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Overview of the Lecture
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® Part 2 — Unsupervised Learning for Multi-goal Planning
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= TSPN in Multi-goal Planning with Localization Uncertainty
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Inspection Planning Multi-goal Planning
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Inspection Planning Multi-goal Planning

Robotic Information Gathering in Inspection of Vessel's Propeller

® The planning problem is to determine a shortest inspection path for an Autonomous
Underwater Vehicle (AUV) to inspect the vessel's propeller.

https://www.youtube.com/watch?v=8azP_9VnMtM

Englot, B., Hover, F.S.: Three-dimensional coverage planning for an underwater inspection robot,
International Journal of Robotics Research, 32(9-10):1048-1073, 2013.
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Inspection Planning Multi-goal Planning

Example of Inspection Planning in Search Scenario

m Periodically visit particular locations of the environment and return to the starting locations.
m Use available floor plans to guide the search, e.g., finding victims in search-and-rescue scenario.
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Inspection Planning

Inspection Planning

® Inspection/coverage planning stands to determine a plan
(path) to inspect/cover the given areas or point of interest.

® We can directly find inspection/coverage plan using

m predefined covering patterns such as ox-plow motion;
® a “general” path satisfying coverage constraints.

Galceran, E., Carreras, M.: A survey on coverage path planning for
robotics, Robotics and Autonomous Systems, 61(12):1258-1276, 2013.

m Decoupled approach — Locations to be visited are determined

before path planning as the sensor placement problem. Trapezoidal decomposition method
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Kafka, Faigl, Vana: ICRA 2016
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Inspection Planning

Inspection Planning — Decoupled Approach

1. Determine sensing locations such that the whole environment would be inspected (seen) by
visiting them. It is Sampling design problem.

In the geometrical-based approach, a solution of the Art Gallery Problem.
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The problem is related to the sensor placement and sampling design.
2. Create a roadmap connecting the sensing location.

Such as visibility graph or randomized sampling-based method.
3. Find the inspection path visiting all the sensing locations as a solution of the multi-goal path

planning (a solution of the robotic TSP).
Jan Faigl, 2025

B4M36UIR — Lecture 06: Multi-goal Planning



Inspection Planning Multi-goal Planning

Planning to Capture Areas of Interest using UAV
m Determine a cost-efficient path from which a given set of target
regions is covered.

= For each target region a subspace S C R3 from which the target
can be covered is determined. S represents the neighborhood.

= \We search for the best sequence of visits to the regions.

Combinatorial optimization

® The PRM is utilized to construct the planning roadmap (a graph).

PRM — Probabilistic Roadmap Method — sampling-based motion planner, see lecture 8.

® The problem can be formulated as the Traveling Salesman Problem with Neighborhoods,
as it is not necessary to visit exactly a single location to capture the area of interest.

Janousek and Faigl, ICRA 2013
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Inspection Planning
Inspection Planning — " Continuous Sensing”

® |f we do not prescribe a discrete set of sensing locations, we can formulate the problem

as the Watchman route problem.
Given a map of the environment WV determine the shortest, closed, and collision-free
path, from which the whole environment is covered by an omnidirectional sensor with

the radius p.

Faigl, J.: Approximate Solution of the Multiple Watchman Routes Problem with Restricted Visibility Range,
IEEE Transactions on Neural Networks, 21(10):1668-1679, 2010.
B4M36UIR — Lecture 06: Multi-goal Planning
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Inspection Planning Multi-goal Planning

Outline

= Multi-goal Planning
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Multi-goal Planning

Multi-Goal Planning

= Having a set of locations to be visited, determine the cost-efficient path to visit them.
® |ocations where a robotic arm or mobile robot performs some task. The operation can be repeated—closed path.

® The problem is called robotic task sequencing problem for robotic manipulators.
Robotic Task Multiple IK Obstacle avoidance Robot base layout

Sequencing Problem bt

Base

positon 1 ||
position 2

Inverse kinematics

solution 2 Base position k

Partial order Task specification Objective

[\always after [7]
oEA
A®

Alatartsev, S., Stellmacher, S., Ortmeier, F. (2015): Robotic Task Sequencing Problem: A Survey. Journal of
Intelligent & Robotic Systems.

