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Overview of the Lecture

= Data Collection Planning

= Close Enough TSP and TSPN

= Generalized Traveling Salesman Problem (GTSP)
= Orienteering Problem (OP)

= Orienteering Problem with Neighborhoods (OPN)

= Prize Collecting TSP — Combined Profit with Shortest Path

Jan Faigl, 2025 B4M36UIR — Lecture 07: Data Collection Goal Planning

2 /44

Data Collection Planning Close Enough TSP and TSPN GTSP op oPN Prize Collecti

Data Collection Planning as a Solution of the Routing Problem

® Provide cost-efficient path to collect all or the most valuable data (measurements) with
shortest possible path/time or under limited travel budget.

Visiting all locations
® The Traveling Salesman Problem (TSP).

u Well-studied combinatorial routing problem
with many existing approaches.

Limited travel budget

= We need to prioritize some locations — routing
problem with profits.

u The Orienteering Problem (OP).
= In both problems, we can improve the solution by exploiting non-zero sensing range.
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Data Collection Planning as the Traveling Salesman Problem

= Let S be a set of n sensor locations S = {s1,..
of travel from s; to s;.

= The problem is to determine a closed tour visiting each s € S such that the total tour

.S}, si € R? and c(s;, s)) is a cost

Data Collection Planning ough TSP and TSPN TS OF PN

Data Collection Planning with Non-zero Sensing Range — the Traveling
Salesman Problem with Neighborhood

= The travel cost can be saved by remote data collection using wireless communication
or range measurements; instead visiting s € S, we can visit p within ¢ distance from s.

Data Collection Planning Clos: ugh TSP and TSPN GTSP opP OPN Prize Collecting TSF

Orienteering Problem (OP) — Routing with Profits

\
{\M/

= Let each of nsensors S = {s1,...,5,}, s; € R? be associated with a score (;
characterizing the reward if data from s; are collected.

= The vehicles start at sq, terminates at s,, its travel cost between p; and P; is

|
length is minimal, i.e., determine a sequence of visits £ = (01,...,0,). = |n addition to ¥, we need to determine n waypoint locations P = {py,...,p,}. the Euclidean distance |(p; — p;)|. and it has limited travel budget T /T \\
n—1 ® The OP stands to determine a subset of k locations Sy C S maximizing the < . \
L ol minimize 5 p L= Z Py Poy) | + Py Poy) N collected rewards while the tour cost visiting Sx does not exceed T pmax. \\r
minimize = L= Z c(Soi:So4a) | + €(Say: Sou) ' i—1 nem e . i
i—1 . = The OP combines the problem of determining the most valuable locations S with finding the
subject to subject to Lo shortest tour T visiting the locations Sy. . . . .
) L Y= (01,...,00),1<0;<noi#ojfori#j . . = Optimal solution (ILP-based) and heuristics exist.
Y =(01,...,00),1<0i<noi#ojfori] P={py,-...p,} l(pi,s) < & maximize, R— ZC ® 4-phase heuristic algorithm.  Ramesh & Brown, 1991
Sk il = CGW (Chao, Golden, and Wasil).  Chao, et al., 1996
L . . = = Guided local search algorithm.
® The TSP is a pure combinatorial optimization problem = The problem becomes a combination of combinatorial and subject to Vansteenwegen et al., 2009
to find the best sequence of visits . continuous optimization with at least n-variables. N il( N<T = Standard benchmarks have been established, such as
. . . . S, — §,
= The problem is a variant of the TSP with Neighborhoods or e A instances by Tsiligirides and Chao.
Close Enough TSP for disk-shaped neighborhoods. .
and s,, = S1,55, = Sn.
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Data Collection with Limited Travel Budget
OP with Neighborhoods (OPN) and Close Enough OP (CEOP)

Data collection using wireless data transfer or remote sensing allows to reliably .
retrieve data within some sensing range 4.

