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Robotic Information Gathering
Robotic Information Gathering
Create a model of phenomena by autonomous mobile robots performing measurements
in a dynamic unknown environment.
Part |

Part 1 — Robotic Exploration
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Robotic Information Gathering

Challenges in Robotic Information Gathering

Where to take new measurements?

To improve the phenomena model.

What locations visit first?

Learning
adaptivity

On-line decision-making.

Robotic Information
Gathering

How to efficiently utilize more robots?

To divide the task between the robots/
® How to navigate robots to the selected loca-
tions?

uncertainty uncertainty

Improve Localization vs Model.

How to address all these aspects altogether to find a cost-efficient solution
using in—situ decisions?

Jan Faigl, 2025 B4M36UIR — Lecture 04: Robotic Exploration

Sensing Planning

Robotic Information Gathering

Robotic Information Gathering and Multi-Goal Planning

= Robotic information gathering aims to determine an optimal solution to collect the most relevant
data (measurements) in a cost-efficient way.
® |t builds on a simple path and trajectory planning — point-to-point planning.
® It may consist of determining locations to be visited and a combinatorial optimization problem to determine
the sequence to visit the locations.
= |t can be considered a general problem for various tasks and missions, including online decision-
making.
m [nformative path/motion planning and persistent monitoring.
= Robotic exploration — create a map of the environment as quickly as possible.
and determining a plan according to the particular assumptions and constraints; a plan that is
then executed by the robots.

® |nspection planning - Find a shortest tour to inspect the given environment.

= Surveillance planning - Find the shortest (a cost-efficient) tour to periodically monitor/capture the given
objects/regions of interest.

= Data collection planning — Determine a cost-efficient path to collect data from the sensor stations (locations).

® In both cases, multi-goal path planning allows solving (or improving the performance) of the
particular missions.
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Robotic Information Gathering

Informative Motion Planning

= Robotic information gathering can be considered as the informative path planning problem
to a determine trajectory P* such that
P* = argmaxpcy [ (P), such that c¢(P) < B, where
m Vs the space of all possible robot trajectories,
® /(P) is the information gathered along the trajectory P,
® ¢(P) is the cost of P and B is the allowed budget.
= Searching the space of all possible trajectories is complex and
demanding problem.

= A discretized problem can be solved by combinatorial

optimization techniq ues. Usually scale poorly with the size of the problem.
= A trajectory is from a continuous domain.

m Sampling-based path/motion planning techniques can be
employed for finding maximally informative trajectories.

Hollinger, G., Sukhatme, G. (2014): Sampling-based robotic information gathering algorithms. IJRR.
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Robotic Information Gathering

Persistent Monitoring of Spatiotemporal Phenomena
m Persistent environment monitoring is an example of the
robotic information gathering mission.

® |t stands to determine suitable locations to collect data
about the studied phenomenon.

m Determine a cost-efficient path to visit the locations, e.g.,
considering a limited travel budget.

Orienteering Problem

m Collect data and update the phenomenon model.

m Search for the next locations to improve the model.

= Robotic information gathering is challenging problem.
m Optimal sampling design to Determine locations to be visited w.r.t. the mission objective.

® Trajectory planning — Path/motion planning to find optimal paths/trajectories.
= Multi-goal path/motion planning for an optimal sequence of visits to the locations.

m Solutions have to respect, e.g., kinematic and kinodynamic constraints, collision-free paths.
In general, the problem is very challenging, and therefore, we consider the most important and
relevant constraints, i.e., we address the problem under particular assumptions.
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Search

Robotic Information Gathering Environment Representation Frontier-based Exploration Information Theoretic Approaches

Robotic Exploration of Unknown Environment
® Robotic exploration is a fundamental problem of robotic
information gathering.
How to efficiently utilize a group of mobile robots
to create a map of an unknown environment au-
tonomously?

® Performance indicators vs. constraints.

