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Overview of the Lecture

= Data Collection Planning

= Close Enough TSP and TSPN

= Generalized Traveling Salesman Problem (GTSP)
= Orienteering Problem (OP)

= Orienteering Problem with Neighborhoods (OPN)

= Prize Collecting TSP — Combined Profit with Shortest Path
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Data Collection Planning Close Enough TSP and TSPN GTSP oP

Data Collection Planning as a Solution of the Routing Problem

® Provide cost-efficient path to collect all or the most valuable data (measurements) with
shortest possible path/time or under limited travel budget.

. ; SB &

Limited travel budget
® We need to prioritize some locations — routing

Visiting all locations
® The Traveling Salesman Problem (TSP).

= Well-studied combinatorial routing problem problem with profits.
with many existing approaches. ® The Orienteering Problem (OP).

= |n both problems, we can improve the solution by exploiting non-zero sensing range.
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Data Collection Planning as the Traveling Salesman Problem

= Let S be a set of n sensor locations S = {s1,...,s,}, s; € R? and c(s}, s;) is a cost
of travel from s; to s;.

® The problem is to determine a closed tour visiting each s € S such that the total tour
length is minimal, i.e., determine a sequence of visits ¥ = (01,...,05).

L

minimize s =
i=1

n—1
<Z c(So;; 50;+1)> + c(so,, S04)

subject to

Y =(01,...,0n),1<0; <no; #ojfori#j

® The TSP is a pure combinatorial optimization problem
to find the best sequence of visits .
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Data Collection Planning

Data Collection Planning with Non-zero Sensing Range — the Traveling
Salesman Problem with Neighborhood

® The travel cost can be saved by remote data collection using wireless communication
or range measurements; instead visiting s € S, we can visit p within ¢ distance from s.

= In addition to ¥, we need to determine n waypoint locations P = {py,...,p,}
n—1
minimize 5 p L= (Z C(pa,'7p0'y'+1 )) + C(po:r,,7 pa:)
i=1
subject to
Y =(01,...,00),1<0;<n,o;#0cjfori#j .
P= {plv s 7pn}7 ”(pivsf)H <9

® The problem becomes a combination of combinatorial and
continuous optimization with at least n-variables.

® The problem is a variant of the TSP with Neighborhoods or
Close Enough TSP for disk-shaped neighborhoods.
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Data Collection Planning

Orienteering Problem (OP) — Routing with Profits

m Let each of nsensors S = {s1,...,s,}, s; € R? be associated with a score (;

characterizing the reward if data from s; are collected. \\
® The vehicles start at s, terminates at s, its travel cost between p; and p; is N ‘/\\
the Euclidean distance |(p; — pj)|, and it has limited travel budget T ax. J N
m The OP stands to determine a subset of k locations S, C S maximizing the < f\
collected rewards while the tour cost visiting S does not exceed T ax. —/

= The OP combines the problem of determining the most valuable locations S, with finding the
shortest tour T visiting the locations Sk. . . o )
m Optimal solution (ILP-based) and heuristics exist.
® 4-phase heuristic algorithm. Ramesh & Brown, 1991
® CGW (Chao, Golden, and Wasil).  Chao, et al., 1996

= Guided local search algorithm.
Vansteenwegen et al., 2009

k
maximize s, s R = Z Co;
i=1

subject to

m Standard benchmarks have been established, such as

K
o — 9o S T X . o s e
,Z:; (8711 = 80.)] < Tims instances by Tsiligirides and Chao.

and s, = $1,S5, = Sp.
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Data Collection Planning

Data Collection with Limited Travel Budget
OP with Neighborhoods (OPN) and Close Enough OP (CEOP)

® Data collection using wireless data transfer or remote sensing allows to reliably .
retrieve data within some sensing range J.

® The OP becomes the Orienteering Problem with Neighborhoods (OPN).

= For the disk-shaped d-neighborhood, we call it the Close Enough OP (CEOP).

