Path Planning

Jan Faigl

Department of Computer Science
Faculty of Electrical Engineering
Czech Technical University in Prague

Lecture 03
B4M36UIR — Artificial Intelligence in Robotics

By

Jan Faigl, 2025 B4M36UIR — Lecture 03: Path Planning 1/ 118

Overview of the Lecture

® Part 1 — Path Planning
= Introduction to Path Planning

= Notation and Terminology
= Path Planning Methods

® Part 2 — Grid and Graph based Path Planning Methods
= Grid-based Planning

= DT for Path Planning
= Graph Search Algorithms
= D* Lite

= Path Planning based on Reaction-Diffusion Process e
/WSy

Jan Faigl, 2025 B4M36UIR — Lecture 03: Path Planning 2 /118

Introduction to Path Planning Notation Path Planning Methods

Part |

Part 1 — Path and Motion Planning

Jan Faigl, 2025 B4M36UIR — Lecture 03: Path Planning 3 /118

Introduction to Path Planning Notation Path Planning Methods

Outline

= Introduction to Path Planning

Jan Faigl, 2025 B4M36UIR — Lecture 03: Path Planning 4 /118

Introduction to Path Planning Notation Path Planning Methods

Robot Motion Planning — Motivational problem

m How to transform high-level task specification (provided by humans) into a low-level
description suitable for controlling the actuators?

To develop algorithms for such a transformation.

Jan Faigl, 2025 B4M36UIR — Lecture 03: Path Planning 5 /118

Introduction to Path Planning
Robot Motion Planning — Motivational problem

m How to transform high-level task specification (provided by humans) into a low-level

description suitable for controlling the actuators?
To develop algorithms for such a transformation.

The motion planning algorithms provide transformations how to move a robot (object)

considering all operational constraints.

It encompasses several disciples, e.g., mathematics, robotics, com-
puter science, control theory, artificial intelligence, computational o

geometry, etc.
Jan Faigl, 2025 B4M36UIR — Lecture 03: Path Planning 5 /118

Introduction to Path Planning

Piano Mover's Problem

A classical motion planning problem

Having a CAD model of the piano, model of the environment, the problem is how to move the
piano from one place to another without hitting anything.

Jan Faigl, 2025 B4M36UIR — Lecture 03: Path Planning

Introduction to Path Planning

Piano Mover's Problem

A classical motion planning problem

Having a CAD model of the piano, model of the environment, the problem is how to move the
piano from one place to another without hitting anything.

Basic motion planning algorithms are focused primarily on rotations and translations.
® We need notion of model representations and formal definition of the problem.

® Moreover, we also need a context about the problem and realistic assumptions.
The plans have to be admissible and feasible.
Jan Faigl, 2025 B4M36UIR — Lecture 03: Path Planning

Introduction to Path Planning

Robotic Planning Context

Mission Planning

Tasks and Actions Plans

symbol level

Motion Planning
Problem Path Planning Trajectory Planning

° — =
Models of

Path
robot and

workspace
"geometric" level
Trajectory

Robot Control Sensing and Acting

feedback control
controller - drives (motors) — sensors

"physical” level
B4M36UIR — Lecture 03: Path Planning

Jan Faigl, 2025

Introduction to Path Planning

Robotic Planning Context

Mission Planning

Tasks and Actions Plans

symbol level

Path (Motion) Planning / Trajectory Planning

Path Planning Trajectory Generation

Problem
L4 — =
Models of Path
° robot and
workspace
"geometric" level
Trajectory Open-loop control?
itelil Gaitiel Sensing and Acting

feedback control
controller - drives (motors) — sensors

"physical” level
B4M36UIR — Lecture 03: Path Planning

Jan Faigl, 2025

Introduction to Path Planning

Jan Faigl, 2025

Robotic Planning Context

Mission Planning

Tasks and Actions Plans

symbol level

Path (Motion) Planning / Trajectory Planning

Path Planning Trajectory Generation

Problem
® — =
Models of
Path
° robot and
workspace
"geometric” level
Trajectory Open-loop control?
Robot Control Sensing and Acting
feedback control Sources of uncertainties
because of real environment

controller - drives (motors) — sensors

"physical” level

B4M36UIR — Lecture 03: Path Planning

Introduction to Path Planning

Jan Faigl, 2025

Robotic Planning Context

Mission Planning

Tasks and Actions Plans

symbol level

Path (Motion) Planning / Trajectory Planning

Path Planning Trajectory Generation

Problem
® — =
Models of
Path
° robot and
workspace
"geometric” level
Trajectory Open-loop control?
Robot Control Sensing and Acting
feedback control Sources of uncertainties
because of real environment

controller - drives (motors) — sensors

"physical” level

B4M36UIR — Lecture 03: Path Planning

Introduction to Path Planning

Jan Faigl, 2025

Robotic Planning Context

Mission Planning

Tasks and Actions Plans

symbol level

Path (Motion) Planning / Trajectory Planning

Path Planning Trajectory Generation

Problem
L4 — =
Models of Path
° robot and
workspace
"geometric" level
Trajectory Open-loop control?
Robot Control Sensing and Acting
feedback control Sources of uncertainties
. o controller — drives (motors) — sensors because of real environment
‘physical" level
B4M36UIR — Lecture 03: Path Planning

