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Mobile Robot Exploration Explicit Information in Exploration

Mobile Robot Exploration

Mobile robot exploration — the problem to create a model of an environment using
a mobile robot.

= |n state-of-the-art exploration, a spatial grid map is the model being built.

= Frontier exploration - seek frontiers, the borders between known free and unexplored space.
Yamauchi, CIRA, 1997
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Bayer et al., in ECMR, 2019.
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Explicit Information in Exploration

Mobile Robot Exploration as Information Gathering

= Mobile robot exploration is an informative path planning problem

path™ = argmax,,/(path) s.t. cost(path) < budget
Hollinger and Sukhatme, 1JRR, 2014
® On an occupancy grid map, observing a cell yields - R
information based on binary distribution entropy 0 1200 2400 3600

Information Gain of Geometric Model [bit]
H(c) = —plog(p) — (1 — p) log(1 — p)
s.t. p = p(c is occupied | observations),
and quite often /(c) =~ H(c).

® Assuming independent cells, an action yields
information equal to the sum over observed cells

Iaction(a) — Z Icell(c)

c observed through a
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Explicit Information in Exploration

Information Gathering in Elevation Gridmaps

= Elevation grid maps cells describe elevation instead of occupancy.
® Hence, they do yield occupancy binary distribution entropy.

= Given's the robot traversability model, occupancy information can be extracted as

—_— — | —

0 120 2400 3600

ti Il Information Gain of Geometric Model [bit]

ac lon( ce

/ a) = E 1" (¢),
c observed through a

el (o) = #unknown cells in neighborhood of ¢ + 1

elev 9 ’

for a hexapod walker step-based traversability based on cell’s 8
neighborhood.

For how many cells will this observation improve the
traversability knowledge?
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Explicit Information in Exploration

Observing the Occupancy

® Occupied areas occlude further cells along a ray.

® The distance reported by the beam b intersecting cells C(b) 2]
C(b) AT
p(z°) = p(z°|c = o")p(c = o), =
Cc
1

o' = the first occupied cell in inC(b).
® The information can be computed analytically if
Cauchy-Schwarz Quadratic Ml is used

2
/Cs(m7z|a) — (Zm fp(m; Z|X)p(m)p(z|x)dz)

Yom [ PP(m,2x)dz 37, [ p(m)p?(z|x)dz’ e
m Approximation based on relation of cell size to beam variance
leads to (O)(C(b)).
u

Multiple beams combined under the assumption of near !
independence.

Charrow et al., Information-theoretic mapping using CSMQI, in ICRA, 2015.
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Modeling Spatial Phenomena

Learning Underlying Phenomena

®= Model phenomena underlying the spatial model, i.e., function of position.
= Gaussian Processes are popular since given noisily observed y = f(x) +¢,e € N(0,02) they
model a normal predictive distribution and thus prediction uncertainty.

F(x) ~ GP(m(x), K(x,x)), m(x) = E [f(x)], K(x,x) = E[(f(x) — m(x)) (f(x') = m(x))].

m Given the training data X and y, and the query points X,, the
GP regression is Rasmussen and Williams, 2006.

p(X) = K. [K+ 020y,
(0(X))? = Kew — K] [K +021] ' K.,

Temperature (degrees Celsius)

=
where K=K (X, X),Ki=K(X,Xx),Kerx=K(Xs,X.) s =T é
. 1 X—X, 2
using, e.g., K(x,x') = 0% exp (_EKTL> ,

where the hyper-params are often optimized for.

® GP inf. gain using differential entropy Luo and Sycara, in ICRA, 2018.

HN (1, 0%)(x)) = 5 log(2me0?(x))
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Modeling Spatial Phenomena

Multi-robot Sensor Coverage

Multi-robot exploration-exploitation scenario for monitoring of spatial distribution of ¢(x).
Scenario split into Voronoi cells V; assigned,to n individual agents x; with cost
costliv- - x) = 3 [ lla= xllo(a)da.
i qeV;
¢(x) modeled as mixture of GPs, location-model assignment P(z(q) = i) updated using EM.
Gaussian Process Upper Confidence Bound strategy for robot 7 in Voronoi cell V;
hi(q) = argmaxgey, () + 5(o(a))?,

leading to the Voronoi-centroid seeking control law

& s Iy, ahi(q)dq

x; = kp(centroid(V;) — x;), where q; = T h(a)da = centroid(V}).
\/’_ 1
e § i s Y ey "
10 B . | ,"/1_ g