® Indicators — time, energy, map quality.
m Constraints — no. of robots, communication.

m Performance in a real mission depends on the on-line
decision-making.

= |t includes multiple challenges:
= Map building and localization;
m Determination of the navigational waypoints; Where to go next?
® Path planning and navigation to the waypoints;
= Coordination of the actions (multi-robot team).

Courtesy of M. Kulich

Robotic Information Gathering Environment Representation Frontier-based Exploration

Mobile Robot Exploration

m Create a map of the environment.

Frontier-based approach. Yamauchi (1997)

Occupancy grid map. Moravec and Elfes (1985)

® | aser scanner sensor.

Next-best-view approach. Select the next robot goal

Performance metric, e.g.,
Time to create a map of the whole environment

vs. time to search entity in a search-and-rescue mission.

Information Theoretic Approaches

Search
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Environment Representation — Mapping and Occupancy Grid Occupancy Grid
) ) IS & m Assumptions ‘
® The robot uses its sensors to build a map of the o “mﬁ"ﬂ P o . rfree space
i ;g m The area of a cell is either completely free or occupied.
environment. m Cells (random variables) are independent of each other.
® The robot should be localized to integrate new sensor ® The state is static. .
. . . . . . = 0CCUpied space
measurements into a globally consistent map. m A cell is a binary random variable modeling
® Simultaneous Localization and Mapping (SLAM). the occupancy of the cell, e.g.,
® The robot uses the map being built to localize itself. m Cell m; Is occupied /_J(m,-) =1
® The map is primarily to help to localize the robot. = Cell m; is not occupied p(m;) = 0;
® The map is a “side product” of SLAM. = Unknown p(m;) = 0.5.
m Grid map — discretized world representation. = Probability distribution of the map m
m A cell is occupied (an obstacle) or free. p(m) = Nip(m;). i
® Occupancy grid map — Each cell is a binary random ® Estimation of the map from sensor data z.;

variable modeling the occupancy of the cell.

Courtesy of M. Kulich
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and robot poses x.¢

P(m|21:t7 Xl:t) = niP(mi|21:t7 Xl:t)-

Binary Bayes filter — Bayes rule and Markov process assumption.
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Environment Representation

Binary Bayes Filter

® Sensor data z1.+ and robot poses xi:t.
= Binary random variables are independent and states are static.

= Probability a cell is occupied
p(milze, xe)p(ze|xe)p(mi|za:e—1, xa:e—1)

p(m;)p(zt|z1:e—1, x1:¢t)

Pl mi 21, xe)p(milzie-1, x1:0)

Bayes rule
Plzlzre-1,x1:0)

Plmilziie, xi:e)

e, )il nemt, xa:e-1) p(mi|z1:e, xa:e) =

P(ze|z1:e-1:x1:)

Markov

pmi, ze, xe)p(ze, xt)
p(milx)

plzelmi xe) =

= Probability a cell is not occupied

Pmi|ze, xe)p(zelxe)p(milzuie—1, X1:0-1)
p(milx)p(zelz1e—1,x1:0)
plmilze, xe)p(zelx)p(milzie—1, x1:0-1)
p(mi)p(zdlzre—1.x10)

p(=mjlze, xe)p(ze|xe)p(—~milza:e—1, xa:e—1)

p(=mi)p(zt|z1:e—1, xa:t)

p(mi, 21, x1:¢)

p(—mj|z1:e, x1:t) =

= Ratio of the probabilities plmilze, x0)p(milzse—a. xa.-3)p(-m)

p(=milze, xe)p(=mi|z1:e—1, xa:e—1)p(m;)

p(mj|z1:e, x1:¢)

p(=mjlz1:t, x1:¢)
p(mjlze, x¢) p(mj; z1e—1,xe—1) 1 — p(m;)
1= p(mjlze, xt) 1= p(milzae—1, xa:e—1)  p(m;)

sensor model z;, recursive term, prior

= Log odds ratio is defined as /(x) = log 13(7:(&) and the probability p(x) is p(x) =1 — ?%,(X)

® The product modeling the cell m; based on z1.+ and xi.t.