= |n addition to Sx and X, we need to determine the most suitable waypoint

locations Py that maximize the collected rewards and the path connecting Py
does not exceed T max.

5 OPN/CEOP has been firstly tackled by SOM-based approach.
(Best, Faigl & Fitch, 2016)

= Later addressed by the GSOA and Variable Neighborhoods
Search (VNS) (Pénicka, Faigl & Saska, 2016)

= and optimal solution of the discrete Set OP.
(Pénicka, Faigl & Saska, 2019)

k
maximizey p, R= g Co;
i=1

subject to
k

E ‘(pa;,p pa;)l < Tmax» . .
i— = The currently best performing method is based on the Greedy
Randomized Adaptive Search Procedure (GRASP).
2
\(pg,..,sg,.)l <9 Py €R, (Stefanikova & Faigl, 2020)
Py, = S1,Pg, = Sn-
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Approaches to the Close Enough TSP and TSP with Neighborhoods

m A direct solution of the TSPN

® Approximation algorithms for special cases with particular shapes of the neighborhoods.

In general, the TSPN is APX-hard, and cannot be approximated to within a factor
2 — ¢, € > 0, unless P=NP. (Safra, S., Schwartz, O. (2006))

® Heuristic algorithms such as evolutionary techniques or unsupervised learning.
m Decoupled approach

1. Determine sequence of visits * independently on the locations P.
E.g., Solution of the TSP for the centroids of the (convex) neighborhoods.
2. For the sequence ¥ determine the locations P to minimize the total tour length, e.g.,

m Solving the Touring polygon problem (TPP);
® Sampling possible locations and use a forward search for finding the best locations;
= Continuous optimization such as hill-climbing.

m Sampling-based approaches

m Sample possible locations of visits within each neighborhood into a discrete set of locations.
= Formulate the problem as the Generalized Traveling Salesman Problem (GTSP).

Jan Faigl, 2025
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Close Enough TSP and TSPN

Decoupled Approach with Locations Sampling

m Solve the problem as a regular TSP using centroids of the regions (disks)
to get the sequence of visits .

® Sample each neighborhood with k samples (e.g., k = 6) and find the
shortest tour by forward search in O(nk?) for nk? edges in the sequence.

® For k possible initial locations, the optimal solution can be found in

O(nk3).
&K alle
a pi Zq%
‘,03 WA
=z L]

for all combinations
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Sampling-based Solution of the TSPN

= For an unknown sequence of the visits to the regions, there are O(n?k?) possible edges.

® Finding the shortest path is NP-hard, we need to determine the sequence of visits, which is the
solution of the TSP.

The descrite variant of the TSPN can be formulated as the GTSP.
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Generalized Traveling Salesman Problem (GTSP)

® For sampled neighborhoods into discrete sets of locations, we can formulate the problem as the
Generalized Traveling Salesman Problem (GTSP).
m For a set of n sets S = {S1,...,S,}, each
with particular set of locations (nodes) S; =
{s{,...,s} }, determine the shortest tour visit-
ing each set S;.

Also known as the Set TSP.

n—1
minimizey L= (Z c(s7, 5”’“)) + c(s7", 1)
i=1
subject to
Y =(01,...,00),1<0; < noj#ojfori#j

s7 € S5, S = {57, ...

® Optimal ILP-based solution and heuristic algorithms exists.
® GLKH - http://akira.ruc.dk/"keld/research/GLKH/
Helsgaun, K (2015), Solving the Equality Generalized Traveling Salesman Problem Using the Lin-Kernighan-Helsgaun Algorithm.

® GLNS - https://ece.uwaterloo.ca/~s12smith/GLNS (in Julia)
Smith, S. L., Imeson, F. (2017), GLNS: An effective large neighborhood search heuristic for the Generalized
Traveling Salesman Problem, Computers and Operations Research.

50 1,55, €5
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Transformation of the GTSP to the Asymmetric TSP

m The Generalized TSP can be transformed into the Asymmetric TSP that can be then solved,
e.g., by LKH or exactly using Concorde with further transformation of the problem to the TSP.