. (€) Actual temperature distribution
(a) Initial configurations (b) Converged final configurations v

Luo and Sycara, Adaptive Sampling and Online Learning in Multi-Robot Sensor Coverage with Mixture of GPs, in ICRA, 2018.
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Motivation: Self-improving Traversability Models

Self-improving Traversability Models

Traversability over terrain predicted from its appearance

Traversability prediction
Terrain appearance — Predicted traversability

m Terrain appearance descriptors such shape, color, or texture.
m State-of-the-art near-to-far methods learn traversability from
robot’s traversal experience.

® Robots encounter a priori unknown terrains during the
autonomous missions deployments.

® Pre-learned model might not cover terrain property not obvious
from appearance.

m Adapt by learning incrementally from experience.

Incremental traversability learning
Experienced traversability + Terrain appearance — Traversability model
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Motivation: Self-improving Traversability Models Online Learning in Mobile Robot Exploration Non-myopic Learning with Multiple Models

Spatial Exploration and Active Traversability Learning

= Online decision making problem where to explore and where to learn.

Spatial modeling Traversal cost modeling
m Colored elev. gridmap from = Cost over passable areas based on appearance and
RGB-D. geometric features, but the relation is a priori
unknown.

m Seeking closest frontier.
Cheapest to reach w.r.t. the learned costs. ~ m Seek the most uncertain terrain based on its

m Unpassable areas filtered based on appearance.
geometry. ® The robot experience is accrued continuously from
traversal.
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Online Learning in Mobile Robot Exploration

Incrementally Learning a Gaussian Process

m GPs have useful properties for active learning, but are costly to learn.
Cubic w.r.t. samples before hyper-parameter optimization.
Solutions focus on sparsity or combining smaller GPs.

® Product of size-bounded GP experts which are added continuously.
Linear w.r.t. samples (number of GP experts).

precm(Xs) = (orBeMm(X Zﬂl(X oi(X.)) (X,

K
(orBCM(X4)) (1 - Zﬁ: (X )) (Kes) ™1 4 Zﬁi(X*)(Ui(X*))_27
Bi(X.) = 0.5 (log(Ks) — |°g((Ui(X*))2)) :

Deisenroth and Ng, in ICML, 2015.
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Motivation: Self-improving Traversability Models Online Learning in Mobile Robot Exploration Non-myopic Learning with Multiple

Selecting Goals in Simultaneous Learning and Exploration

® Myopic goal selection - limit traversal of unknown terrains by learning their traversability
first.

|
0.0 0.002
RBCM Predictive Std

| Cost Frontier - High Predictive Std |

—
Traversable Non-Traversable
Traversability Assessment

0.002

The fidelity of the traversal cost model is improved by deliberately

navigating low confidence areas, represented by high predictive std. e
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Non-myopic Learning with Multiple Models

Exploring Multiple Models at Once

m Exploration objectives yielded by different model types are difficult to combine.
® Spatial/geometry, traversability, temperature, position, communication/signal strength.
® A particular issue stems from combining binary and normal distributions.

= Binary distribution - occupancy; normal distribution - GPs and position uncertainty.
= Entropy and differential entropy scale differently with map size.

= How to combine exploration of two (or more) heterogeneous models?

® |gnore the issue - scale entropies or switch between models using a threshold.
Bourgalt et al., in IROS, 2002; Pragr et al., in RSS, 2019.

= Make one dominant - path over secondary goals while navigating to the primary
goals. Karolj et al., Sensors, 2020.

m Use one to weight the other - Rényi entropy - spatial exploration not useful when
lost. Carrilo et al., AuRo, 2018.

= Decouple models - solve a multigoal planning tasks over goals from all models.
Pragr et al., Frontiers in Robotics and Al, 2022.
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Non-myopic Learning with Multiple Models

Exploration with Secondary Model Learning
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Karolj et al., Sensors, 2020.
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Motivation: Self-improving Traversability Models Online Learning in Mobile Robot Exploration Non-myopic Learning with Multiple Models

Traversability over Non-rigid Terrains

Non-rigidity assumption: obstacles cannot be distin-

guished from geometry alone.
E.g., obstacles such as walls and tall grass.