Cartesian distance
Cycle time -----

® The problem is also called Multi-goal Path Planning (MTP) problem or Multi-goal Planning
(MGP) Also studied in its Multi-goal Motion Planning (MGMP) variant.
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Multi-goal Planning

Multi-Goal Path Planning (MTP)
= Multi-goal planning problem is a problem how to visit the given set of locations.
® |t consists of point-to-point path planning on how to reach one location from another.

m The challenge is to determine the optimal sequence of the visits to the locations w.r.t. cost-
efficient path to visit all the given locations.

m Determination the sequence of visits is a combinatorial optimization problem that can be
formulated as the Traveling Salesman Problem (TSP).
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Multi-goal Planning

Traveling Salesman Problem (TSP)

Given a set of cities and the distances between each pair of cities, what is the shortest
possible route that visits each city exactly once and returns to the origin city.

® The TSP can be formulated for a graph G(V, E), where V denotes a set of locations
(cities) and E represents edges connecting two cities with the associated travel cost ¢
(distance), i.e., for each v;,v; € V there is an edge e € E, ejj = (v;, vj) with the cost
Cij -

= |f the associated cost of the edge (v;, v;j) is the Euclidean distance c;j = |(v;, vj)|, the
problem is called the Euclidean TSP (ETSP).

m |t is known, the TSP is NP-hard (its decision variant) and several algorithms can be
found in literature.

William J. Cook (2012) — In Pursuit of the Traveling Salesman: Mathematics at the Limits
of Computation.
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Multi-goal Planning

Traveling Salesman Problem (TSP)

® Let S be a set of n sensor locations S = {s1,...,s,}, s; € R? and c(s;, s;) is a cost of travel

from s; to s;.
Traveling Salesman Problem (TSP) is a problem to determine a closed tour visiting each
s € S such that the total tour length is minimal.

® We are searching for the optimal sequence of visits ¥ = (071, ...,0,) such that
n—1
minimize x L= (Z c(so;, sgi+1)> + c(Ss,,S0,)
i1 (1)
subject to Y =(01,...,0n),1 <0 < n,o;# 0 fori#j.

The TSP can be considered on a graph G(V, E) where the set of vertices V represents sensor
locations S and E are edges connecting the nodes with the cost c(s;, s;).

For simplicity we can consider c(s;,s;) to be Euclidean distance; otherwise, we also need to
address the path/motion planning problem. Euclidean TSP
If c(si,sj) # c(sj, s;) it is the Asymmetric TSP.

The TSP is known to be NP-hard unless P=NP.

Traveling vs Travelling —http://www.math.uwaterloo.ca/tsp/history/travelling.html
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Multi-goal Planning

Existing Approaches to the TSP

Exact solutions
® Branch&Bound, Branch&Cut, and Integer Linear Programming (ILP).

Concorde-http://www.math.uwaterloo.ca/tsp/concorde.html

m Approximation algorithms
= Minimum Spanning Tree (MST) heuristic with L < 2Lp;.

= Christofides’s algorithm with L < 32 .
opt

Heuristic algorithms
= Constructive heuristic — Nearest Neighborhood (NN) algorithm;
m 2-Opt — local search algorithm proposed by Croes 1958;
= LKH - K. Helsgaun efficient implementation of the Lin-Kernighan
heuristic (1998). http://www.akira.ruc.dk/ keld/research/LKH/ Problem Berlin52 from the TSPLIB

Combinatorial meta-heuristics

m Variable Neighborhood Search (VNS);
= Greedy Randomized Adaptive Search Procedure (GRASP).

Soft-computing techniques, evolutionary methods, and unsupervised learning.
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MST-based Approximation Algorithm to the TSP

® Minimum Spanning Tree heuristic
1. Compute the MST (denoted T) of the input graph G.