S-S,

GTSP GATSP

® A transformation of the GTSP to the ATSP has been proposed by Noon and Bean in 1993,

and it is called as the Noon-Bean Transformation.
Noon, C.E., Bean, J.C.: An efficient transformation of the generalized traveling salesman problem, INFOR: Information
Systems and Operational Research, 31(1):39—-44, 1993.
Ben-Arieg, D., Gutin, G., Penn, M., Yeo, A., Zverovitch, A.: Transformations of generalized ATSP into ATSP, Operations
Research Letters, 31(5):357-365.
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Noon-Bean Transformation

®m Noon-Bean transformation to transfer GTSP to ATSP.

= Modify weight of the edges (arcs) such that the optimal
ATSP tour visits all vertices of the same cluster before
moving to the next cluster.
® Adding a large a constant M to the weights of
arcs connecting the clusters, e.g., a sum of the n
heaviest edges.
m Ensure visiting all vertices of the cluster in pre-
scribed order, i.e., creating zero-length cycles
within each cluster.

= The transformed ATSP can be further transformed to
the TSP.
m For each vertex of the ATSP created 3 vertices in

the TSP, i.e., it increases the size of the problem
three times.

Noon, C.E., Bean, J.C.: An efficient transformation of the generalized traveling salesman problem, INFOR: Information
Systems and Operational Research, 31(1):39-44, 1993.
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Example — Noon-Bean transformation (GATSP to ATSP)

1. Create a zero-length cycle in each set and set all other arcs to co (or 2M).

To ensure all vertices of the cluster are visited before leaving the cluster.

2. For each edge (q/", q) create an edge (q/", g"™1) with a value increased by sufficiently large M.

J

To ensure visit of all vertices in a cluster before the next cluster.
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GTSP

Example — Noon-Bean transformation (GATSP to ATSP)

1. Create a zero-length cycle in each set and set all other arcs to oo (or 2M).

To ensure all vertices of the cluster are visited before leaving the cluster.
2. For each edge (q/", q7) create an edge (q/", qu’“) with a value increased by sufficiently large M.

To ensure visit of all vertices in a cluster before the next cluster.
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Noon-Bean transformation — Matrix Notation

= 1. Create a zero-length cycle in each set; and 2. for each edge (q/", qJ’F) create an edge (q/", qu’“) with a value
increased by sufficiently large M.

gt & di|d dB|d
gloo o o7 —-|-
q% © oo oo| — 1| —
q% oo oo oo | 4 — | —
Gg|- - -] |5
@G| - - —]oo oof2
a6 3 8- —|o

oo represents there are not edges inside the same set; and '—' denotes unused edge.

Original GATSP Transformed ATSP (using “Big M" as oo representation)

lad @ dla B|d lad & & | & & | 4
gl |0 o0 o] 7 - |- | 2m 0 2M - +M -
@ |loo oo o - 1| - @ | 2M 2M 0 1+M — —
G0 oo oco| 4 — |- q 0 2M 2M — 4+M —
@G|l - - —|o |5 | - — - o0 0 |5+M
@3 - 0o oo | 2 73 — — — 0 oo | 2+M
|6 3 8- -] ¢ | 8+M 6+M 3+M | — - 0

Jan Faigl, 2025 B4M36UIR — Lecture 07: Data Collection Goal Planning




GTSP

Noon-Bean Transformation — Summary

® |t transforms the GATSP into the ATSP that can be further addressed as follows.
® Solved by existing solvers, e.g., the Lin-Kernighan heuristic algorithm (LKH).

http://www.akira.ruc.dk/“keld/research/LKH
® The ATSP can be further transformed into the TSP and solve it optimaly, e.g., by the

COnCOrde solver. http://www.tsp.gatech.edu/concorde.html

= It runs in O(k?n?) time and uses O(k?n?) memory, where n is the number of sets
(regions) each with up to k samples.
m The transformed ATSP problem contains kn vertices.