The OP becomes the Orienteering Problem with Neighborhoods (OPN).
For the disk-shaped d-neighborhood, we call it the Close Enough OP (CEOP).
In addition to Sx and ¥, we need to determine the most suitable waypoint
locations Py that maximize the collected rewards and the path connecting Py
does not exceed Tax.

OPN/CEOP has been firstly tackled by SOM-based approach.
(Best, Faigl & Fitch, 2016)
Later addressed by the GSOA and Variable Neighborhoods
Search (VNS) (Pénicka, Faigl & Saska, 2016)
and optimal solution of the discrete Set OP.
(Pénicka, Faigl & Saska, 2019)

k
maximizey p, 5 R= ZC,,,
i=1

subject to

k
S UPoyysPo)| < Toas

i=:

The currently best performing method is based on the Greedy
Randomized Adaptive Search Procedure (GRASP).
(Stefanikova & Faigl, 2020)
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(Poyrso) <0, by, € B2,
Poy = 51,Ps, = Sn.
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Approaches to the Close Enough TSP and TSP with Neighborhoods

= A direct solution of the TSPN

= Approximation algorithms for special cases with particular shapes of the neighborhoods.

In general, the TSPN is APX-hard, and cannot be approximated to within a factor
2-¢ ¢ >0, unless P=NP. (Safra, S., Schwartz, O. (2006))

® Heuristic algorithms such as evolutionary techniques or unsupervised learning.
= Decoupled approach
1. Determine sequence of visits ¥ independently on the locations P.
E.g., Solution of the TSP for the centroids of the (convex) neighborhoods.
2. For the sequence ¥ determine the locations P to minimize the total tour length, e.g.,
u Solving the Touring polygon problem (TPP);
= Sampling possible locations and use a forward search for finding the best locations;
= Continuous optimization such as hill-climbing.
= Sampling-based approaches

= Sample possible locations of visits within each neighborhood into a discrete set of locations.
= Formulate the problem as the Generalized Traveling Salesman Problem (GTSP).
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Decoupled Approach with Locations Sampling
= Solve the problem as a regular TSP using centroids of the regions (disks)
to get the sequence of visits .

= Sample each neighborhood with k samples (e.g., k = 6) and find the
shortest tour by forward search in O(nk?) for nk? edges in the sequence.
® For k possible initial locations, the optimal solution can be found in

O(nk3).
S
&K 7

for all combinations
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Close Enough TSP and TSPN

Sampling-based Solution of the TSPN

= For an unknown sequence of the visits to the regions, there are O(n?k?) possible edges.

= Finding the shortest path is NP-hard, we need to determine the sequence of visits, which is the
solution of the TSP.

The descrite variant of the TSPN can be formulated as the GTSP.
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GTSP

Generalized Traveling Salesman Problem (GTSP)
= For sampled neighborhoods into discrete sets of locations, we can formulate the problem as the
Generalized Traveling Salesman Problem (GTSP).
® For a set of nsets S = {S;,...,5,}, each
with particular set of locations (nodes) S; =

Also known as the Set TSP.

{si{,....sj,}, determine the shortest tour visit-
ing each set S;.
n-1
minimize y L= Z c(s7,s741) | + c(s7", s71)
i—1
subject to
L= (01,...,00),1< 0, <no;#0jfori#]j

i T i
s7 € S5, S, = {s] ,.4.,5,‘,’"’_},5(,, S
= Optimal ILP-based solution and heuristic algorithms exists.
= GLKH - http://akira.ruc.dk/ keld/research/GLKH/
Helsgaun, K (2015), Solving the Equality Generalized Traveling Salesman Problem Using the Lin-Kernighan-Helsgaun Algorithm
= GLNS - https://ece.uwaterloo.ca/"s12smith/GLNS (in Julia)

Smith, S. L., Imeson, F. (2017), GLNS: An effective large neighborhood search heuristic for the Generalized
Traveling Salesman Problem, Computers and Operations Research.
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Transformation of the GTSP to the Asymmetric TSP