= Some obstacles are not rigid and can be walked through.

Traversability extended to obstacles as their rigidity.
Haptic traversability captured as the force to pass through.

The model can be considered robot-agnostic.
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Non-myopic Learning with Multiple Models

Exploring an Escape Scenario

= The robot needs to escape from an enclosed arena, where some of the walls are fake -

color-coded curtains.
m Obstacles are only interesting when you run out of options: spatial exploration prioritized.

m Obstacle interaction is rare, and data are sparse by default. Learn after interaction.

Colored Elevation Map

Traversable  Non-Traversable
Traversabilty Assessment

DiferentalEntropy of prediction (net]

~
— -—

o 2 7}
Precicted Force to Pass Through (N]

The robot is deployed in an environment where some parts can look like obstacles in exteroceptive data, but can be traversed.
First, the robot explores its surroundings and builds a colored elevation map. 10x
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Non-myopic Learning with Multiple Models

Decoupled Models: Learning Costs of Walking Robot Gaits

= Non-myopic exploration with multiple models learning.

Pragr, et al., Frontiers in Robotics and Al, 2022.

m Each model generates set of goals that need to be visited to fully learn the model.
m Each spatial frontier or terrain cluster is a goal with multiple locations.
Cluster terrains using Growing Neural Gas in appearance space.

® Then, the goal sequence can be solved for as
a Generalized Traveling Salesman Problem

’ frontiers

o Weogms commenonl g oo

ST MODEL A
UNKNOWN TERRAIN UNKNOWN TERRAIN TYPE

TYPE LIGHT MEDIUM Execute path to first goal
focation
¢ i i :

KNOWN TERRAIN TYPE

o
ROBOT
LOCATION
I this paper, we propose a system for generalized mobile robot exploration,
~ where the robot explores an unknown environment and actively learns to predict its traversal cost over terrains
UNKNOWN TERRAIN TYPE NTIER
MEDIUM FRONTIER
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Part IV

Exploration with Neural Fields
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Implicit Neural Representations Active Neural Mapping

Implicit Neural Representations

= Environment property y encoded in the learned function y = f(x).
Compared to discretized distributions, complex signal stored at low size with high fidelity.
= 3D environment model is represented as signed distance field.
m y represents the orthogonal distance to the environment boundary.
y — 0 at environment boundary, y < 0 in the exterior , y > 0 in the interior.

o S S o

T R ' d
| ¥ o 7 )
4 @ : W AN

V. Sitzmann et al., Implicit Neural Representations with Periodic Activation Functions, in NeurlPS, 2020.
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Implicit Neural Representations Active Neural Mapping
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Active Neural Mapping

Active Neural Mapping
m Exploration through distinguishing true and false surface (boundary) points.
® By intuition, the true surface point x™ should be in a low-loss basin w.r.t. f(x,8(u, v)).
= By intuition, the false surface point (?rontier) x~ only reaches low-loss once.

m |dentify areas to explore as those most susceptible to network
perturbation A“f A‘ A

x" = argmax, Vp_ (g p21) [f(x,@)] .

@|f(*;0)| ®) |f(z;0)]

b-l"!‘ l' !
|

25X

e o Yan, Yang, and Zha, Active Neural Mapping, in ICCV, 2023.
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Active Neural Mapping

Structuring Neural Field into a Navigation Map

= NerF Exploration sped up by the addition of Voronoi graph.
m Regions of interest clustered and assigned to Voronoi vertices.

= Navigation to the exploration goals along the Voronoi edges.

(a) Top-down map (b) Generalized Voronoi graph (c) Generalized Voronoi graph with ROIs

Kuang et al., Active Neural Mapping at Scale, in IROS, 2024.
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Summary of the Lecture
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Topics Discussed

Topics Discussed

Mobile robot exploration as information gathering.

Kriging and multi-robot sensor coverage.

Active learning in mobile robot exploration.

Exploring multiple models at once.

Implicit neural representations.

= Active neural mapping.
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