Noon, C.E., Bean, J.C.: An efficient transformation of the generalized traveling salesman problem, INFOR: Information
Systems and Operational Research, 31(1):39-44, 1993.

GTSP

Generalized Traveling Salesman Problem with Neighborhoods (GTSPN)
® The GTSPN is a multi-goal path planning problem to determine a cost-efficient path to visit
a set of 3D regions.

= A variant of the TSPN, where a particular neighborhood may
consist of multiple (possibly disjoint) 3D regions.

® Redundant manipulators, inspection tasks with multiple
views, multi-goal aircraft missions. Gentilini, 1., et al. (2014)

® Regions are polyhedron, ellipsoid, and combination of both.

m We proposed decoupled approach Centroids-GTSP and
GSOA-based methods with post-processing optimization.

Method PDB [%] PDM [%] Tepu [s]

i HRGKA (Vicencio, et al, IROS 0.94 1.76 59.2
" 2014)

F Centroids-GTSP 4.67 5.01 0.75

Centroids-GTSP* 0.06 0.47 0.76

GSOA 0.74 3.43 0.15

GSOA-OPT 0.75 3.51 0.31

Faigl, J., Deckerova, J., and Vana, P.: Fast Heuristics for the 3D Multi-Goal Path Planning based on the Generalized Traveling
Salesman Problem with Neighborhoods, IEEE Robotics and Automation Letters, 4(3):2439-2446, 2019.

Deckerova, J., and Vana, P., and Faigl, J.: Combinatorial lower bounds for the Generalized Traveling Salesman Problem with
Neighborhoods, Systems with Applications, 258(15):125185, 2024.

T

o

cost to visit them is below T ax.
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The Orienteering Problem (OP) Orienteering Problem — Specification
® The problem is to collect as many rewards as possible within the given travel budget (T max), . o
which is suitable for robotic vehicles with limited operational time. " L.et the given set of n sensors b2e located in R* with the loca-
] o ) ) ) tions S = {s1,...,Sn}, s; € R%
® The starting and termination locations are prescribed and can be different.
The solution may not be a closed tour as in the TSP. m Each sensor s; has an associated score (; characterizing the \
reward if data from s; are collected. \
m The vehicle is operating in R?, and the travel cost is the ——\
\ \ Euclidean distance.
\ \ . . . . ™ .
— /\ — m Starting and final locations are prescribed.
< ) [
\; \ m We aim to determine a subset of k locations S,y C S that °
P : P ‘ \ maximizes the sum of the collected rewards while the travel A
AN

.

S~
- L/

Travel budget Tmax = 75, Collected rewards R = 270

.
Travel budget Tmax = 50, Collected rewards R = 190
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The Orienteering Problem (OP) combines two NP-hard problems:
® Knapsack problem in determining the most valuable locations Sy C S;

m Travel Salesman Problem (TSP) in determining the shortest tour.
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Orienteering Problem — Optimization Criterion

Let ¥ = (01,...,0k) be a permutation of k sensor labels, 1 < o; < n and o; # o for i # j.
Y defines a tour T= (s,,, ...

,So,) Visiting the selected sensors Si.

Let the start and end points of the tour be 01 =1 and oy = n.

The Orienteering problem (OP) is to determine the number of sensors k, the subset of sensors
Sk, and their sequence X such that
k
R=2 G
i=1

maximizey s, 5

subject to
Z |(50'i—1 - S(Ti)| < Tmax and
i=2
So; = S1, S0, = Sn-

The OP combines the problem of determining the most valuable locations S, with finding the shortest
tour T visiting the locations Sy. It is NP-hard, since for s1 = s, and particular Sy it becomes the TSP.
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Existing Heuristic Approaches for the OP

m The Orienteering Problem has been addressed by several approaches, such as

RB 4-phase heuristic algorithm proposed in [3];

PL Results for the method proposed by Pillai in [2];
CGW  Heuristic algorithm proposed in [1];

GLS  Guided local search algorithm proposed in [4].