I(mi|z1:, x1:¢) = I(mij|zt, xt) +I(mi, |z1:e—1, x1:e—1) — I(m;)
—_——— —

inverse sensor model recursive term prior
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Occupancy Mapping Algorithm

Algorithm 1: OccupancyGridMapping({/¢—1,i}.X¢, z¢)

foreach m; of the map m do
if m; in the perceptual field of z; then
le,i == ly—1,; + inv_sensor _model(mj, xt, zt) — lo;
else
L =l

return {/, ;}

® Occupancy grid mapping has been developed by Moravec and Elfes in mid 80’ies for noisy sonars.

1.0 Occupancy probability
0.8t
0.6 1+ i
5 prior
= — 0.4 + free /T
= —
0.2
) ) _measgred di§tancel
0.0 0.5 1.0 15 20 25

Occupancy value depending on the
measured distance

Inverse sensor model for sonars
range sensors

Field of view of the sonar range
sensor
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Laser Sensor Model

® The model is “sharp” with the precise obstacle detection. Occupancy probability

= For the range measurement d;, update the grid cells along z

. , . TPocc .
a sensor beam, e.g., using Bresenham's algorithm. o prior
T~ prior
Algorithm 2: Update map for £ = (dy, ..., dn) !
Prree

foreach d; € £ do
foreach cell m; raycasted toward min(d;, range) do
L p := grid(m;)Pree:
grid(m;) = p/(2p — Prree — grid(m;) +1);
my = cell at dj;
if obstacle detected at my then
‘ p 1= grid(mq)pocc;
grid(m;) := p/(2p — Pocc — grid(m;) + 1)
else
L p := grid(mq)Pfree;

grid(m;) := p/(2p — pree — grid(m;) +1)
= Multiple cells can be updated by beam raycasting.

measured distance
A -

J. Amanatides and A. Woo (1987), A Fast Voxel Traversal Algorithm for Ray Tracing, Eurographics.
X. Wu (1991), An Efficient Antialiasing Technique, SIGGRAPH Computer Graphics.

C. Schulz and A. Zell (2019), Sub-Pixel Resolution Techniques for Ray Casting in Low-Resolution Occupancy Grid Maps, ECMR.
Jan Faigl, 2025 B4M36UIR — Lecture 04: Robotic Exploration
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Environment Representation

2.5D Environment Representation — Elevation Map

® An extension of the 2D occupancy map to 2.5D elevation map, where
each cell includes information about the terrain elevation, e.g., using
Kalman filter update for the elevation h after observation z.

i % iIE "

2 2
_ O'khk—l + 0% 12k

2 2
o+ 04

Bayer, J. and Faigl, J.: Speeded Up Elevation Map for Exploration of Large-Scale Subterranean Environments,
2019 Modelling and Simulation for Autonomous Systems (MESAS), 2020, pp. 190-202.

Jan Faigl, 2025 B4M36UIR — Lecture 04: Robotic Exploration




Environment Representation

3D Occupancy Grid Environment Representation — OctoMap

® The idea of the occupancy grid can be extended to 3D using octrees — OctoMap.
https://octomap.github.io/, http://wiki.ros.org/octomap

Hornung, A., Wurm, K.M., Bennewitz, M., Stachniss, C., and Burgard, W. 2013, Octomap: An
Efficient Probabilistic 3d Mapping Framework Based on Octrees, Autonomous Robots, 34:189-206.

FACULTY
OF ELECTRICAL
ENGINEERING
€TU IN PRAGUE

Courtesy of the CTU-CRAS-NORLAB team, 2020 — https://robotics.fel.cvut.cz/cras/darpa-subt/
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Environment Representation: Unbound by Resolution

= Normal Distribution Transform Occupancy Map (NDT-OM)

= Each cell is described by a (set of) normal distribution(s).