2. Construct a graph H by doubling every edge of T.
3. Shortcut repeated occurrences of a vertex in the tour.

® For the triangle inequality, the length of such a tour L is
L < 2Loptimala

where Loptimar is the cost of the optimal solution of the TSP.
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Multi-goal Planning

Christofides's Algorithm to the TSP

m Christofides's algorithm

1. Compute the MST of the input graph G.

2. Compute the minimal matching on the odd-
degree vertices.

3. Shortcut a traversal of the resulting Eulerian
graph.

MST Matching Final tour
® For the triangle inequality, the length of such a tour L is

3
L < ELoptimalv
where Loptimar is the cost of the optimal solution of the TSP.
Length of the MST is < Loptimar

Sum of lengths of the edges in the matching < %Lopt,-ma,
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Multi-goal Planning

2-Opt Heuristic

1. Use a construction heuristic to create an initial route
® NN algorithm, cheapest insertion, farther insertion
2. Repeat until no improvement is made

2.1 Determine swapping that can shorten the tour (i, ) for
1<i<nandi+1<j<n

route[0] to route[i-1];

route[i] to route[j] in reverse order;

route[j] to route[end];

Determine length of the route;

Update the current route if the length is shorter than the
existing solution.

8 e

Croes, G.A.: A method for solving traveling salesman problems, Operations Research 6:791-812, 1958.
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Multi-goal Planning

Overview of the Variable Neighborhood Search (VNS) for the TSP

= Variable Neighborhood Search (VNS) is a metaheuristic for solving combinatorial optimization and global optimiza-
tion problems by searching distant neighborhoods of the current incumbent solution using shake and local search.

. Mladenovi¢ and Hansen, 1997
1. Shake procedure explores the neighborhood of the current so-

Insert

lution to escape from a local minima using operators:
® Insert — moves one element;
= Exchange — exchanges two elements.
2. Local search procedure improves the solution by

= Path insert — moves a subsequence;
®  Path exchange — exchanges two subsequences.

Algorithm 1: VNS-based Solver to the TSP

Input: S — Set of the target locations to be visited.
Output: ¥ — Found sequence of visits to locations S.

Y * < Initial sequence found by cheapest insertion
while terminal condition is not met do
¥/ <+ shake(X*)
for n?-times do
Y + localSearch(X’)
if X" is "better” than ¥’ then
L Y // Select ¥” instead of ¥’

if £ is “better” than £* then
| T*« % // Replace the incumbent sequence.

return **
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Multi-goal Planning

Multi-Goal Path Planning (MTP) Problem

® MTP problem is a robotic variant of the TSP with the edge
costs as the length of the shortest path connecting the locations.

® Variants of the robotic TSP includes additional constraints arising
from limitations of real robotic systems such as
m obstacles, curvature-constraints, sensing range, location precision.

m For n locations, we need to compute up to n® shortest paths.

® Having a roadmap (graph) representing Cfee, the
paths can be found in the graph (roadmap), from
which the G(V,E) for the TSP can be constructed.

Visibility graph as a roadmap for a point robot provides a straight forward
solution, but such a shortest path may not be necessarily feasible for more
complex robots.

® We can determine the roadmap using randomized sampling-based
motion planning techniques. See lecture 8.
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Inspection Planning Multi-goal Planning

Multi-goal Path Planning with Goal Regions

= |t may be sufficient to visit a goal region instead of the particular point location.

-
Camerajfor=—
navigation. ===

Not only a sequence of goals visit has to be determined, but also an appropriate location at each region has to be found.

The problem with goal regions can be considered as a variant of the @
Traveling Salesman Problem with Neighborhoods (TSPN).
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Jan Faigl,

Multi-goal Planning

Traveling Salesman Problem with Neighborhoods

Given a set of n regions (neighbourhoods), what is the shortest closed path that visits
each region.

The problem is NP-hard and APX-hard, it cannot be approximated to within factor
2 — ¢, where € > 0. Safra and Schwartz (2006) — Computational Complexity

Approximate algorithms exist for particular problem variants such as disjoint unit disk
neighborhoods.

