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Robotic Information Gathering

Robotic Information Gathering
Create a model of phenomena by autonomous mobile robots performing measurements
in a dynamic unknown environment.
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Robotic Information Gathering

Challenges in Robotic Information Gathering

m Where to take new measurements?
To improve the phenomena model. Lea rn i n g
m What locations visit first? adaptivity
On-line decision-making. Robotic Information
® How to efficiently utilize more robots? Gathering
To divide the task between the robots/ S e n S i n g Pl a n n i n g
® How to navigate robots to the selected loca- uncertainty uncertainty
tions?

Improve Localization vs Model.

How to address all these aspects altogether to find a cost-efficient solution
using in—situ decisions? LR
SRS
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Robotic Information Gathering

Robotic Information Gathering and Multi-Goal Planning

® Robotic information gathering aims to determine an optimal solution to collect the most relevant
data (measurements) in a cost-efficient way.

® |t builds on a simple path and trajectory planning — point-to-point planning.
® |t may consist of determining locations to be visited and a combinatorial optimization problem to determine
the sequence to visit the locations.

® |t can be considered a general problem for various tasks and missions, including online decision-
making.

® [nformative path/motion planning and persistent monitoring.
= Robotic exploration — create a map of the environment as quickly as possible.

and determining a plan according to the particular assumptions and constraints; a plan that is
then executed by the robots.
= |nspection planning - Find a shortest tour to inspect the given environment.
= Surveillance planning - Find the shortest (a cost-efficient) tour to periodically monitor/capture the given
objects/regions of interest.
= Data collection planning — Determine a cost-efficient path to collect data from the sensor stations (locations).

® In both cases, multi-goal path planning allows solving (or improving the performance) of the
particular missions.
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Robotic Information Gathering

Informative Motion Planning

= Robotic information gathering can be considered as the informative path planning problem
to a determine trajectory P* such that
P* = argmaxpey [(P), such that c¢(P) < B, where
m W js the space of all possible robot trajectories,
® /(P) is the information gathered along the trajectory P,
® ¢(P) is the cost of P and B is the allowed budget.
m Searching the space of all possible trajectories is complex and
demanding problem.

m A discretized problem can be solved by combinatorial
Optimization techniq ues. Usually scale poorly with the size of the problem.

m A trajectory is from a continuous domain.

m Sampling-based path/motion planning techniques can be
employed for finding maximally informative trajectories.

Hollinger, G., Sukhatme, G. (2014): Sampling-based robotic information gathering algorithms. 1JRR.
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Robotic Information Gathering

Persistent Monitoring of Spatiotemporal Phenomena
m Persistent environment monitoring is an example of the
robotic information gathering mission.

® |t stands to determine suitable locations to collect data
about the studied phenomenon.

® Determine a cost-efficient path to visit the locations, e.g.,
considering a limited travel budget. Orienteering Problem

m Collect data and update the phenomenon model.
m Search for the next locations to improve the model.

® Robotic information gathering is challenging problem.
Optimal sampling design to Determine locations to be visited w.r.t. the mission objective.

Trajectory planning — Path/motion planning to find optimal paths/trajectories.

Multi-goal path/motion planning for an optimal sequence of visits to the locations.

Solutions have to respect, e.g., kinematic and kinodynamic constraints, collision-free paths.
In general, the problem is very challenging, and therefore, we consider the most important and
relevant constraints, i.e., we address the problem under particular assumptions.
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Robotic Information Gathering

Robotic Exploration of Unknown Environment

® Robotic exploration is a fundamental problem of robotic
information gathering.
How to efficiently utilize a group of mobile robots
to create a map of an unknown environment au-
tonomously?

® Performance indicators vs. constraints.

® Indicators — time, energy, map quality.
m Constraints — no. of robots, communication.

m Performance in a real mission depends on the on-line
decision-making.

® It includes multiple challenges:
® Map building and localization;
® Determination of the navigational waypoints; where to go next?
m Path planning and navigation to the waypoints;
= Coordination of the actions (multi-robot team).

Courtesy of M. Kulich
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Mobile Robot Exploration

m Create a map of the environment.

® Frontier-based approach. Yamauchi (1997)
® Occupancy grid map. Moravec and Elfes (1985)
® |aser scanner sensor.