Saarinen, J., Andreasson, H., Stoyanov, T., Ala-Luhtala, J., Lilienthal, A.J.: Nor-
mal Distributions Transform Occupancy Maps: Application to large-scale online 3D
mapping, ICRA, 2013.

® Gaussian Processes (GPs) might model occupancy or elevation as
a function of position - fill in gaps between measurements.

® Gaussian Process predicts a normal distribution - description of
prediction uncertainty.
Vasudevan, S., Ramos, F., Nettleton, E., Durrant-Whyte, H., Blair, A.: Gaussian
Process Modeling of Large Scale Terrain, ICRA, 2009.
Ruiz, A.V., Olariu, C.: A General Algorithm for Explorationwith Gaussian Processes
in Complex, Unknown Environments, ICRA, 2015,
= Gaussian Mixture Models (GMMs) can model observed surfaces.
O’'Meadhra, C., Tabib, W., Michael, N.: Variable Resolution Occupancy Mapping
using Gaussian Mixture Models, IEEE Robotics and Automation Letters, 2019.
Tabib, W., Goel, K., Yao, John, Dabhi, M., Boirum, C., Michael, N.: Real-Time
Information-Theoretic Explorationwith Gaussian Mixture Model Map, RSS, 2019.

5

a-NDT-OM, b-low resolution map, c-real scene

Elevation map generated by neural network GP
52 -

a2 TN
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Environment Representation

Kriging in Spatial Modeling
® The robot can build a model of phenomena underlying the spatial model, such as pollution,
radiation, temperature, or traversability assessment in a previously unmapped environment.

Prediction Confidence

0.0 0.002

RBCM Predictive Std
Predictive Std \

i

\ Cost Frontier - High
o2 |

!‘ )
h
s

The fidelity of the traversal cost model is improved by deliberately
navigating low confidence areas, represented by high predictive std.

Pragr, Cizek, Bayer, Faigl: Online Incremental Learning of the Terrain Traversal Cost in Autonomous Exploration,
Robotics: Science and Systems (RSS), 2019.
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Frontier-based Exploration

Frontier-based Exploration

® The basic idea of the frontier based exploration is a navigation of the mobile robot toward
unknown regions. Yamauchi: A frontier-based approach for autonomous exploration, CIRA 1997.
m Frontier — a border of the known free space and unknown regions of the environment.
® Based on the probability of individual cells in the occupancy grid, cells are classified into three
classes, e.g.,
® FREESPACE: p(m;) < 0.4;
= UNKNOWN: 0.4 < p(m;) < 0.6;
= OBSTACLE: p(m;) > 0.6.
m Frontier cell is a FREESPACE cell that is inci-
dent with an UNKNOWN cell.

m Frontier cells as the navigation waypoints have

to be reachable, e.g., after obstacle growing.
Use grid-based path planning

D FREESPACE
. OBSTACLE
. FRONTIER

Jan Faigl, 2025 B4M36UIR — Lecture 04: Robotic Exploration




Search

Robotic Information Gathering Environment Representation Frontier-based Exploration Information Theoretic Approaches

Frontier-based Exploration Strategy

Algorithm 3: Frontier-based Exploration

map := init(robot, scan);

while there are some reachable frontiers do
Update occupancy map using new sensor data and Bayes rule;
M := Created grid map from map using thresholding;
M := Grow obstacle according to the dimension of the robot;
F := Determine frontier cells from M;
F := Filter out unreachable frontiers from F;
f := Select the closest frontier from F, e.g. using shortest path;
path := Plan a path from the current robot position to f;
Navigate robot toward f along path (for a while);

® Exploration is an iterative decision-making process with simultaneous localization
and mapping running in parallel.

= Based on the current map of the environment, new goals location candidates are
generated from the frontier cells.

= Candidate locations are examined, and the “most suitable” (closest) goal (frontier

cell) is selected as a new goal location.
Path planning is performed during the examination of candidates.