TSPN provides a suitable problem formulation for planning various inspection
and data collection missions.

It enables to exploit non-zero sensing range, and thus find shortest (more cost-efficient)
data collection plans.
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Multi-goal Planning

Traveling Salesman Problem with Neighborhoods (TSPN)

= Instead visiting a particular location s € S, s € R? as in the TSP, we request to visit a set of

regions R = {r,...,r}, ri C R? to save travel cost.

® The TSP becomes the TSP with Neighborhoods (TSPN) where, in addition to the deter-
mination of the sequence X, we determine a suitable locations of visits P = {pq,...,p,}
P; € r.

® The problem is a combination of combinatorial optimization to determine ¥ with continuous
optimization to determine P.

n—1
minimize 5 p L= (Z c(pc,,,,pgm)) +c(p,,, Py,)
i=1

subject to R={n,....,r},r CR?

P = {plv"'7pn}api S

ZZ(O'l,...,U,,),]. <o < n,

a; 7é 0j for i 75]

Foreach r; € R there is p; € r;.
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Multi-goal Planning

Approaches to the TSPN

m A direct solution of the TSPN — approximation algorithms and heuristics

E.g., using evolutionary techniques or unsupervised learning

® Euclidean TSPN with, disk-shaped § neighborhoods is called Closed Enough TSP (CETSP).
® Simplified variant with regions as disks with radius § — remote sensing with the § communication range.
= Decoupled approach

1. Determine sequence of visits & independently on the locations P, e.g., as a solution of
the TSP using centroids of the (convex) regions R.

2. For the sequence ¥ determine the locations P to minimize the total tour length using

= Touring polygon problem (TPP);

® Sampling possible locations and use a forward search for finding the best locations;

= Continuous optimization such as hill-climbing.

E.g., Local Iterative Optimization (LIO), Vana & Faigl (IROS 2015)
= Sampling-based approaches

= For each region, sample possible locations of visits into a discrete set of locations for each region.
= The problem can be then formulated as the Generalized Traveling Salesman Problem (GTSP).
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Multi-goal Planning

Close Enough Traveling Salesman Problem (CETSP)
® Close Enough TSP (CETSP) is a variant of the TSPN with disk shaped d-neighborhoods.

A solution of the TSP for the centers of the disks A solution of the CETSP
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Multi-goal Planning

Decoupled Sampling-based Solution of the TSPN / CETSP

m Decoupled — Determine sequence of visits as a solution of the Euclidean TSP for the repre-
sentatives of the regions R, e.g., using centroids.

® Sample each region (neighborhood) with k samples, e.g., k = 6.

= Construct graph and find the shortest tour in by graph search in O(nk3) for n regions and nk?

edgeS in the sequence. For the closed path, we need to examine all k possible starting locations.
T1 T T3 Th
s 0 N s ] N s ) N s 0 N
D 1 p2 b 3 b n
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Multi-goal Planning

lterative Refinement in the Multi-goal Planning Problem with Regions

® Let the sequence of n polygon regions be R = (r1,...,r,).

. Li, F., _Klettg, R.: Approximate algorithn:ns for touring a sequence of polygons. 2008
1. Sampling regions into a discrete set of points and determine all shortest paths

between each sampled points in the sequence of visits to the regions.
E.g., using visibility graph
2. Initialization: Construct an initial touring polygons path using a sampled point
of each region. Let the path be defined by P = (py, p5,...,P,), where p; € r;
and L(P) be the length of the shortest path induced by P.
3. Refinement: For i = 1,2,... n:
= Find pf € r; m|n|m|zmg ‘the length of the path d(p;_1,p}) + d(p}, Piy1).
where d(pk,p,) is the path length from p, to p;, pg = p,, and p,,; = p;.
= If the total length of the current path over point p} is shorter than over p;,
replace the point p; by p;.
4. Compute the path length Ljen using the refined points.
Termination condition: If Lpew — L < € Stop the refinement. Otherwise
L < Lpew and go to Step 3.