® Next-best-view approach. Select the next robot goal
m Performance metric, e.g.,

Time to create a map of the whole environment

vs. time to search entity in a search-and-rescue mission.
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Environment Representation

Environment Representation — Mapping and Occupancy Grid

® The robot uses its sensors to build a map of the
environment.

® The robot should be localized to integrate new sensor
measurements into a globally consistent map.

® Simultaneous Localization and Mapping (SLAM).
® The robot uses the map being built to localize itself.
® The map is primarily to help to localize the robot.
® The map is a “side product” of SLAM.

m Grid map — discretized world representation.
® A cell is occupied (an obstacle) or free.

® Occupancy grid map — Each cell is a binary random
variable modeling the occupancy of the cell.

. . . Courtesy of M. Kulich
Jan Faigl, 2025 B4M36UIR — Lecture 04: Robotic Exploration 13 / 47



Environment Representation

Occupancy Grid

Assumptions
® The area of a cell is either completely free or occupied.

rfree space

m Cells (random variables) are independent of each other.

®m The state is static.

A cell is a binary random variable modeling

OCCU

pied space

the occupancy of the cell, e.g.,

m Cell m; is occupied p(m;) = 1;

m Cell m; is not occupied p(m;) = 0;
® Unknown p(m;) = 0.5.

and robot poses xi.;

Jan Faigl, 2025

Probability distribution of the map m

p(m) = N;p(m;).

rp(m) =0

Estimation of the map from sensor data z;.;

p(m|zi.e, x1:¢) = Nip(mi|z1:¢, x1:¢)-
Binary Bayes filter — Bayes rule and Markov process assumption.
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Environment Representation

Binary Bayes Filter

m Sensor data z1.+ and robot poses xi:¢.
= Binary random variables are independent and states are static.

Bwes e pladm, i1 (il 1, x4) m Probability a cell is occupied

p(milzie, x1:)
o Pledas ) _ p(mijlze, xt)p(zt|xe)p(milzi:e—1, x1:e—1)

Maow  P(zlmi x)p(m[21-1,51.0-1) p(milz1e, x1:¢) =
p(zt|z1:e—1, x1:¢) p(m;)p(zt|z1:e—1, xa:t)
Pz x)p(ze ) e . .
plamix) ===y = Probability a cell is not occupied
Bl 2y xg)  SMEMe Plmilzexpzbe)pmiiziet xe1) p(—=mi|ze, xe)p(ze|xe)p(~mi|z1:t—1, X1:0—1)
p(milxt)p(ze|zre—1,x1:0) p(—mj|za:¢, x1:¢) =
Markow  p(milze, x)p(ze|x)p(milzye—1. x1:e-1) p(—m;)p(zt|z1:t—1, X1:t)

P(mi)p(ztz1:e-1, x1:¢)

= Ratio of the probabilities

p(milzy:e, xaze)  p(milze, xe)p(milzae—1, xa:e—1)p(=m;)
p(=mi|z1:e, x1:¢) p(=mi|ze, xe)p(—=mjl|zy:e—1, xa:e—1)p(m;)
p(mj|ze, xt) p(mi, z1:e—1,x1:e—1) 1 — p(m;)

1 — p(milze, x) 1 — p(mjlza:e—1, x:e—1)  p(m;)

sensor model z;, recursive term, prior

= Log odds ratio is defined as /(x) = log 15(7:())() and the probability p(x) is p(x) =1 — ﬁ
® The product modeling the cell m; based on z3.+ and xy;.
I(mj|z1.¢, x1:¢) = I(mij|zt, xt) + I(mj, |z1:e—1, x1:0—1) — I(mj)
inverse sensor model recursive term prior
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Environment Representation

Occupancy Mapping Algorithm

Algorithm 1: OccupancyGridMapping({/¢—1,i}.x¢, zt)

foreach m; of the map m do
if m; in the perceptual field of z: then
‘ lyi == le—1,; +inv_sensor _model(m;, x¢, z:) — lo;
else
| hio=leai

return {/; ;}

m QOccupancy grid mapping has been developed by Moravec and Elfes in mid 80'ies for noisy sonars.