= The robot is navigated toward the goal until the “replanning” is triggered.
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Improvements of the basic Frontier-based Exploration
Zlot, Stentz (2006), Kulich, Faigl (2011, 2012). E
= Representatives of free edges — Frontier cells are formed into
connected components that represent the free edges.
Kulich, Faigl (2011, 2013).
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Several improvements have been proposed in the literature

= Introducing utility based on the expected covered area from a
particular location (frontier cell).
Gonzalez-Bafios, Latombe: Navigation Strategies for Exploring Indoor
Environments, 1JRR, 2012,
= Map segmentation for identification of rooms and exploration of

the whole room by a single robot.
Holz, Basilico, Amigoni, Behnke: A Comparative Evaluation of Explo-
ration Strategies and Heuristics to Improve Them, ECMR, 2011.

= Consider a longer planning horizon as a solution to the Traveling
Salesman Problem (TSP).

ot
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Variants of the Distance Cost

m Simple robot-goal distance — next-best view.

® Evaluate all goals using the robot—goal distance.
A length of the path from the robot position to the goal candidate..

m Greedy goal selection — the closest one.
m Using frontier representatives improves the performance a bit.

m TSP distance cost — Non-myopic next-best view.
= Consider visitations of all goals.
Solve the associated traveling salesman problem (TSP).
® A length of the tour visiting all goals.
m Use frontier representatives — to avoid large instances of the TSP.
® the TSP distance cost improves performance about 10-30% with-
out further heuristics, e.g., expected coverage (utility).

N

Kulich, M., Faigl, J, Preucil, L.: On Distance Utility in the Exploration Task, ICRA, 2011.
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Frontier Representatives — Frontier Clusters

= An omnidirectional sensor with a non-zero sensing range can cover
multiple frontier cells.

® Group frontier cells to the so-called free-edges — single connected
components.

= Split large clusters (of the size f) to smaller clusters that can be
covered by the sensor range D; determine the number of subclusters
ny and use k-means clustering.
f
np=1+|——=+05].
’ {I.SD J

Faigl, J., Kulich, M., and Preudil, L.: Goal assignment using distance cost in
multi-robot exploration, IROS 2012.

® |t reduces the number of goal candidates and yields navigation
toward middle locations of the free-edges.
Jan Faigl, 2025
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Frontier-based Exploration

Multi-robot Exploration

Multi-robot exploration is a problem to efficiently utilize a group of (mobile) robots
to autonomously create a model of a priory unknown environment.

Uncoordinated approach — Each robot independently explores the environment, e.g.,
by following the closest frontier.

Centralized approaches — a central authority assigns the goals, and the goal assignment
can be viewed as the task allocation problem.

= Various strategies have been proposed, such as greedy assignment, Hungarian
assignment, and multiple traveling salesman problem assignments.

Considering communication between the exploring units, we can further establish
distributed task allocation.

Decentralized approaches — Each robot selects its own goal and solves the task allo-

cation based on its (limited) information about other robots.
Existing communication between the exploring units can improve the performance,
but it is generally not mandatory for “true” decentralized approaches.

Jan Faigl, 2025 B4M36UIR — Lecture 04: Robotic Exploration
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Frontier-based Exploration

Multi-robot Exploration — Overview of Centralized Strategy

= We need to assign navigation waypoint to each robot
that can be formulated as the task-allocation problem.

= Multi-robot exploration as an iterative procedure.

1. Initialize the occupancy grid Occ.

2. M < create_navigation _grid(Occ).
cells of M have values {freespace, obstacle, unknown}.

3. F < detect_ frontiers(M).
4. Goal candidates G < generate(F).

m Several parts of the exploration proce-
dure are important regarding decision-

making and achieved performance.
consisting of simple operations. []

5. Assign next goals to each robot r € R,

(<r17gr1>7 EERE] <rm7grm>) = assign(R, G7M)
6. Create a plan P; for each pair (r;, g,).
How to determine goal candidates
from the the frontiers?
How to plan a paths and assign the
goals to the robots?
= How to navigate the robots toward

the goal?

