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Part I

Preliminaries: Mobile Robot Exploration
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Mobile Robot Exploration Explicit Information in Exploration

Mobile Robot Exploration
Mobile robot exploration – the problem to create a model of an environment using
a mobile robot.

� In state-of-the-art exploration, a spatial grid map is the model being built.
� Frontier exploration - seek frontiers, the borders between known free and unexplored space.

Yamauchi, CIRA, 1997

Bayer et al., in ECMR, 2019.

� A related field learns phenomena underlying a spatial model.
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Mobile Robot Exploration as Information Gathering
� Mobile robot exploration is an informative path planning problem

path∗ = argmaxpathI (path) s.t. cost(path) ≤ budget
Hollinger and Sukhatme, IJRR, 2014

� On an occupancy grid map, observing a cell yields
information based on binary distribution entropy

H(c) = −p log(p)− (1− p) log(1− p)

s.t. p = p(c is occupied | observations),
and quite often I (c) ≈ H(c).

� Assuming independent cells, an action yields
information equal to the sum over observed cells

I action(a) =
∑

c observed through a

I cell(c)
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Information Gathering in Elevation Gridmaps

� Elevation grid maps cells describe elevation instead of occupancy.
� Hence, they do yield occupancy binary distribution entropy.
� Given’s the robot traversability model, occupancy information can be extracted as

I action(a) =
∑

c observed through a

I cell(c),

I cellelev(c) =
#unknown cells in neighborhood of c + 1

9
,

for a hexapod walker step-based traversability based on cell’s 8
neighborhood.
For how many cells will this observation improve the
traversability knowledge?
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Observing the Occupancy
� Occupied areas occlude further cells along a ray.
� The distance reported by the beam b intersecting cells C (b)

p(zb) =

C(b)∑
c

p(zb|c = o1)p(c = o1),

o1 = the first occupied cell in inC (b).

� The information can be computed analytically if
Cauchy-Schwarz Quadratic MI is used

ICS(m, z |a) =
(∑

m

∫
p(m, z |x)p(m)p(z |x)dz

)2∑
m

∫
p2(m, z |x)dz

∑
m

∫
p2(m)p2(z |x)dz

.

� Approximation based on relation of cell size to beam variance
leads to (O)(C (b)).

� Multiple beams combined under the assumption of near
independence.

Charrow et al., Information-theoretic mapping using CSMQI, in ICRA, 2015.
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Part II

Kriging
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Modeling Spatial Phenomena

Learning Underlying Phenomena
� Model phenomena underlying the spatial model, i.e., function of position.
� Gaussian Processes are popular since given noisily observed y = f (x) + ε, ε ∈ N (0, σ2

n) they
model a normal predictive distribution and thus prediction uncertainty.

f (x) ∼ GP(m(x),K (x , x ′)),m(x) = E [f (x)] ,K (x , x ′) = E [(f (x)−m(x)) (f (x ′)−m(x ′))] .

� Given the training data X and y , and the query points X∗, the
GP regression is Rasmussen and Williams, 2006.

µ(X∗) = K∗
[
K + σ2

n I
]−1

y ,

(σ(X∗))
2 = K∗∗ − KT

∗
[
K + σ2

n I
]−1

K∗,

where K=K(X ,X ),K∗=K(X ,X∗),K∗∗=K(X∗,X∗)

using, e.g., K (x , x ′) = σ2
K exp

(
− 1

2
(x−x′)2

l2K

)
where the hyper-params are often optimized for.

� GP inf. gain using differential entropy

H(N (µ, σ2)(x)) =
1
2
log(2πeσ2(x))

Luo and Sycara, in ICRA, 2018.
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Modeling Spatial Phenomena

Multi-robot Sensor Coverage
� Multi-robot exploration-exploitation scenario for monitoring of spatial distribution of φ(x).
� Scenario split into Voronoi cells Vi assigned to n individual agents xi with cost

cost(xi , . . . , xn) =
n∑
i

∫
q∈Vi

‖q − xi‖φ(q)dq.