1.0 Occupancy probability
SRS
= 0871
== /\ )

= 0.6 T 2 prior
0.4 4 free T
0.2 )

measured distance

0.0 0.5 1.0 1.5 2.0 25 3.0

¢

Inverse sensor model for sonars Field of view of the sonar range Occupancy value depending on the
range sensors sensor measured distance
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Environment Representation

Laser Sensor Model

® The model is “sharp” with the precise obstacle detection. Occupancy probability
= For the range measurement d;, update the grid cells along 1n z
N 1 . occ
a sensor beam, e.g., using Bresenham's algorithm. o prior
TMprior
Algorithm 2: Update map for £ = (di,...,dn) !
foreach d; € £ do Prree
foreach cell m; raycasted toward min(d;, range) do measured distanci

p = grid(m;)Prree;
grid(m;) := p/(2p — pree — grid(m;) +1);
my := cell at dj;
if obstacle detected at my then
p = grid(mq)pocc;
grid(m;) := p/(2p — pocc — grid(m;) + 1)
else
L p = grid(mg)price:
grid(m;) := p/(2p — prree — grid(m;) + 1)

® Multiple cells can be updated by beam raycasting.

J. Amanatides and A. Woo (1987), A Fast Voxel Traversal Algorithm for Ray Tracing, Eurographics.
X. Wu (1991), An Efficient Antialiasing Technique, SIGGRAPH Computer Graphics. J @
C. Schulz and A. Zell (2019), Sub-Pixel Resolution Techniques for Ray Casting in Low-Resolution Occupancy Grid Maps, ECMR.
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Environment Representation

2.5D Environment Representation — Elevation Map

® An extension of the 2D occupancy map to 2.5D elevation map, where ) ) 5 5
. . . . . . b = o1+ oi 12k 5 04T
each cell includes information about the terrain elevation, e.g., using "« =277 =

Bayer, J. and Faigl, J.: Speeded Up Elevation Map for Exploration of Large-Scale Subterranean Environments,
2019 Modelling and Simulation for Autonomous Systems (MESAS), 2020, pp. 190-202.
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Environment Representation

3D Occupancy Grid Environment Representation — OctoMap

® The idea of the occupancy grid can be extended to 3D using octrees — OctoMap.
https://octomap.github.io/, http://wiki.ros.org/octomap

Hornung, A., Wurm, K.M., Bennewitz, M., Stachniss, C., and Burgard, W. 2013, Octomap: An
Efficient Probabilistic 3d Mapping Framework Based on Octrees, Autonomous Robots, 34:189-206.

FACULTY

OF ELECTRICAL
ENGINEERING

€TU IN PRAGUE

AN
Courtesy of the CTU-CRAS-NORLAB team, 2020 — https://robotics.fel.cvut.cz/cras/darpa-subt/ ' & el
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Environment Representation

Environment Representation: Unbound by Resolution
= Normal Distribution Transform Occupancy Map (NDT-OM)

® Each cell is described by a (set of) normal distribution(s).

Saarinen, J., Andreasson, H., Stoyanov, T., Ala-Luhtala, J., Lilienthal, A.J.: Nor-
mal Distributions Transform Occupancy Maps: Application to large-scale online 3D
mapping, ICRA, 2013.

® Gaussian Processes (GPs) might model occupancy or elevation as
a function of position - fill in gaps between measurements.

m Gaussian Process predicts a normal distribution - description of
prediction uncertainty. g
Vasudevan, S.,. Ramos, F., Nettleton, .E., Durrant-Whyte, H., Blair, A.: Gaussian a) b) y
Process Modeling of Large Scale Terrain, ICRA, 2009. 7, v Y i 3
Ruiz, A.V., Olariu, C.: A General Algorithm for Explorationwith Gaussian Processes a-NDT-OM, b-low resolution map, c-real scene
in Complex, Unknown Environments, ICRA, 2015.

® Gaussian Mixture Models (GMMs) can model observed surfaces.

O’'Meadhra, C., Tabib, W., Michael, N.: Variable Resolution Occupancy Mapping
using Gaussian Mixture Models, IEEE Robotics and Automation Letters, 2019.

Tabib, W., Goel, K., Yao, John, Dabhi, M., Boirum, C., Michael, N.: Real-Time =

Information-Theoretic Explorationwith Gaussian Mixture Model Map, RSS, 2019. Elevation map generated by neural network GP
— P R AT = Prin -
o F " .
=5 %éé‘:
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Kriging in Spatial Modeling
® The robot can build a model of phenomena underlying the spatial model, such as pollution,

radiation, temperature, or traversability assessment in a previously unmapped environment.

|
0.0 0.002
RBCM Predictive Std

‘ Cost Frontier - High Predictive Std
s e g

mrm—
Traversapie Non Traversable
"Traversabilty Assessment

— | —
00 0.02
RBCM Predictive Mean RBCM Predictive Std

0.002

The fidelity of the traversal cost model is improved by deliberately
navigating low confidence areas, represented by high predictive std.