= When to replan?

7. Perform each plan up to s.x operations.

At each step, update Occ using new sensor measurements. =

8. If |G| == 0 exploration finished, otherwise go to Step 2.
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Frontier-based Exploration

Exploration Procedure — Decision-Making Parts
1. Initialize — set of plans for m robots, P = (Py,...,Pn), Pi=0.
2. Repeat

2.1 Navigate robots using the plans P;
2.2 Collect new measurements;
2.3 Update the navigation map M;
Until replanning condition is met.
3. Determine goal candidates G from M.

If |G| > 0 assign goals to the robots

u (<r17gr1>7 EEE (rm,g,m))=assign(R, G:M)'
rie R, g, €G;

= Plan paths to the assigned goals

’PZ plan(<r1:gr1>7--~7<rm7grm>7M);
= Go to Step 2.

\

~__/

Determination of goal locations and path (cost)
to them.

. Stop all robots or navigate them to the depot.
All reachable parts of the environment are explored.
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Goal Assignment Strategies — Task Allocation Algorithms

m Exploration strategy can be formulated as the task-allocation problem

((rlagr1>7 KR <rmagrm>) = aSSign(Rv G(t)vM)’

where M is the current map.

1. Greedy Assignment

= Randomized greedy selection of the closest goal candidate.
Yamauchi B., Robotics and Autonomous Systems 29, 1999.

2. lterative Assignment
m Centralized variant of the broadcast of local eligibility algorithm (BLE).

Werger, B., Mataric, M., Distributed Autonomous Robotic Systems 4, 2001
3. Hungarian Assignment
= Optimal solution of the task-allocation problem for assignment of n goals and m robots
in O(n3). For n < m: use lterative assignment or dummy tasks; For n > m: add dummy robots with costly assignments.
Stachniss, C., C implementation of the Hungarian method, 2004

4. Multiple Traveling Salesman Problem — MTSP Assignment
® (cluster—first, route—second), the TSP distance cost.

8

&7 %

Faigl, et al. 2012/
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Frontier-based Exploration

MTSP-based Task-Allocation Approach

® Task-allocation problem as the Multiple Traveling Salesman Problem (MTSP).

® m-TSP heuristic (cluster—first, route—second )
1. Cluster the goal candidates G to m clusters (using k-means)

C:{Cla"'>cm}7cigG~

2. For each robot r; € R,i € {1,...m} select the next goal g; from C; using the TSP
distance cost. Kulich et al., ICRA (2011)
m Solve the TSP on the set C; U {r;} — the tour starts at r;.
= The next robot goal gj is the first goal of the found TSP tour.

Faigl, J., Kulich, M., Preudil, L.: Goal Assignment using Distance Cost in Multi-Robot Exploration, IROS 2012.
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Frontier-based Exploration

Replanning as quickly as possible; m = 3, p = 3 m — The MTSP assignment provides better performance.
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Frontier-based Exploration

MinPos: Decentralized Exporation Strategy
® The robot solves the task allocation based on its (limited) information about other robots.
m Assumption: the distance cost matrix C between robots R and frontiers F are known to all

robots. In practice, it requires the robots to share the map of the whole environment, which might

not be feasible, and therefore, approximations can be employed.
m Each robot ranks each frontier using the relative distance —

of the robots to the frontier cell (goal candidate).

m The robot is assigned the goal with the minimum rank.
—

Minpos assignment

Gready assignment of goal candidates (frontiers)
Bautin, A., Simonin, O., Charpillet, F.: MinPos: A Novel Frontier Allocation Algorithmfor Multi-robot Exploration, ICIRA, 2012.
Faigl, J., Simonin, O., Charpillet, F.: Comparison of Task-Allocation Algorithms in Frontier-Based Multi-robot Exploration, J
European Conference on Multi-Agent Systems, EUMAS, 2014.
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Frontier-based Exploration

Influence of Decision-Making — Exploration Strategy

® The exploration performance depends on the whole solution, albeit
we can have “best” possible solutions of each part.