� φ(x) modeled as mixture of GPs, location-model assignment P(z(q) = i) updated using EM.
� Gaussian Process Upper Confidence Bound strategy for robot i in Voronoi cell Vi

hi (q) = argmaxq∈Vi
µ(q) + β(σ(q))2,

� leading to the Voronoi-centroid seeking control law
x∗i = kp(centroid(Vi )− xi ), where q∗i =

∫
Vi
qhi (q)dq∫

Vi
hi (q)dq

= centroid(Vi ).

Luo and Sycara, Adaptive Sampling and Online Learning in Multi-Robot Sensor Coverage with Mixture of GPs, in ICRA, 2018.
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Part III

Simultaneous Learning and Exploration
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Self-improving Traversability Models
Traversability over terrain predicted from its appearance

Traversability prediction
Terrain appearance→ Predicted traversability

� Terrain appearance descriptors such shape, color, or texture.

� State-of-the-art near-to-far methods learn traversability from
robot’s traversal experience.

� Robots encounter a priori unknown terrains during the
autonomous missions deployments.

� Pre-learned model might not cover terrain property not obvious
from appearance.

� Adapt by learning incrementally from experience.

Incremental traversability learning
Experienced traversability + Terrain appearance→ Traversability model
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Spatial Exploration and Active Traversability Learning
� Online decision making problem where to explore and where to learn.

Spatial modeling
� Colored elev. gridmap from

RGB-D.
� Seeking closest frontier.

Cheapest to reach w.r.t. the learned costs.

� Unpassable areas filtered based on
geometry.

Traversal cost modeling
� Cost over passable areas based on appearance and

geometric features, but the relation is a priori
unknown.

� Seek the most uncertain terrain based on its
appearance.

� The robot experience is accrued continuously from
traversal.

Environment representation Traversal cost modeling Model inference Exploration

Traversal cost map

Confidence map

Terrain descriptors

Traversability map

[0.12, 2.34, … , 0.30]
[1.14, 3.76, … , 0.11]
… 
[0.33, 1.07, … ,0.76] 

2.5D map

Exteroception

Proprioception

Traversal cost model

Frontier selection 

Robust Bayesian 
Committee Machine

GP1 GP2 GPk… 

Goal selection and 
Path planning
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Motivation: Self-improving Traversability Models Online Learning in Mobile Robot Exploration Non-myopic Learning with Multiple Models

Incrementally Learning a Gaussian Process
� GPs have useful properties for active learning, but are costly to learn.
Cubic w.r.t. samples before hyper-parameter optimization.
Solutions focus on sparsity or combining smaller GPs.

� Product of size-bounded GP experts which are added continuously.
Linear w.r.t. samples (number of GP experts).

µRBCM(X∗) = (σRBCM(X∗))
2

k∑
i=1

βi (X∗)(σi (X∗))
−2µi (X∗),

(σRBCM(X∗))
−2 =

(
1−

k∑
i=1

βi (X∗)

)
(K∗∗)

−1 +
k∑

i=1

βi (X∗)(σi (X∗))
−2,

βi (X∗) = 0.5
(
log(K∗∗)− log((σi (X∗))

2)
)
.

Deisenroth and Ng, in ICML, 2015.
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Selecting Goals in Simultaneous Learning and Exploration
� Myopic goal selection - limit traversal of unknown terrains by learning their traversability
first.
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Exploring Multiple Models at Once

� Exploration objectives yielded by different model types are difficult to combine.
� Spatial/geometry, traversability, temperature, position, communication/signal strength.

� A particular issue stems from combining binary and normal distributions.
� Binary distribution - occupancy; normal distribution - GPs and position uncertainty.
� Entropy and differential entropy scale differently with map size.

� How to combine exploration of two (or more) heterogeneous models?
� Ignore the issue - scale entropies or switch between models using a threshold.