= The Generalized TSP can be transformed into the Asymmetric TSP that can be then solved,
e.g., by LKH or exactly using Concorde with further transformation of the problem to the TSP.

s,

GTSP

= A transformation of the GTSP to the ATSP has been proposed by Noon and Bean in 1993,
and it is called as the Noon-Bean Transformation.
Noon, C.E., Bean, J.C.: An efficient transformation of the generalized traveling salesman problem, INFOR: Information
Systems and Operational Research, 31(1):39-44, 1993,
Ben-Arieg, D., Gutin, G., Penn, M., Yeo, A., Z i
Research Letters, 31(5):357-365.

h, A Ti of

ATSP into ATSP, Operations |
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GTSP

Noon-Bean Transformation

= Noon-Bean transformation to transfer GTSP to ATSP. R
2
= Modify weight of the edges (arcs) such that the optimal
ATSP tour visits all vertices of the same cluster before
moving to the next cluster.
= Adding a large a constant M to the weights of
arcs connecting the clusters, e.g., a sum of the n
heaviest edges.
= Ensure visiting all vertices of the cluster in pre-
scribed order, i.e., creating zero-length cycles
within each cluster.

= The transformed ATSP can be further transformed to
the TSP.
= For each vertex of the ATSP created 3 vertices in
the TSP, i.e., it increases the size of the problem
three times.

Noon, C.E., Bean, J.C.: An efficient transformation of the generalized traveling salesman problem, INFOR: Information
Systems and Operational Research, 31(1):39-44, 1993.

Jan Faigl, 2025
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Example — Noon-Bean transformation (GATSP to ATSP)

1. Create a zero-length cycle in each set and set all other arcs to oo (or 2M).
To ensure all vertices of the cluster are visited before leaving the cluster.
2. For each edge (g, q7) create an edge (q/", qu”'l) with a value increased by sufficiently large M.

To ensure visit of all vertices in a cluster before the next cluster.

Jan Faigl, 2025
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GTSP

Example — Noon-Bean transformation (GATSP to ATSP)

1. Create a zero-length cycle in each set and set all other arcs to oo (or 2M).
To ensure all vertices of the cluster are visited before leaving the cluster.
2. For each edge (", ') create an edge (q/", q]f’“) with a value increased by sufficiently large M.

To ensure visit of all vertices in a cluster before the next cluster.
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Noon-Bean transformation — Matrix Notation

= 1. Create a zero-length cycle in each set; and 2. for each edge (g7, q7) create an edge (q”, g7 ") with a value

increased by sufficiently large M.
g 6 ald $ld

dlo x |7 —|-
@lo o oo - 1 |-
@ loo o oo 4 - |-
q; - - — | o 5
q: - - — |0 oo 2
a6 3 8- - |
o represents there are not edges inside the same set; and '—' denotes unused edge.

Original GATSP Transformed ATSP (using “Big M" as oo representation)

a @& dla $|d @ @ | & & | d
g |>x x~ |7 —|- q | 2m 0 2M - T+M| -
G| oo oo — - G| 2M  2m 0 |1+M - -
G |oc o oco| 4 — |- G| o 2M  2M —  4+M | -
B- - —|x =[5 al - - - | x 0 |5+m
Bl- - —|x x|2 &l - - - 0 oo [24M
a6 3 8- -« o [8+M 6+M 3+M| - - 0
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Noon-Bean Transformation — Summary

= |t transforms the GATSP into the ATSP that can be further addressed as follows.
® Solved by existing solvers, e.g., the Lin-Kernighan heuristic algorithm (LKH).
http://wwu.akira.ruc.dk/"keld/research/LKH
® The ATSP can be further transformed into the TSP and solve it optimaly, e.g., by the

Concorde solver. http://www. tsp. gatech. edu/concorde. html

= It runs in O(k?n?) time and uses O(k?n?) memory, where n is the number of sets
(regions) each with up to k samples.
® The transformed ATSP problem contains kn vertices.