® Locally optimal Hungarian algorithm might not necessarily provide
better solutions than for example the MTSP-based approach.

= A solution of the particular sub-task (i.e., goal candidate selec-
tion) might have side effects that are exhibited during the missions
— depending on the utilized navigation technique.

m Vector Field Histogram (VFH) slows down the robot close to
the obstacles.

Borenstein, J. and Koren, Y.: The vector field histogram-fast obstacle
avoidance for mobile robots, IEEE Transactions on Robotics, 1991.

m A side effect of the representatives of free edges is that goal
candidates are “in the middle of free-edges” and the robot is
navigated toward them, which results in faster motion because
it is relatively far from the obstacles.

1

,/\q ‘h g

/ £

{ {

— . T——
It is all related to simplifications we made to solve the challenging e Rl
autonomous exploration.

Jan Faigl, 2025
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Information Theoretic Approaches

Information Theory in Robotic Information Gathering

® Frontier-based exploration assumes perfect knowledge about the robot states and the utility

function depends only on the map.

® We can avoid such assumption by defining the control policy as a rule how to select the robot

action that reduces the uncertainty of estimate by learning measurements:
argmax,c 4 Imi[x; z|a),

where A is a set of possible actions, x is a future estimate, and z is future measurement

® Mutual information — how much uncertainty of x will be reduced by learning z
Imi[x; z] = H[x] — H[x|z],

where H[x] is the current entropy, and H[x|z] is future/predicted entropy.

m Conditional Entropy H[x|z] is the expected uncertainty of x after learning unknown z (col-

lecting new measurements).
= Entropy — uncertainty of x: H[x] = — [ p(x) log p(x)dx.
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Information Theoretic Approaches

Computing Mutual Information in Exploration

m Sensor placement approach with raycasting of the sensor beam and determination of the dis-
tribution over the range returns.

m Precise computing of the mutual information is usually not computationally feasible given the
size of the action set and the uncertainty of action results.

® We can assume that observation removes all uncertainty from observed areas

Imi[x; z] = H[x] — H[x|z] = H[x].

= Then, we can decrease the computational requirements by using simplified approach where the action is
selected to maximize the entropy over the sensed regions in the current map.
= We are maximizing mutual information in the sensor placement problem of observing the region with
maximum entropy
argmaxseq > Hlp()),
x€ER(a)
where R(a) represents the region sensed by the action a.

Bourgault, F., Makarenko, A.a., Williams, S.B., Grocholsky, B., Durrant-Whyte, H.F.: Information based
adaptive robotic exploration, IROS, 2002.

m Computational cost can be decreased using Cauchy-Schwarz Quadratic Mutual Information
(CSQMI) defined similarly to mutual information.

Charrow, B., Liu, S., Kumar, V., Michael, N.: Information-theoretic mapping using Cauchy-Schwarz Quadratic
Mutual Information, ICRA 2015.

Can be evaluated analytically for occupancy grid mapping.
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Robotic Information Gathering Environment Representation Frontier-based Exploration Information Theoretic Approaches

Actions

= Actions are shortest paths to cover the frontiers.

Detect and cluster frontiers Sampled poses to cover a cluster Paths to the sampled poses

= Select an action (a path) that maximizes the rate of Cauchy-Schwarz Quadratic Mutual Information.

Jan Faigl, 2025
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Information Theoretic Approaches

Example of Autonomous Exploration using CSQMI

Ground vehicle Aerial vehicle

= Planning with trajectory optimization — determine trajectory maximizing Ics.

Charrow, B., Kahn, G., Patil, S., Liu, S., Goldberg, K., Abbeel, P., Michael, N., Kumar, V.: Information-Theoretic
Planning with Trajectory Optimization for Dense 3D Mapping. Robotics: Science and Systems (RSS), 2015.