6. Final path construction: Use the last points and construct the path using the

shortest paths among obstacles between two consecutive points.
On-line sampling during the iterations — Local Iterative Optimization (L1O),

Vaha & Faigl (IROS 2015).
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Unsupervised Learning for Multi-goal Planning TSPN in Multi-goal Planning with Localization Uncertainty

Part |l

Part 2 — Unsupervised Learning for Multi-goal Planning
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Unsupervised Learning for Multi-goal Planning TSPN in Multi-goal Planning with Localization Uncertainty

Outline

= Unsupervised Learning for Multi-goal Planning
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Unsupervised Learning for Multi-goal Planning

Unsupervised Learning based Solution of the TSP
Iterative learning procedure where neurons (nodes) adapt
to the target locations.

Based on self-organizing map by T. Kohonen.
Somhom, S., Modares, A., Enkawa, T. (1999)

Deployed in robotic problems such as inspection and
search-and-rescue planning. Faigl, J. et al. (2011)
= Generalized to polygonal domain with (overlapping) regions.

Evolved to Growing Self-Organizing Array (GSOA).
A general heuristic for various routing problems with neighborhoods; in-
cluding routing problems with profit aka the orienteering problem.

B
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Unsupervised Learning for Multi-goal Planning

Unsupervised Learning based Solution of the TSP

Kohonen's type of unsupervised two-layered neural network (Self-Organizing Map)

= Neurons' weights represent nodes N' = {v1,...,Uum}
in a plane (input space R?).

= Nodes are organized into a ring that evolved in the out-
put space R?).

® Target locations S = {sq,..
network in a random order.

.Sp} are presented to the

= Nodes compete to be winner according to their distance
to the presented goal s

v* =argmin,c [ D({v, s)|.

® The winner and its neighbouring nodes are adapted
(moved) towards the target according to the neighbour-

ing function V' < pf(o,d)(v —s)
42
f(o,d) = e o2 ford < m/ny,
0 otherwise,

Best matching unit v to the presented prototype s is
determined according to the distance function |D(v, s)|.
Jan Faigl, 2025

B4M36UIR — Lecture 06: Multi-goal Planning
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For the Euclidean TSP, D is the Euclidean distance
However, for problems with obstacles, the multi-goal
path planning, D should correspond to the length of
the shortest, collision-free path.

Fort, J.C. (1988), Angéniol, B. et al. (1988), Somhom,
S. et al. (1997), and further improvements.
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Unsupervised Learning for Multi-goal Planning

Unsupervised Learning based Solution of the TSP - Detail

= Target (sensor) locations S = {s1,...,sn}, s; € R?; Neurons N = (v1,...,Um), v; € R?, m=25n.
® Learning gain o; epoch counter i; gain decreasing rate a = 0.1; learning rate 1 = 0.6.

1. N < init ring of neurons as a small ring around some s; € S, e.g., a circle with radius 0.5.
2. i<+ 0; 0+ 12.41n+ 0.06; !
" °°""_e‘:'°" 1 sensor location i
3. 1«0 //clear inhibited neurons ::s:ﬁ::‘e weights ) 5= (S i)
5= (s ’,ALZ)
4. foreach s ¢ I'I(S) (a permutation of S) ; %)
4.1 v* < argmin, ez [[(v, 8)]] , e /
4.2 foreach v in d neighborhood of v* \ o
V< v+ [,Lf(O', d)(S — V) iz m-1 %fconn;‘med
— a2 input layer . nodes
P m Sz
flod) =3 ¢ for d < 0.2m, 0.
' Termination condition can be
43 |« I U{v*} // inhibit the winner ® Maximal number of learning epochs i < imax, e.g.,
5. o« (l—a)oi+i+1; imax = 120.
6. If (termination condition is not satisfied) Goto Step 3; ™ Winner neurons are negligibly close to sensor locations,
Otherwise retrieve solution. e.g., less than 0.001.