[1] 1.-M. Chao, B. L. Golden, and E. A. Wasil.
A fast and effective heuristic for the orienteering problem.
European Journal of Operational Research, 88(3):475-489, 1996.

[2] R.S. Pillai.
The traveling salesman subset-tour problem with one additional constraint (TSSP+ 1).
Ph.D. thesis, The University of Tennessee, Knoxville, TN, 1992.

[3] R. Ramesh and K. M. Brown.
An efficient four-phase heuristic for the generalized orienteering problem.
Computers & Operations Research, 18(2):151-165, 1991.

[4] P. Vansteenwegen, W. Souffriau, G. V. Berghe, and D. V. Oudheusden.
A guided local search metaheuristic for the team orienteering problem.
European Journal of Operational Research, 196(1):118-127, 2009.
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OP Benchmarks — Exampble of Solutions

Temax=80, R=1248

o

Tmax=80, R =1278

ﬁu '§

sHYH

Tmax=95, R=1335

Tmax=45, R=756

Tmax=95, R=1395
Jan Faigl, 2025

Tmax=60, R=845
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Unsupervised Learning for the OP 1/2
® A solution of the OP is similar to the solution of the
PC-TSP and TSP.

= We need to satisfy the limited travel budget Tmax,
which needs the final tour over the sensing locations.

= During the unsupervised learning, the winners are asso-
ciated with the particular sensing locations, which can
be utilized to determine the tour as a solution of the
OP represented by the network.

Learning epoch 7 Learning epoch 55 Learning epoch 87 Final solution

® This is utilized in the conditional adaptation of the network towards the sensing location and the adaptation is
performed only if the tour represented by the network after the adaptation would satisfy Tmax.
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Unsupervised Learning for the OP 2/2

® The winner selection for s’ € S is conditioned according to T max.
® The network is adapted only if the tour T, represented by the current winners would be
shorter or equal than T .
E( Twin) - |(SVp - SVn)| + |(sz - 5/)‘ + |(5l - sVn)‘ < Tax-
® The unsupervised learning performs a stochastic search steered by the rewards and the length
of the :cour to be below Tmax.

[

. . .
Epoch 201, R=135 Epoch 273, R=125 Final solution, R=190
B4M36UIR — Lecture 07: Data Collection Goal Planning

.
Epoch 155, R=150
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Comparison with Existing Algorithms for the OP

m Standard benchmark problems for the Orienteering Problem represent various scenarios with
several values of T ..
B The results (rewards) found by different OP approaches presented as the average ratios (and

standard deviations) to the best-known solution.
Instances of the Tsiligirides problems

Unsupervised

Problem Set RB PL cGwW .
Learning
Set 1, 5 < Tmax <85 0.99/0.01 1.00/0.01 1.00/0.01 1.00/0.01
Set 2, 15 < Tmax < 45 1.00/0.02  0.99/0.02 0.99/0.02 0.99/0.02
Set 3, 15 < Tmax <110 1.00/0.00 1.00/0.00 1.00/0.00 1.00/0.00

Diamond-shaped (Set 64) and Square-shaped (Set 66) test problems

Unsupervised

Problem Set RBf PL CGW .
Learning

Set 64, 5 < Tmax < 80 0.97/0.02 1.00/0.01 0.99/0.01 0.97/0.03

Set 66, 15 < Tmax <130 0.97/0.02 1.00/0.01 0.99/0.04 0.97/0.02

Required computational time is up to units of seconds, but for small problems tens or hundreds of milliseconds.
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Orienteering Problem with Neighborhoods

® Similarly to the TSP with Neighborhoods and PC-TSPN we can formulate the Orienteering
Problem with Neighborhoods.

Vi

Tmax=60, 6=1.5, R=1600

Tmax=45, 6=1.5, R=1344
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Orienteering Problem with Neighborhoods

® Data collection using wireless data transfer allows to reliably retrieve data within some
communication radius .
® Disk-shaped d-neighborhood — Close Enough OP (CEOP).