Pragr, Cizek, Bayer, Faigl: Online Incremental Learning of the Terrain Traversal Cost in Autonomous Exploration, %
Robotics: Science and Systems (RSS), 2019.
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Frontier-based Exploration

Frontier-based Exploration

® The basic idea of the frontier based exploration is a navigation of the mobile robot toward
unknown regions. Yamauchi: A frontier-based approach for autonomous exploration, CIRA 1997.

® Frontier — a border of the known free space and unknown regions of the environment.
= Based on the probability of individual cells in the occupancy grid, cells are classified into three
classes, e.g.,

® FREESPACE: p(m;) < 0.4;
® UNKNOWN: 0.4 < p(m;) < 0.6;
® OBSTACLE: p(m;) > 0.6.
m Frontier cell is a FREESPACE cell that is inci-
dent with an UNKNOWN cell.

FREESPACE
OBSTACLE

FRONTIER
m Frontier cells as the navigation waypoints have

to be reachable, e.g., after obstacle growing.
Use grid-based path planning

Robot

EEEL

@
/WSy

29K,
)
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Frontier-based Exploration Strategy

Algorithm 3: Frontier-based Exploration

map := init(robot, scan);

while there are some reachable frontiers do
Update occupancy map using new sensor data and Bayes rule;
M := Created grid map from map using thresholding;
M := Grow obstacle according to the dimension of the robot;
F := Determine frontier cells from M;
F := Filter out unreachable frontiers from F;
f := Select the closest frontier from F, e.g. using shortest path;
path := Plan a path from the current robot position to f;
Navigate robot toward f along path (for a while);

= Exploration is an iterative decision-making process with simultaneous localization
and mapping running in parallel.

= Based on the current map of the environment, new goals location candidates are
generated from the frontier cells.

= Candidate locations are examined, and the “most suitable” (closest) goal (frontier
cell) is selected as a new goal location.

Path planning is performed during the examination of candidates.

= The robot is navigated toward the goal until the “replanning” is triggered.
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Improvements of the basic Frontier-based Exploration

Several improvements have been proposed in the literature

= |ntroducing utility based on the expected covered area from a

particular location (frontier cell). -
Gonzalez-Bafios, Latombe: Navigation Strategies for Exploring Indoor
Environments, 1JRR, 2012.

= Map segmentation for identification of rooms and exploration of

the whole room by a single robot.
Holz, Basilico, Amigoni, Behnke: A Comparative Evaluation of Explo-
ration Strategies and Heuristics to Improve Them, ECMR, 2011.

= Consider a longer planning horizon as a solution to the Traveling
Salesman Problem (TSP).

Zlot, Stentz (2006), Kulich, Faigl (2011, 2012).

= Representatives of free edges — Frontier cells are formed into
connected components that represent the free edges.
Kulich, Faigl (2011, 2013).
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Variants of the Distance Cost

® Simple robot-goal distance — next-best view.
m Evaluate all goals using the robot—goal distance.
A length of the path from the robot position to the goal candidate..

m Greedy goal selection — the closest one.
m Using frontier representatives improves the performance a bit.

m TSP distance cost — Non-myopic next-best view.
m Consider visitations of all goals.
Solve the associated traveling salesman problem (TSP).
m A length of the tour visiting all goals.
m Use frontier representatives — to avoid large instances of the TSP.
® the TSP distance cost improves performance about 10-30% with-
out further heuristics, e.g., expected coverage (utility).

Kulich, M., Faigl, J, Preudil, L.: On Distance Utility in the Exploration Task, ICRA, 2011.
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Frontier Representatives — Frontier Clusters

An omnidirectional sensor with a non-zero sensing range can cover
multiple frontier cells.

Group frontier cells to the so-called free-edges — single connected
components.

® Split large clusters (of the size f) to smaller clusters that can be
covered by the sensor range D; determine the number of subclusters
ny and use k-means clustering.

f
=1 —— +05].