Noon, C.E., Bean, J.C.: An efficient transformation of the generalized traveling salesman problem, INFOR: Information
Systems and Operational Research, 31(1):39-44, 1993.

Jan Faigl, 2025 B4M36UIR - Lecture 07: Data Collection Goal Planning 20 / 44

GTsP

Generalized Traveling Salesman Problem with Neighborhoods (GTSPN)
= The GTSPN is a multi-goal path planning problem to determine a cost-efficient path to visit
a set of 3D regions.
= A variant of the TSPN, where a particular neighborhood may
consist of multiple (possibly disjoint) 3D regions.

= Redundant manipulators, inspection tasks with multiple 5
views, multi-goal aircraft missions. Gentilini, 1., et al. (2014)
= Regions are polyhedron, ellipsoid, and combination of both.
= We proposed decoupled approach Centroids-GTSP and
GSOA-based methods with post-processing optimization
= e Method PDB (%] PDM (%] Teeu Is]
HRGKA (Vicencio, et al. IROS 0.94 176 50.2
\ 2014)
# Centroids-GTSP 4.67 5.01 075
Centroids-GTSP* 0.06 0.47 076
SOA 074 343 0.15
GSOA-OPT 075 351 0.31

Faigl, J., Deckerova, J., and Vana, P.: Fast Heuristics for the 3D Multi-Goal Path Planning based on the Generalized Traveling
Salesman Problem with Neighborhoods, IEEE Robotics and Automation Letters, 4(3):2439-2446, 2019.
Deckerova, J., and Vana, P., and Faigl, J.: Combinatorial lower bounds for the Generalized Traveling Salesman Problem with
i . Systems with 258(15):125185, 2024.
B4M36UIR — Lecture 07: Data Collection Goal Planning
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The Orienteering Problem (OP)

= The problem is to collect as many rewards as possible within the given travel budget (T max),
which is suitable for robotic vehicles with limited operational time.

= The starting and termination locations are prescribed and can be different.
The solution may not be a closed tour as in the TSP.

L \
PR
S~

. L/

Travel budget Tmax = 50, Collected rewards R = 190

~

Travel budget Tmax = 75, Collected rewards R = 270
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Orienteering Problem — Specification

\
«\\/\

¥

Let the given set of n sensors be located in R? with the loca-
tions S = {s1,...,8,}, i € R2,

Each sensor s; has an associated score (; characterizing the
reward if data from s; are collected.

The vehicle is operating in R2, and the travel cost is the
Euclidean distance.

Starting and final locations are prescribed.

We aim to determine a subset of k locations Sy C S that
maximizes the sum of the collected rewards while the travel
cost to visit them is below Tpax.

The Orienteering Problem (OP) combines two NP-hard problems:
® Knapsack problem in determining the most valuable locations Sy C S;

® Travel Salesman Problem (TSP) in determining the shortest tour.
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Orienteering Problem — Optimization Criterion

® Let X = (01,...,0x) be a permutation of k sensor labels, 1 < o; < n and o; # o; for i # j.
® ¥ defines a tour T=(s,,,.
® Let the start and end points of the tour be o1 = 1 and o4 = n.

..,S;,) Visiting the selected sensors S.

® The Orienteering problem (OP) is to determine the number of sensors k, the subset of sensors
Sk, and their sequence ¥ such that

k
maximizey s, ¥ R = Z o,
i=1

subject to
Z ‘(56171 - 5'7;)‘ < Tiax and
i=2
Sy, = S1,S5, = Sp-

The OP combines the problem of determining the most valuable locations Sy with finding the shortest
tour T visiting the locations Si. It is NP-hard, since for s1 = s, and particular Sy it becomes the TSP.
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Existing Heuristic Approaches for the OP

= The Orienteering Problem has been addressed by several approaches, such as

RB 4-phase heuristic algorithm proposed in [3];

PL Results for the method proposed by Pillai in [2];
CGW  Heuristic algorithm proposed in [1];

GLS  Guided local search algorithm proposed in [4].