Bourgalt et al., in IROS, 2002; Prágr et al., in RSS, 2019.

� Make one dominant - path over secondary goals while navigating to the primary
goals. Karolj et al., Sensors, 2020.

� Use one to weight the other - Rényi entropy - spatial exploration not useful when
lost. Carrilo et al., AuRo, 2018.

� Decouple models - solve a multigoal planning tasks over goals from all models.
Prágr et al., Frontiers in Robotics and AI, 2022.
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Exploration with Secondary Model Learning

� Frontier-based exploration.
� Spatial kriging for

magnetism modeling.
� Route over all local

magnetism goals while
moving to the frontier.

Karolj et al., Sensors, 2020.
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Motivation: Self-improving Traversability Models Online Learning in Mobile Robot Exploration Non-myopic Learning with Multiple Models

Traversability over Non-rigid Terrains

Non-rigidity assumption: obstacles cannot be distin-
guished from geometry alone.

E.g., obstacles such as walls and tall grass.

� Some obstacles are not rigid and can be walked through.

� Traversability extended to obstacles as their rigidity.
� Haptic traversability captured as the force to pass through.
� The model can be considered robot-agnostic.
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Exploring an Escape Scenario
� The robot needs to escape from an enclosed arena, where some of the walls are fake -
color-coded curtains.

� Obstacles are only interesting when you run out of options: spatial exploration prioritized.
� Obstacle interaction is rare, and data are sparse by default. Learn after interaction.
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Decoupled Models: Learning Costs of Walking Robot Gaits
� Non-myopic exploration with multiple models learning.

Prágr, et al., Frontiers in Robotics and AI, 2022.

� Each model generates set of goals that need to be visited to fully learn the model.
� Each spatial frontier or terrain cluster is a goal with multiple locations.

Cluster terrains using Growing Neural Gas in appearance space.

� Then, the goal sequence can be solved for as
a Generalized Traveling Salesman Problem
(TSP).

FRONTIER

KNOWN TERRAIN TYPE
DARK

UNKNOWN TERRAIN TYPE
MEDIUM

UNKNOWN TERRAIN TYPE
MEDIUM

UNKNOWN TERRAIN
TYPE LIGHT

FRONTIER

ROBOT
LOCATION
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Part IV

Exploration with Neural Fields
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Implicit Neural Representations Active Neural Mapping

Implicit Neural Representations

� Environment property y encoded in the learned function y = f (x).
Compared to discretized distributions, complex signal stored at low size with high fidelity.

� 3D environment model is represented as signed distance field.
� y represents the orthogonal distance to the environment boundary.

y → 0 at environment boundary, y < 0 in the exterior , y > 0 in the interior.

V. Sitzmann et al., Implicit Neural Representations with Periodic Activation Functions, in NeurIPS, 2020.
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Implicit Neural Representations Active Neural Mapping

Active Neural Mapping
� Exploration through distinguishing true and false surface (boundary) points.
� By intuition, the true surface point x+ should be in a low-loss basin w.r.t. f (x ,θ(u, v)).
� By intuition, the false surface point (̃frontier) x− only reaches low-loss once.

� Identify areas to explore as those most susceptible to network
perturbation

x∗ = argmaxxVθ̂∼N (θ,b2I )

[
f (x , θ̂)

]
.

Yan, Yang, and Zha, Active Neural Mapping, in ICCV, 2023.
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Structuring Neural Field into a Navigation Map
� NerF Exploration sped up by the addition of Voronoi graph.
� Regions of interest clustered and assigned to Voronoi vertices.
� Navigation to the exploration goals along the Voronoi edges.

Kuang et al., Active Neural Mapping at Scale, in IROS, 2024.
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Summary of the Lecture
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Topics Discussed

Topics Discussed

� Mobile robot exploration as information gathering.

� Kriging and multi-robot sensor coverage.

� Active learning in mobile robot exploration.

� Exploring multiple models at once.

� Implicit neural representations.

� Active neural mapping.
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