Faigl, J., Kulich, M., and Preudil, L.: Goal assignment using distance cost in
multi-robot exploration, IROS 2012.

= |t reduces the number of goal candidates and yields navigation
toward middle locations of the free-edges.
Jan Faigl, 2025
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Frontier-based Exploration

Multi-robot Exploration

Multi-robot exploration is a problem to efficiently utilize a group of (mobile) robots
to autonomously create a model of a priory unknown environment.

Uncoordinated approach — Each robot independently explores the environment, e.g.,
by following the closest frontier.

Centralized approaches — a central authority assigns the goals, and the goal assignment
can be viewed as the task allocation problem.

® Various strategies have been proposed, such as greedy assignment, Hungarian
assignment, and multiple traveling salesman problem assignments.
Considering communication between the exploring units, we can further establish
distributed task allocation.
Decentralized approaches — Each robot selects its own goal and solves the task allo-
cation based on its (limited) information about other robots.
Existing communication between the exploring units can improve the performance,
but it is generally not mandatory for “true” decentralized approaches.
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Multi-robot Exploration — Overview of Centralized Strategy

m We need to assign navigation waypoint to each robot
that can be formulated as the task-allocation problem.

m Multi-robot exploration as an iterative procedure.

1. Initialize the occupancy grid Occ.
2. M < create_navigation grid(Occ).

cells of M have values {freespace, obstacle, unknown}.
3. F <« detect_frontiers(M).
4. Goal candidates G < generate(F).

5. Assign next goals to each robot r € R, m Several parts of the exploration proce-

({r1,8n) - {rm, &) = assign(R, G, M). dure are important regarding decision-
6. Create a plan P; for each pair (r;, g,). making and achieved performance.
consisting of simple operations. = How to determine goal candidates
7. Perform each plan up to s, operations. from the the frontiers?
At each step, update Occ using new sensor measurements. = How to plan a paths and assign the

goals to the robots?

= How to navigate the robots toward
the goal?

= When to replan?

8. If |G| == 0 exploration finished, otherwise go to Step 2.
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Exploration Procedure — Decision-Making Parts
1. Initialize — set of plans for m robots, P = (Py,...,Pm), Pi = 0.
2. Repeat

2.1 Navigate robots using the plans P;
2.2 Collect new measurements;
2.3 Update the navigation map M;

Until replanning condition is met.
3. Determine goal candidates G from M.

4. If |G| > 0 assign goals to the robots
= (<rlagr1>7 BREE) <rm7grm>):aSSign(Rv G7 M)'
ri€R,g, €G;
= Plan paths to the assigned goals

P =vplan({ri,gn),- -+ (rm: &) M);
= Go to Step 2.

5_ Stop a” robots or navigate them to the depot_ Determination of goal locations and path (cost) %

to them.
All reachable parts of the environment are explored.
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Frontier-based Exploration

Goal Assignment Strategies — Task Allocation Algorithms

m Exploration strategy can be formulated as the task-allocation problem

(<r1,gr1), SRR <rm7grm>) = aSSign(R7 G(t)vM)7

where M is the current map.

1. Greedy Assignment

® Randomized greedy selection of the closest goal candidate.
Yamauchi B., Robotics and Autonomous Systems 29, 1999.

2. lterative Assignment

m Centralized variant of the broadcast of local eligibility algorithm (BLE).
Werger, B., Mataric, M., Distributed Autonomous Robotic Systems 4, 2001

3. Hungarian Assignment
m QOptimal solution of the task-allocation problem for assignment of n goals and m robots
in O(n®). Forn < m: use Iterative assignment or dummy tasks; For n > m: add dummy robots with costly assignments.
Stachniss, C., C implementation of the Hungarian method, 2004
4. Multiple Traveling Salesman Problem — MTSP Assignment
m (clusterfirst, route—second), the TSP distance cost. Faigl, et al. 2012
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Frontier-based Exploration

MTSP-based Task-Allocation Approach

m Task-allocation problem as the Multiple Traveling Salesman Problem (MTSP).

m m-TSP heuristic (cluster—first, route-second )
1. Cluster the goal candidates G to m clusters (using k-means)

C={C,...,Cn},C CG.