= We need to determine the most suitable locations Py such that

k
maximizey p, R= E Co
i=1

subject to
k
Z |(p(7,'71 - pa,—) S Tmam
i=2
(Po;s50)| <6, P, € RZ,

Py, = 51,Py, = Sn-

.
Tmax = 50, R =270
Introduced by Best, Faigl, Fitch (IROS 2016, SMC 2016, IJCNN 2017).

m More rewards can be collected than for the OP formulation with the same travel budget Tax.
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Generalization of the Unsupervised Learning to the Orienteering Problem
with Neighborhoods

® The same idea of the alternate location as in the TSPN.
® o

I
connected neurons

S——
connected neurm.
communication range §

/.s’ 8

\

o —

° ‘\o

® The location p’ for retrieving data from s’ is determined as the alternate goal location during
the conditioned winner selection.
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Influence of the §-Sensing Distance

= |nfluence of increasing communication range to the sum of the collected rewards.

Solution of the OP S o
Problem Rbest Rsom S | -eo- Tsiligirides Set 3, Ty.x=50
N | .5 Diamond—shaped Set 64, Tya=45
Set 3, Tmax=50 520 510 =4 Square—shaped Set 66, T,,,=60
Set 64, Tmax=45 860 750 5
Set 66, Tmax=60 915 845 o T R .
9 .
s Allowing to data reading within the com- g 9 b .5
munication range & may significantly in- _; Frans & 4
creases the collected rewards, while keeping @ o g - - @--—8- - = "7
the budget under Tpmax. - I =
3
O
o -
I T T T T T T T 1
0.0 0.2 0.5 0.7 1.0 1.2 1.5 1.7 .

Communication range - 6
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OP with Neighborhoods (OPN) — Example of Solutions

= Diamond-shaped problem Set 64 — SOM solutions for Tmax and 4

s s

? /\/ AN < O\
& L

\/\:> \/
Tmax=45, §=0.0, R=756
® Square-shaped problem Set 66 — SOM solutions for Tmax and §

Tmax=80, 5=0.0, R=1278
Mo

I

Tmax=45, 6=1.5, R=1344

Tmax=95, 6=0.0, R=1335 Tmax=60, 6=0.0, R=845 Tmax=60, 6=1.5, R=1600

In addition to unsupervised learning, Variable Neighborhood Search (VNS) for the OP
has been generalized to the OPN.
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Close Enough Orienteering Problem (CEOP) — Selected Results

Influence of increasing range & GRASP based solution of the CEOP Multi- Multi-vehicle active perception
Tmax = 45 e=1.0 TR vehicle
o OoP
(Team
OP)
— GsoA
—— WNs
—— GRASP-Naive. e
~~— GRASP-Naive
20 40 60 80 100
R=1188 Budget
10°
o Tsiligirides Set 3, T,y =50 & ©
= Diamond—shaped Set 64, Tpy=45 Set OP /e

Square—shaped Set 66, T,,,,=60, —— GSOA
—— UNS
—— GRASP-Naive, ..

GRASP-Naive

- —_ ” ‘ . '

pro
" —

500 1000 1500 2000

Collected rewards - R

0

15 17 2.0 20 40 60 80
Budget

DIS 0'7 1'0 lIZ
‘Communication range - &
Faigl, J.: On self-organizing maps for orienteering problems, Inter-
national Joint Conference on Neural Networks (IJCNN), 2017, pp.
2611-2620.

Stefanikova, P., Vana, P., and Faigl, J.: Greedy Randomized Adap- [
tive Search Procedure for Close Enough Orienteering Problem, 35th Search for the Set Orienteering Problem and its application to
Annual ACM Symposium on Applied Computing, 2020, pp. 808- other Orienteering Problem variants, European Journal of Oper-
814. ational Research, 276(3):816-825, 2019.
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= Best, G., Faigl, J., and Fitch, R.: Online planning for multi-robot
active perception with self-organising maps, Autonomous Robots,
42(4):715-738, 2018.