Somhom, S., Modares, A., Enkawa, T. (1999): Competition-based neural network for the multiple travelling salesmen
problem with minmax objective. Computers & Operations Research.
Faigl, J. et al. (2011): An application of the self-organizing map in the non-Euclidean Traveling Salesman Problem.
Neurocomputing.

Jan Faigl, 2025 B4M36UIR — Lecture 06: Multi-goal Planning 33 /46




Unsupervised Learning for Multi-goal Planning

Example of Unsupervised Learning for the TSP

g ° °
[ ]
° ° [ L] ° °
Learning epoch 12 Learning epoch 35
L4 °
[ ] [ ]
Learning epoch 42 Learning epoch 53

Jan Faigl, 2025
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Unsupervised Learning for Multi-goal Planning

Unsupervised Learning for the Multi-Goal Path Planning
m Unsupervised learning procedure for the Multi-goal Path Planning (MTP) problem a robotic
variant of the Traveling Salesman Problem (TSP).

Algorithm 2: SOM-based MTP solver

N < initialization(v1, . .., Vm);

repeat

error < 0;

foreach g € (S) do
v

selectWinner argmin, s |S(g, V)

adapt(S(g,v), pf (0, 1)|S(g, V)I);
error + max{error,|S(g,v*)|};

1

o+ (1—a)o;
until error < §;

® For multi-goal path planning — the selectWinner and
adapt procedures are based on the solution of the
path planning problem.

Faigl, J., Kulich, M., Vonasek, V., Preudil, L.: An Application of Self-Organizing Map in the non-Euclidean
Traveling Salesman Problem, Neurocomputing, 74(5):671-679, 2011.
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Unsupervised Learning for Multi-goal Planning

SOM for the TSP in the Watchman Route Problem — Inspection Planning

During the unsupervised learning, we can compute coverage of W from the current ring (solution
represented by the neurons) and adapt the network towards uncovered parts of W.

m Convex cover set of W created on top of a triangular mesh.

® Incident convex polygons with a straight line segment are found by walking in a triangular mesh.

AL LI

L
]

< J
|

7/ TN

i

L]

A

1IN

Faigl, J.: Approximate solution of the multiple watchman routes problem with restricted visibility range, |IEEE
Transactions on Neural Networks, 21(10):1668-1679, 2010.
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Unsupervised Learning for Multi-goal Planning

Unsupervised Learning for the TSPN
® A suitable location of the region can be sampled during the winner selection.

® \We can use the centroid of the region for the shortest path computation from 7
v to the region r presented to the network.

® Then, an intersection point of the path with the region can be used as an

alternate location.
Faigl, J. et al. (2013): Visiting convex regions in a polygonal map. Robotics and Autonomous
Systems.

® For the Euclidean TSPN with disk-shaped § neighborhoods, we can compute
the alternate location directly from the Euclidean distance.

([ Y ([
— —
connected neurons connected neurcN.
commumganon range & @/‘
/ b’ alternate
location
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Unsupervised Learning for Multi-goal Planning

SOM for the Traveling Salesman Problem with Neighborhoods (TSPN)

m Unsupervised learning of the SOM for the TSP allows to generalize the adaptation procedure to the TSPN.
= |t also provides solutions for non-convex regions, overlapping regions, and coverage problems.

Polygonal Goals Convex Cover Set Non-Convex Goals
n=9, T=0.32s n=106, T=5.1s n=5, T=0.1s

Faigl, J., Vonasek, V., Preudil, L.: Visiting Convex Regions in a Polygonal Map, Robotics and Autonomous
Systems, 61(10):1070-1083, 2013.
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Unsupervised Learning for Multi-goal Planning

Growing Self-Organizing Array (GSOA)

® Growing Self-Organizing Array (GSOA) is generalization of the unsupervised learning to routing problems
motivated by data collection planning, i.e., routing with neighborhoods such as the Close Enough TSP.

® The GSOA is an array of nodes N' = {v1,...,vp} that evolves in the problem space using unsupervised learning.