[1] 1-M. Chao, B. L. Golden, and E. A. Wasil.
A fast and effective heuristic for the orienteering problem

European Journal of Operational Research, 88(3):475-489, 1996

R. S. Pillai
The traveling salesman subset-tour problem with one additional constraint (TSSP+ 1)
Ph.D. thesis, The University of Tennessee, Knoxville, TN, 1992.

2]

R. Ramesh and K. M. Brown.
An efficient four-phase heuristic for the generalized orienteering problem
Computers & Operations Research, 18(2):151-165, 1991.

3]

[4] P. Vansteenwegen, W. Souffriau, G. V. Berghe, and D. V. Oudheusden.
A guided local search metaheuristic for the team orienteering problem

European Journal of Operational Research, 196(1):118-127, 2009
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OP Benchmarks — Example of Solutions

Tmax=80, R=1248 Tmax=45, R=756

Tmax=95, R=1395 Tmax=95, R=1335

B4M36UIR — Lecture 07: Data Collection Goal Planning

Tmax=60, R=845
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Unsupervised Learning for the OP 1/2
= A solution of the OP s similar to the solution of the
PC-TSP and TSP.

® We need to satisfy the limited travel budget Tmax,
which needs the final tour over the sensing locations.

= During the unsupervised learning, the winners are asso-
ciated with the particular sensing locations, which can
be utilized to determine the tour as a solution of the
OP represented by the network.

Learning epoch 7 Learning epoch 55 Learning epoch 87 Final solution

® This is utilized in the conditional adaptation of the network towards the sensing location and the adaptation is
performed only if the tour represented by the network after the adaptation would satisfy Tmax. :
Jan Faigl, 2025
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Unsupervised Learning for the OP 2/2
= The winner selection for s’ € S is conditioned according to T max-
= The network is adapted only if the tour T,;, represented by the current winners would be
shorter or equal than Tax.
L(Twin) = (0, = 50,)| + (50, = ) + (8" = 50,)] < Tmae-
= The unsupervised learning performs a stochastic search steered by the rewards and the length

of the tour to be below Tax.
\ \
N\ \‘/\

(\l ‘k\ \ /L \/1\V_\
Epoch 201, R=135 Epoch 273, R=125 Final solution, R=190
B4M36UIR — Lecture 07: Data Collection Goal Planning

Epoch 155, R=150
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Comparison with Existing Algorithms for the OP

= Standard benchmark problems for the Orienteering Problem represent various scenarios with
several values of Tax.
® The results (rewards) found by different OP approaches presented as the average ratios (and

standard deviations) to the best-known solution.
Instances of the Tsiligirides problems

Unsupervised

Problem Set RB PL CGW L .
earning
Set 1,5 < Tmax < 85 0.99/0.01 1.00/0.01  1.00/0.01 1.00/0.01
Set 2, 15 < Trmax < 45 1.00/0.02  0.99/0.02  0.99/0.02 0.99/0.02
Set 3, 156 < Tmax < 110 1.00/0.00  1.00/0.00  1.00/0.00 1.00/0.00

Diamond-shaped (Set 64) and Square-shaped (Set 66) test problems

Unsupervised

Problem Set RBt PL cGwW .
Learning

Set 64, 5 < Tmax < 80 0.97/0.02  1.00/0.01  0.99/0.01 0.97/0.03

Set 66, 15 < Tmax < 130  0.97/0.02  1.00/0.01  0.99/0.04 0.97/0.02

Required computational time is up to units of seconds, but for small problems tens or hundreds of milliseconds.