2. For each robot r; € R,i € {1,...m} select the next goal g from C; using the TSP
distance cost. Kulich et al., ICRA (2011)
= Solve the TSP on the set G; U {r;} — the tour starts at r;.
® The next robot goal gj is the first goal of the found TSP tour.

Faigl, J., Kulich, M., Preudil, L.: Goal Assignment using Distance Cost in Multi-Robot Exploration, IROS 2012.
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Frontier-based Exploration

67.2 meters 50.2 meters)
74 seconds 26 saconds

Replanning as quickly as possible; m = 3, p = 3 m — The MTSP assignment provides better performance.
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Frontier-based Exploration

MinPos: Decentralized Exporation Strategy
® The robot solves the task allocation based on its (limited) information about other robots.
= Assumption: the distance cost matrix C between robots R and frontiers F are known to all

robots. In practice, it requires the robots to share the map of the whole environment, which might
not be feasible, and therefore, approximations can be employed.
m Each robot ranks each frontier using the relative distance —

of the robots to the frontier cell (goal candidate).

® The robot is assigned the goal with the minimum rank.
—

Minpos assignment Gready assignment of goal candidates (frontiers)
Bautin, A., Simonin, O., Charpillet, F.: MinPos: A Novel Frontier Allocation Algorithmfor Multi-robot Exploration, ICIRA, 2012.

Faigl, J., Simonin, O., Charpillet, F.: Comparison of Task-Allocation Algorithms in Frontier-Based Multi-robot Exploration,
European Conference on Multi-Agent Systems, EUMAS, 2014.
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Frontier-based Exploration

Influence of Decision-Making — Exploration Strategy

m The exploration performance depends on the whole solution, albeit
we can have “best” possible solutions of each part.

m Locally optimal Hungarian algorithm might not necessarily provide
better solutions than for example the MTSP-based approach.

® A solution of the particular sub-task (i.e., goal candidate selec-
tion) might have side effects that are exhibited during the missions
— depending on the utilized navigation technique.
® Vector Field Histogram (VFH) slows down the robot close to
the obstacles.

Borenstein, J. and Koren, Y.: The vector field histogram-fast obstacle
avoidance for mobile robots, IEEE Transactions on Robotics, 1991.

m A side effect of the representatives of free edges is that goal
candidates are “in the middle of free-edges” and the robot is
navigated toward them, which results in faster motion because
it is relatively far from the obstacles.

It is all related to simplifications we made to solve the challenging

autonomous exploration.
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Information Theoretic Approaches

Information Theory in Robotic Information Gathering

® Frontier-based exploration assumes perfect knowledge about the robot states and the utility
function depends only on the map.

m We can avoid such assumption by defining the control policy as a rule how to select the robot
action that reduces the uncertainty of estimate by learning measurements:

argmax,ca Ivi[x; z|a],

where A is a set of possible actions, x is a future estimate, and z is future measurement

= Mutual information — how much uncertainty of x will be reduced by learning z
Imi[x; z] = H[x] — H[x|z],

where H[x] is the current entropy, and H[x|z] is future/predicted entropy.

= Conditional Entropy H[x|z] is the expected uncertainty of x after learning unknown z (col-
lecting new measurements).

= Entropy — uncertainty of x: H[x] = — [ p(x) log p(x)dx.
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Information Theoretic Approaches

Computing Mutual Information in Exploration

m Sensor placement approach with raycasting of the sensor beam and determination of the dis-
tribution over the range returns.

m Precise computing of the mutual information is usually not computationally feasible given the
size of the action set and the uncertainty of action results.

= We can assume that observation removes all uncertainty from observed areas

Imi[x; z] = H[x] — H[x|z] =~ H[x].

= Then, we can decrease the computational requirements by using simplified approach where the action is
selected to maximize the entropy over the sensed regions in the current map.
= We are maximizing mutual information in the sensor placement problem of observing the region with
maximum entropy
argmax,en Y HIp(L
xER(a)
where R(a) represents the region sensed by the action a.

Bourgault, F., Makarenko, A.a., Williams, S.B., Grocholsky, B., Durrant-Whyte, H.F.: Information based
adaptive robotic exploration, IROS, 2002.

m Computational cost can be decreased using Cauchy-Schwarz Quadratic Mutual Information

(CSQMI) defined similarly to mutual information.  can be evaluated analytically for occupancy grid mapping.