Introduction to Path Planning Notation

Real Mobile Robots

In a real deployment, the problem is more complex.

Path Planning Methods

® The world is changing.
® Robots update the knowledge about the
environment.
localization, mapping and navigation

® New decisions have to be made based on

the feedback from the environment.

Motion planning is a part of the mission re-
planning loop.

An example of robotic mission:

. . . Josef Strunc, Bachelor thesis, CTU, 2009.
Multi-robot exploration of unknown environment.

ft

Jan Faigl, 2025 B4M36UIR — Lecture 03: Path Planning 8 /118

Introduction to Path Planning Notation

Real Mobile Robots

In a real deployment, the problem is more complex.

Path Planning Methods

® The world is changing.
® Robots update the knowledge about the
environment.
localization, mapping and navigation

® New decisions have to be made based on

the feedback from the environment.

Motion planning is a part of the mission re-
planning loop.

An example of robotic mission:

. . . Josef Strunc, Bachelor thesis, CTU, 2009.
Multi-robot exploration of unknown environment.

How to deal with real-world complexity? %

Jan Faigl, 2025 B4M36UIR — Lecture 03: Path Planning 8 /118

Introduction to Path Planning Notation

Real Mobile Robots

In a real deployment, the problem is more complex.

Path Planning Methods

® The world is changing.
® Robots update the knowledge about the
environment.
localization, mapping and navigation

® New decisions have to be made based on

the feedback from the environment.

Motion planning is a part of the mission re-
planning loop.

An example of robotic mission:

. . . Josef Strunc, Bachelor thesis, CTU, 2009.
Multi-robot exploration of unknown environment.

How to deal with real-world complexity? %

Relaxing constraints and considering realistic assumptions.

Jan Faigl, 2025 B4M36UIR — Lecture 03: Path Planning 8 /118

Introduction to Path Planning Notation Path Planning Methods

Outline

= Notation and Terminology

Jan Faigl, 2025 B4M36UIR — Lecture 03: Path Planning 9 /118

Introduction to Path Planning Notation Path Planning Methods

Notation

®)V — World model describes the robot workspace and its boundary determines the

obstacles O;. o
world, o

= A Robot is defined by its geometry, parameters (kinematics) and it is controllable by
the motion plan.

m C — Configuration space (C-space)
A concept to describe possible configurations of the robot. The robot’s configuration
completely specify the robot location in WV including specification of all degrees of

freedom.
E.g., a robot with rigid body in a plane C = {x,y, ¢} = R? x S'.

= Let A be a subset of W occupied by the robot, A = A(q).
m A subset of C occupied by obstacles is

Cobs = {q € C : A(q) N O, Vil.

m Collision-free configurations are
Cfree =C \ Cobs- %

Jan Faigl, 2025 B4M36UIR — Lecture 03: Path Planning 10 / 118

Notation

Notation

®)V — World model describes the robot workspace and its boundary determines the

obstacles O;. 2D world. Y — B2
world, =

Jan Faigl, 2025 B4M36UIR — Lecture 03: Path Planning 10 / 118

Notation

Notation

®)V — World model describes the robot workspace and its boundary determines the

obstacles O;. D world W — B2
world, =

= A Robot is defined by its geometry, parameters (kinematics) and it is controllable by
the motion plan.

Jan Faigl, 2025 B4M36UIR — Lecture 03: Path Planning 10 / 118

Notation

Notation

®)V — World model describes the robot workspace and its boundary determines the

obstacles O;. D world W — B2
world, =

= A Robot is defined by its geometry, parameters (kinematics) and it is controllable by
the motion plan.

» C - Configuration space (C-space)
A concept to describe possible configurations of the robot. The robot's configuration
completely specify the robot location in VW including specification of all degrees of

freedom.
E.g., a robot with rigid body in a plane C = {x,y, ¢} = R? x S*.

Jan Faigl, 2025 B4M36UIR — Lecture 03: Path Planning 10 / 118

Notation

Notation

®)V — World model describes the robot workspace and its boundary determines the

obstacles O;. 2D world. Y — B2
world, =

= A Robot is defined by its geometry, parameters (kinematics) and it is controllable by
the motion plan.

