45, 6=1.5, R=1344

m Square-shaped problem Set 66 — SOM solutions for Tmax and 6
‘ f \ 1 I

- UG Sy B

[ {

Tmax=95, §=0.0, R=1335 Tmax=60, §=0.0, R=845 Tmax=60, 6=1.5, R=1600

In addition to unsupervised learning, Variable Neighborhood Search (VNS) for the OP
has been generalized to the OPN.
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814.
Jan Faigl, 2025

Close Enough Orienteering Problem (CEOP)

OPN

— Selected Results

Influence of increasing range & GR@SP—based solution of the CEOP Multi- Multi-vehicle active perception
1
Tmax = 45 e=10 vehicle
00 OoP
2
5% (Team
& oP)
%08
28
ke
207 —— VNS
—«— GRASP-Naive, .
GRASP-Naive
06
20 40 60 80
R=1188 Budget
° 105
§ o~ Tsiligirides Set 3, Ty, =50 .
Diamond-shaped Set 64, T,,,,=45 B
= Square—shaped Set 66, Tpy=60, =0 —— GSOA Set OP
o . o-e . T —— WNs
IR * g 10° —«— GRASP-Naive, .
53 5 £
2 o ¥ = ~+— GRASP-N:
g 3
g s i g =
£8ece - H 3
3 £ 10 o
s & (4 }
°
10° L]
00 02 0507 1012 1517 20 % 4 6 & oo
Communication range - & Budget o o2
Faigl, J.: On self-organizing maps for orienteering problems, Inter- Best, G., Faigl, J., and Fitch, R.: Online plannmg for multi-robot

national Joint Conference on Neural Networks (IJCNN), 2017, pp.
2611-2620.
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tive Search Procedure for Close Enough Orienteering Problem, 35th
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Search for the Set Orienteering Problem and its application to

other Orienteering Problem variants, European Journal of Oper-
ational Research, 276(3):816-825, 2019.

37 / 44



Data Collection Planning Close Enough TSP and TSPN GTSP OoP OPN Prize Collecting TSP

Outline

= Prize Collecting TSP — Combined Profit with Shortest Path
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Data Collection Planning Close Enough TSP and TSPN GTSP

Autonomous (Underwater)

® Having a set of sensors (sampling stations), we aim
to determine a cost-efficient path to retrieve data by
autonomous underwater vehicles (AUVs) from the indi-

vidual sensors. E.g., Sampling stations on the ocean floor.

® The planning problem is a variant of the Traveling
Salesman Problem.

Two practical aspects of the data collection can be identified.

1. Data from particular sensors may be of different impor-
tance.

2. Data from the sensor can be retrieved using wireless com-
munication.

oP OPN Prize Collecting TSP

Data Collection

These two aspects (of general applicability) can be considered in the Prize-Collecting Trav-

eling Salesman Problem (PC-TSP) and Orienteering Problem (OP) and their extensions

with neighborhoods.
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Prize Collecting TSP

Prize-Collecting Traveling Salesman Problem with Neighborhoods

(PC-TSPN)
= Let n sensors be located in R? at the locations S = {s1,...,s,}.
m Each sensor has associated penalty £(s;) > 0 characterizing additional cost if the data
are not retrieved from s;.
= Let the data collecting vehicle operates in R? with the motion cost c(p;,p,) for all
pairs of points p;, p, € R?.
®m The data from s; can be retrieved within § distance from s;.
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Prize Collecting TSP

PC-TSPN — Optimization Criterion

The PC-TSPN is a problem to

= Determine a set of unique locations P = {p;,...,p,}, k < n, p; € R?, at which data
readings are performed.

® Find a cost efficient tour T visiting P such that the total cost C(T) of T is minimal

M= > Up,—pp )+ Y. &)

(P/;vP/,-Jrl)ET SES\ST

where St C S are sensors such that for each s; € St there is p, on
T =(py:---Py_,,Py) and P € P for which |(s; — p,j)] <.

m PC-TSPN includes other variants of the TSP:
m for § =0 it is the PC-TSP;
= for {(s;) = oo (or forcing S = 00) and & > 0 it is the TSPN;
m for £(s;) = oo (or forcing St =) and § = 0 it is the ordinary TSP.
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Data Collection Planning Close Enough TSP and TSPN GTSP OoP OPN

PC-TSPN — Example of Solution

Ocean Observatories Initiative (OOIl) scenario

Prize Collecting TSP

SOM PC-TSPN PC-TSPN

s

8 o PG

2 o ZSMTSFN @ - PC-TSPN

b o soM+TsP =8 - SOM

58 o 3 o SOM +TSP
3R ~ E
° . =
58 T —— g2g
£8 e 2 8
83l H

“J 58 <

S N
o =3 .

o

5 fo 15 20 25 30 35 40 45 50 10 15 20 25 30 35 40 45 50
Communication radius p [km] Communication radius p [km]

Faigl, J. and Hollinger, G.: Autonomous Data Collection Using a Self-Organizing Map, |IEEE Transactions on %

Neural Networks and Learning Systems, 29(5):1703-1715, 2018.

Jan Faigl, 2025 B4M36UIR — Lecture 07: Data Collection Goal Planning 42 / 44



Topics Discussed

Summary of the Lecture
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Topics Discussed

Topics Discussed

Data collection planning formulated as variants of
= Traveling Salesman Problem (TSP)
= Orienteering Problem (OP)
® Prize-Collecting Traveling Salesman Problem with Neighborhoods (PC-TSPN)

Exploiting the non-zero sensing range can be addressed as
= TSP with Neighborhoods (TSPN) or specifically as the Close Enough TSP (CETSP) for disk-shaped
neighborhoods.
= OP with Neighborhoods (OPN) or the Close Enough OP (CEOP).

Problems with continuous neighborhoods include continuous optimization that can be addressed

by sampling the neighborhoods into discrete sets.
m Generalized TSP and Set OP

Existing solutions include
= Approximation algorithms and heuristics (combinatorial, unsupervised learning, evolutionary methods)
= Sampling-based and decoupled approaches

ILP formulations for discrete problem variants (sampling-based approaches)

Transformation based approaches (GTSP—ATSP) / Noon-Bean transformation

Combinatorial heuristics such as VNS and GRASP

TSP can be solved by efficient heuristics such as LKH

m Next: Curvature-constrained data collection planning
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