Charrow, B., Liu, S., Kumar, V., Michael, N.: Information-theoretic mapping using Cauchy-Schwarz Quadratic
Mutual Information, ICRA 2015.
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Actions

m Actions are shortest paths to cover the frontiers.

Detect and cluster frontiers Sampled poses to cover a cluster Paths to the sampled poses

® Select an action (a path) that maximizes the rate of Cauchy-Schwarz Quadratic Mutual Information.
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Information Theoretic Approaches

Example of Autonomous Exploration using CSQMI

Ground vehicle Aerial vehicle

= Planning with trajectory optimization — determine trajectory maximizing Ics.

Charrow, B., Kahn, G., Patil, S., Liu, S., Goldberg, K., Abbeel, P., Michael, N., Kumar, V.: Information-Theoretic
Planning with Trajectory Optimization for Dense 3D Mapping. Robotics: Science and Systems (RSS), 2015.
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Information Theoretic Approaches

Mutual Information in Kriging

m The GP regressors provide an inbuilt representation of uncertainty — their prediction is a
normal distribution.
= The differential entropy of a normal distribution is

H(N(1,0%)) = 7 log(2re0),

i.e., it is a function of its variance 2.

®= We can employ greedy approach - sample at the highest prediction variance.

m Example: Building communication maps
® A pairwise problem - select locations of two robots to
sample the communication signal strength.

Quattrini Li, A., Penumarthi, P.K., Banfi, J., Basilico, N., O'Kane,
J.M., Rekleitis, I., Nelakuditi, S., Amigoni, F.: Multi-robot online
sensing strategies for the construction of communication maps,
Autonomous Robots 44:299—319, 2020.
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Information Theoretic Approaches

Search in Kriging Scenarios

® |n exploration scenarios, where we search for some phenomenon, such as searching for
a source of radiation or heat, we search for the modeled function’s extrema.
® The search strategy needs to balance exploitation and exploration.
Exploration of the current model vs. exploration of unknown parts of the environment.
m Gaussian Process Upper Confidence Bound
= |t addresses the search as a multi-armed bandit problem.
m The GP-UCB policy to chose the next sampling point x; is

1
X = argmax,cp fie—1(x) + B o 1(x).

Srinivas, N., Krause, A., Kakade, S.M., Seeger, M.: Gaussian process optimization in the bandit setting: no
regret and experimental design, ICML 2010.
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Information Theoretic Approaches

Exploration with Position Uncertainty

m A reliable localization is needed to map the environment reliably; thus, we might need to consider both

the occupancy and localization mutual information:

o . I = Ylocey ancy T (1 - ’Y)Ilocalizatiom
® The localization uncertainty can be based on the entropy

1
5 log [(2me) " detP],

where P is the covariance of location of the robot and localization landmarks.
Bourgault, F., et al.: Information based adaptive robotic exploration, IROS, 2002.

= Summing Shannon's entropy of the map and the differential entropy of the pose leads to scaling issues.
® The explorer may stricly prefer to improve either its map or localization that can achieved by adjusting .

= We can use the notion of Rényi's entropy 1
Ho [P()] = —— loga(3 pf)

where for @ — 1 its becomes Shannon’s entropy.
® The utility function of taking an action a is the difference
argmax, » . HShaMmen [p(x)] — Hﬁi [P(x)]
xER(a) 5@

where §(a) is related to predicted position uncertainty given the action a.
Carrillo, H., Dames, P., Kumar, V., Castellanos, J.A.: Autonomous robotic exploration using a utility function
based on Rényi’s general theory of entropy, Autonomous Robots, 2018.
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Search

Search in Unknown Environments

® A variant of exploration is a search to find objects of interest in an unknown environment.
® |n search-and-rescue missions, the performance indicator is the time to find the objects and report their position.

backpack 0.99

Courtesy of the CTU-CRAS-NORLAB team, 2020 — https://robotics.fel.cvut.cz/cras/darpa-subt/
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Topics Discussed

Summary of the Lecture
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Topics Discussed

Topics Discussed

Robotic information gathering — informative path planning

Robotic exploration of unknown environment

® Occupancy grid map
Frontier based exploration
Exploration procedure and decision-making
TSP-based distance cost in frontier-based exploration
Multi-robot exploration and task-allocation

Mutual information and informative path planning

Motivation for the semestral project.

Next: Invited lecture on a topic topic to be announced, then, Multi-goal planning
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