Pénicka, R., Faigl, J., and Saska, M.: Variable Neighborhood
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Prize Collecting TSP

Autonomous (Underwater) Data Collection

® Having a set of sensors (sampling stations), we aim
to determine a cost-efficient path to retrieve data by
autonomous underwater vehicles (AUVs) from the indi-
vidual sensors.

E.g., Sampling stations on the ocean floor.

® The planning problem is a variant of the Traveling
Salesman Problem.

Two practical aspects of the data collection can be identified.

1. Data from particular sensors may be of different impor-
tance.

2. Data from the sensor can be retrieved using wireless com-
munication.
These two aspects (of general applicability) can be considered in the Prize-Collecting Trav-
eling Salesman Problem (PC-TSP) and Orienteering Problem (OP) and their extensions
with neighborhoods.
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Prize Collecting TSP

Prize-Collecting Traveling Salesman Problem with Neighborhoods
(PC-TSPN)

Let n sensors be located in R? at the locations S = {s1,...,s,}.
Each sensor has associated penalty £(s;) > 0 characterizing additional cost if the data

are not retrieved from s;.

Let the data collecting vehicle operates in R? with the motion cost c(py, p,) for all
pairs of points p;, p, € R2.

The data from s; can be retrieved within § distance from s;.

=
A5S
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PC-TSPN — Optimization Criterion
The PC-TSPN is a problem to

m Determine a set of unique locations P = {p,,...

readings are performed.
® Find a cost efficient tour T visiting P such that the total cost C(T) of T is minimal

)= > ley—pp )+ Y. &)

(Pl,- Py seS\Sr

i

€T

where St C S are sensors such that for each s; € St there is pj; on
T=(py,---»Py_, P;) and p,€P for which |(s; —p,j)| < 4.

m PC-TSPN includes other variants of the TSP:
m for § =0 it is the PC-TSP;
m for {(s;) = oo (or forcing St = () and § > 0 it is the TSPN;
= for £(s;) = oo (or forcing ST = () and § = 0 it is the ordinary TSP.
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PC-TSPN — Example of Solution

Ocean Observatories Initiative (OOI) scenario

PC-TSPN

SOM PC-TSPN

~&— PC-TSPN

s
8 .
g o o o PoTSPN
e .
B \\\0 SOM-+-FaR o SOM+TSP
2 ~—
8 N
co T ——
§8 —
28 e
E]
38
g

Computational time [ms]

TR P S S
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Faigl, J. and Hollinger, G.: Autonomous Data Collection Using a Self-Organizing Map, |EEE Transactions on \ffF 2
Neural Networks and Learning Systems, 29(5):1703-1715, 2018. S
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Topics Discussed

Topics Discussed

Data collection planning formulated as variants of
= Traveling Salesman Problem (TSP)
= Orienteering Problem (OP)
m Prize-Collecting Traveling Salesman Problem with Neighborhoods (PC-TSPN)

Exploiting the non-zero sensing range can be addressed as
= TSP with Neighborhoods (TSPN) or specifically as the Close Enough TSP (CETSP) for disk-shaped

Summary of the Lecture neighborhoods.
= OP with Neighborhoods (OPN) or the Close Enough OP (CEOP).

Problems with continuous neighborhoods include continuous optimization that can be addressed

by sampling the neighborhoods into discrete sets.
m Generalized TSP and Set OP

Existing solutions include
= Approximation algorithms and heuristics (combinatorial, unsupervised learning, evolutionary methods)
Sampling-based and decoupled approaches
ILP formulations for discrete problem variants (sampling-based approaches)
Transformation based approaches (GTSP—ATSP) / Noon-Bean transformation
Combinatorial heuristics such as VNS and GRASP
TSP can be solved by efficient heuristics such as LKH

® Next: Curvature-constrained data collection planning
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