Jan Faigl, 2025 B4M36UIR — Lecture 04: Robotic Exploration




Information Theoretic Approaches

Mutual Information in Kriging

m The GP regressors provide an inbuilt representation of uncertainty — their prediction is a
normal distribution.
= The differential entropy of a normal distribution is

H(N (1, 0%)) = 5 log(2me0?).

i.e., it is a function of its variance o2.
= We can employ greedy approach - sample at the highest prediction variance.

m Example: Building communication maps
® A pairwise problem - select locations of two robots to
sample the communication signal strength.

Quattrini Li, A., Penumarthi, P.K., Banfi, J., Basilico, N., O'Kane,
J.M., Rekleitis, 1., Nelakuditi, S., Amigoni, F.: Multi-robot online
sensing strategies for the construction of communication maps,
Autonomous Robots 44:299—319, 2020.

Information Theoretic Approaches

Search in Kriging Scenarios

® |n exploration scenarios, where we search for some phenomenon, such as searching for
a source of radiation or heat, we search for the modeled function’s extrema.
m The search strategy needs to balance exploitation and exploration.
Exploration of the current model vs. exploration of unknown parts of the environment.

m Gaussian Process Upper Confidence Bound

® |t addresses the search as a multi-armed bandit problem.

= The GP-UCB policy to chose the next sampling point x; is

X¢ = argmax,¢p fhe—1(x) + ,Bt%at,l(x).

Srinivas, N., Krause, A., Kakade, S.M., Seeger, M.: Gaussian process optimization in the bandit setting: no
regret and experimental design, ICML 2010.
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Wenhao, L., Sycara, K.: Adaptive Sampling and Online Learning in Multi-Robot Sensor Coverage with Mixture

of Gaussian Processes, ICRA, 2018.
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Information Theoretic Approaches Search
Exploration with Position Uncertainty Search in Unknown Environments
= A reliable localization is needed to map the environment reliably; thus, we might need to consider both = A variant of exploration is a search to find objects of interest in an unknown environment.
= |n search-and-rescue missions, the performance indicator is the time to find the objects and report their position.

the occupancy and localization mutual information:
I = Ioccu ancy + (1 - 'Y)I/ocalization-

= The localization uncertainty can be based on the entropy
1
5 log [(2me)"detP] ,

where P is the covariance of location of the robot and localization landmarks.
Bourgault, F., et al.: Information based adaptive robotic exploration, IROS, 2002.
= Summing Shannon's entropy of the map and the differential entropy of the pose leads to scaling issues.
= The explorer may stricly prefer to improve either its map or localization that can achieved by adjusting ~.
= We can use the notion of Rényi's entropy 1
Ha [P(] = T loga(3_ )

1

where for « — 1 its becomes Shannon'’s entropy.
= The utility function of taking an action a is the difference

argmax, Y HMON [P(x)] — HIEY [P()]
xER(a) 5@

where §(a) is related to predicted position uncertainty given the action a.

Carrillo, H., Dames, P., Kumar, V., Castellanos, J.A.: Autonomous robotic exploration using a utility function

based on Rényi’s general theory of entropy, Autonomous Robots, 2018.
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The map is used for navigation, localization of artifacts, and decision-making where to search.

backpoek 0.99

Courtesy of the CTU-CRAS-NORLAB team, 2020 — https://robotics.fel.cvut.cz/cras/darpa- subt/
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Topics Discussed

Topics Discussed

Robotic information gathering — informative path planning

Robotic exploration of unknown environment
® Occupancy grid map

Summary Of the Lecture ® Frontier based exploration

= Exploration procedure and decision-making

[ |

n

TSP-based distance cost in frontier-based exploration
Multi-robot exploration and task-allocation

Mutual information and informative path planning

Motivation for the semestral project.

Next: Invited lecture on a topic topic to be announced; then, Multi-goal planning
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