Jan Faigl, 2025 B4M36UIR — Lecture 07: Data Collection Goal Planning
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Orienteering Problem with Neighborhoods

= Similarly to the TSP with Neighborhoods and PC-TSPN we can formulate the Orienteering
Problem with Neighborhoods.

::/gE -

Tmax=60, 6=1.5, R=1600

Tmax=45, 5=1.5, R=1344
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Orienteering Problem with Neighborhoods Generalization of the Unsupervised Learning to the Orienteering Problem Influence of the d-Sensing Distance
= Data collection using wireless data transfer allows to reliably retrieve data within some with Neighborhoods
communication radius J. . Th idea of the alternate locati in the TSPN = Influence of increasing communication range to the sum of the collected rewards.
= Disk-shaped d-neighborhood — Close Enough OP (CEOP). . @ same Idea of the alternate location as in the :
. ; . Solution of the OP S
= We need to determine the most suitable locations Py such that o o [ ] Problem Rob ut ion o RS;M § Jo- Toiligirides Set 3, To=50
k Diamond-shaped Set 64, T,,,,=45
maximizey p,, > R= Z Cos connected neurons o Conned"eq n?urm. Set 3, Tmax=50 520 510 8 Square—shaped Set 66, Tma:‘:%o; . °
o = communication range & Set 64, Tmax=45 860 750 . 8 .
=t R Set 66, Tmax=60 915 845 P e >om .
subject to ; 59 .
K p! —0y pl 4 3 ; ® Allowing to data reading within the com- 3 S gt
Z|(p —p ) <T ¥ ¥ : munication range & may significantly in- 5 ot 5 i
< 71 ol = mae el . creases the collected rewards, while keeping @ o e - 8--m- - T =TT
- p —altemate location the budget under Trmax g8
(Po5a)| < 0. py, € B2 3

Poy = S1,P,, = Sn- . .\

max = 50, R = 270
Introduced by Best, Faigl, Fitch (IROS 2016, SMC 2016, IJCNN 2017).
®m More rewards can be collected than for the OP formulation with the same travel budget T pax.

. .\ ° -
= The location p’ for retrieving data from s’ is determined as the alternate goal location during |
the conditioned winner selection. |

T T T T T T T T |
0.0 0.2 0.5 0.7 1.0 1.2 15 1.7 2.0
Communication range - &6
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OP with Neighborhoods (OPN) — Example of Solutions Close Enough Orienteering Problem (CEOP) — Selected Results Autonomous (Underwater) Data Collection
« Diamond-shaped problem Set 64 — SOM solutions for Trmax and 6 Influence of increasing range & GRASP-based solution of the CEOP Multi- Multi-vehicle active perception
Tmax = =10 T = 0 . . . .
i . =S aig @ AV SN yebicle = Having a set of sensors (sampling stations), we aim
/ / - (Team - to determine a cost-efficient path to retrieve data by
92 . o) N . P
6\<\§ autonomous underwater vehicles (AUVs) from the indi-
,% vidual sensors. E.g., Sampling stations on the ocean floor.
N 3 ® The planning problem is a variant of the Traveling
R=1188 Salesman Problem.
Tmax=80, §=0.0, R=1278 Tmax=45, §=0.0, R=756 810 miordesses T
o | % S s L Set OP . ) —
- L Two practical aspects of the data collection can be identified.
R 1. Data from particular sensors may be of different impor-
i fe tance.
O mesionrms B0 " I ) 2. Data from the sensor can be retrieved using wireless com-
® Faigl, J.: On self-organizing maps for orienteering problems, Inter-  ® Best, G., Faigl, J., and Fitch, R.i Online planning for multi-robot munication.
o seoint Cenference on Neural Networks (LICNN), 2017. pp s S maps, obots, These two aspects (of general applicability) can be considered in the Prize-Collecting Trav-
Tmax=95, =00, R=1335 Tmax=60, 6=0.0, R=845 Tmax=60, =15, R=1600 o . ) 24 , 2018 eling Salesman Problem (PC-TSP) and Orienteering Problem (OP) and their extensions
— - - - - u 3tefanikové, P., Vana, P., and Faigl, J.: Greedy Randomized Adap-  ® Pénicka, R., Faigl, J., and Saska, M.: Variable Neighborhood . .
In addition to unsupervised learning, Variable Neighborhood Search (VNS) for the OP tive Search Procedure for Close Enough Orienteering Problem, 35th Search for the Set Orienteering Problem and its application to with neighborhoods. <
has been generalized to the OPN. Annual ACM Symposium on Applied Computing, 2020, pp. 808- other Orienteering Problem variants, European Journal of Oper- -
814. ational Research, 276(3):816-825, 2019
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Prize-Collecting Traveling Salesman Problem with Neighborhoods PC-TSPN — Optimization Criterion PC-TSPN — Example of Solution