® The array adapts to each s € S (in a random order) and for each s a new winner node v* is determined
together with the corresponding s;, such that [|(sp, s)|| < d(s). It adaptively adjusts the number of nodes.

® The winner and its neighborhoods are adapted (moved) towards sp.

® After the adaptation to all s € S, each s has its v and sp, and the array defines the sequence ¥ and the
requested waypoints P.
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Unsupervised Learning for Multi-goal Planning

GSOA — Winner Selection and Its Adaptation

® Selecting winner node v* for s and its waypoint s, ® Winner adaptation

Viti

~Q V-1

For each s € S, we create new node v*, and therefore, all not winning nodes are removed after
processing all locations in S (one learning epoch) to balance the number of nodes in the GSOA.

After each learning epoch, the GSOA encodes a feasible solution of the CETSP.
The power of adaptation is decreasing using a cooling schedule after each learning epoch.

The GSOA converges to a stable solution in tens of epochs. Number of epochs can be set.

Faigl, J. (2018): GSOA: Growing Self-Organizing Array - Unsupervised learning for the Close-Enough Traveling Salesman Problem
and other routing problems. Neurocomputing 312: 120-134 (2018).
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Unsupervised Learning for Multi-goal Planning TSPN in Multi-goal Planning with Localization Uncertainty

GSOA Evolution in solving the 3D CETSP
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Unsupervised Learning for Multi-goal Planning TSPN in Multi-goal Planning with Localization Uncertainty

Outline

= TSPN in Multi-goal Planning with Localization Uncertainty
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TSPN in Multi-goal Planning with Localization Uncertainty

Example — TSPN for Planning with Localization Uncertainty

® Teach-and-repeat autonomous navigation using vision-based
bearing corrections that are more precise than estimation of

the traveled d

istance based on odometry me

Krajnik, T., Faigl, J., Vonasek, V., Kosnar, K., Kulich, M.,
and Preuéil, L.: Simple yet stable bearing-only navigation,

asurements.

Journal of Field Robotics, 27(5):511-533, 2010.

m The localization uncertainty can be decreased by visiting

auxiliary navigation waypoints prior the target locations.

= |t can be formulated as a variant of the TSPN with auxiliary

navigation waypoints.

position position

uncertainty Tty 5

uncertainty

auxiliary naviga
waypoint

increased uncertainty
in longitudial direction .
selected perimeter

® The adaptation procedure is modified to select the auxiliary navi-

gation waypoint to decrease the expected localization error at the
target locations.

Faigl, J., Krajnik, T., Vonasek, V., and Preucil, L.: On localization uncertainty in an autonomous inspection, |IEEE
International Conference on Robotics and Automation (ICRA), 2012, pp. 1119-1124.
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TSPN in Multi-goal Planning with Localization Uncertainty

Example — Results on the TSPN for Planning with Localization Uncertainty

= Deployment in indoor and outdoor environment with ground mobile robots and
aerial vehicle in indoor environment. i st
= For the MMP5 robot, the error decreased from 16.6 cm — 12.8cm in indoor.
= For the P3AT robot, the real overall error at the goals decreased from 0.89 m 3
— 0.58m (about 35 %) in outdoor. f
® For a small aerial vehicle, the Parrot AR.Drone, the success of the locations’ — 8]
visits improved from 83 % to 95 %. s
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TSP: L=184m, E5,;=0.57m TSPN: L=202m, E,,z=0.35m
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Topics Discussed

Summary of the Lecture
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Topics Discussed

Topics Discussed

Robotic information gathering in inspection missions

Inspection planning and multi-goal path planning - coverage planning
Multi-goal path planning (MTP)

® Robotic Traveling Salesman Problem (TSP)

m Traveling Salesman Problem with Neighborhoods (TSPN) and Close Enough Traveling
Salesman Problem (CETSP)

Decoupled and Sampling-based approaches

TSP can be solved by efficient heuristics such as LKH

Optimal, approximation, and heuristics solutions
Generalized TSP (GTSP)

Next: Data collection planning
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