(PC_TSPN) The PC-TSPN is a problem to Ocean Observatories Initiative (OOI) scenario

= Determine a set of unique locations P = {py,...,p,}, k < n, p; € R?, at which data
readings are performed.

= Find a cost efficient tour T visiting P such that the total cost C(T) of T is minimal

SOM PC-TSPN PC-TSPN
(&

= Let n sensors be located in R? at the locations S = {s1,...,5,}. c
. .. . . T)= .~ P, s
= Each sensor has associated penalty £(s;) > 0 characterizing additional cost if the data (M Z ey =Pyl + Z &(s),
. . (PP, )ET seS\St

are not retrieved from s;. i"Plis1

= Let the data collecting vehicle operates in R? with the motion cost c(py, p,) for all where St C S are sensors such that for each s; € St there is p; on 5 = R
. Eg °-
pairs of points py, p, € R?. T=(pPy,---,Py_,»Py) and p; € P for which [(s; — p;)| < 4. ik £t 2 B .
H 2 ST 2P e
= The data from s; can be retrieved within § distance from s;. L £s N
= PC-TSPN includes other variants of the TSP: ﬁzj i
" fOI' 0 =0itis the PC—TSP' ° 6 5 10 15 20 25 30 35 40 45 50 e (‘x”éi:‘n 15 20 25 30 35 40 45 50

= for £(s;) = oo (or forcing St =) and & > 0 it is the TSPN; Gommunication adius p k] ‘Gommurication radus p m]
u for £(s;) = oo (or forcing St = ()) and § = 0 it is the ordinary TSP.

Faigl, J. and Hollinger, G.: Autonomous Data Collection Using a Self-Organizing Map, |EEE Transactions on
Neural Networks and Learning Systems, 29(5):1703-1715, 2018 /
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Summary of the Lecture

B4M36UIR — Lecture 07: Data Collection Goal Planning

Topics Discussed

Topics Discussed

Data collection planning formulated as variants of
» Traveling Salesman Problem (TSP)
= Orienteering Problem (OP)
® Prize-Collecting Traveling Salesman Problem with Neighborhoods (PC-TSPN)
Exploiting the non-zero sensing range can be addressed as
= TSP with Neighborhoods (TSPN) or specifically as the Close Enough TSP (CETSP) for disk-shaped
neighborhoods.
= OP with Neighborhoods (OPN) or the Close Enough OP (CEOP).
Problems with continuous neighborhoods include continuous optimization that can be addressed
by sampling the neighborhoods into discrete sets.
= Generalized TSP and Set OP
Existing solutions include
= Approximation algorithms and heuristics (combinatorial, unsupervised learning, evolutionary methods)
Sampling-based and decoupled approaches
ILP formulations for discrete problem variants (sampling-based approaches)
Transformation based approaches (GTSP—ATSP) / Noon-Bean transformation
Combinatorial heuristics such as VNS and GRASP
TSP can be solved by efficient heuristics such as LKH

= Next: Curvature-constrained data collection planning
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