» C - Configuration space (C-space)
A concept to describe possible configurations of the robot. The robot's configuration
completely specify the robot location in VW including specification of all degrees of

freedom.
E.g., a robot with rigid body in a plane C = {x,y, ¢} = R? x S*.

® Let A be a subset of W occupied by the robot, A = A(q).
m A subset of C occupied by obstacles is

Cobs = {C] eC: .A(q) N O,’,Vi}.

m Collision-free configurations are

Cfree =C \ Cobs~

Jan Faigl, 2025 B4M36UIR — Lecture 03: Path Planning 10 / 118

Notation

Path / Motion Planning Problem

m Path is a continuous mapping in C-space such that
7 [0,1] = Cfree, with m(0) = qo, and 7(1) = gr.

m Trajectory is a path with explicit parametrization of time, e.g., accompanied by a

description of the motion laws (7 : [0, 1] — U, where U is robot’s action space).
It includes dynamics.

[To, T¢] >t~ 7€[0,1] : q(t) = 7(7) € Chree
The path planning is the determination of the function (-).

Jan Faigl, 2025 B4M36UIR — Lecture 03: Path Planning 11 / 118

Notation

Path / Motion Planning Problem
m Path is a continuous mapping in C-space such that
7 :[0,1] = Cfree, with w(0) = qo, and 7(1) = gr.

m Trajectory is a path with explicit parametrization of time, e.g., accompanied by a

description of the motion laws (7 : [0, 1] — U, where U is robot’s action space).
It includes dynamics.

[To, T¢] >t~ 7€[0,1] : q(t) = 7(7) € Chree
The path planning is the determination of the function (-).

Additional requirements can be given:

Smoothness of the path;

Kinodynamic constraints, e.g., considering friction forces;

Optimality criterion — shortest vs fastest (length vs curvature).

Path planning — planning a collision-free path in C-space.
Motion planning — planning collision-free motion in the state space.

Jan Faigl, 2025 B4M36UIR — Lecture 03: Path Planning 11 / 118

Notation

Planning in C-space
Robot path planning for a disk-shaped robot with a radius p.

Goal position
Goal configuration
°
Cireo
cubst
Start position
Start .conﬁgura[ion
. Point robot
Disk robot
C-space
Motion planning problem in Motion planning problem in
geometrical representation of W. C-space representation.

C-space has been obtained by enlarging obstacles by the disk A with the radius p.
By applying Minkowski sum: O @ A={x+y | x€ O,y € A}.
Jan Faigl, 2025 B4M36UIR — Lecture 03: Path Planning 12 /118

A

Notation

Example of Cops for a Robot with Rotation

y
0=n/2 ; Robot body 0
y

Reference point X

A simple 2D obstacle — has a complicated Cps.

Jan Faigl, 2025 B4M36UIR — Lecture 03: Path Planning 13 / 118

Notation

Example of Cops for a Robot with Rotation

y
0=n/2 ; Robot body 0
y

Reference point X

A simple 2D obstacle — has a complicated Cps.
® Deterministic algorithms exist.
Requires exponential time in C dimension, J. Canny, PAMI, 8(2):200-209, 1986.

m Explicit representation of Cyee is impractical to compute.
Jan Faigl, 2025 B4M36UIR — Lecture 03: Path Planning 13 / 118

LIPS

Notation

Representation of C-space

How to deal with continuous representation of C-space?

Continuous Representation of C-space

0

Discretization
processing critical geometric events, (random) sampling
roadmaps, cell decomposition, potential field

Graph Search Techniques
BFS, Gradient Search, A*

Jan Faigl, 2025 B4M36UIR — Lecture 03: Path Planning

14 / 118

Introduction to Path Planning Notation Path Planning Methods

Outline

= Path Planning Methods

ft

Jan Faigl, 2025 B4M36UIR — Lecture 03: Path Planning 15 / 118

Path Planning Methods

Planning Methods - Overview
(selected approaches)
u POint—tO—pOint path/motlon p|anning. Multi-goal path/motion/trajectory planning later

Road map based methods — Create a connectivity graph of the free space.
m Visibility graph; (Complete but impractical)
= Cell decomposition;
= Voronoi graph.

® Discretization into a grid-based (or lattice-based) representation (Resolution complete)

Potential field methods (Complete only for a “navigation function”, which is hard to compute
in general)

Classic path planning algorithms

R
Wy

Jan Faigl, 2025 B4M36UIR — Lecture 03: Path Planning 16 / 118

Path Planning Methods

Planning Methods - Overview
(selected approaches)
u POint—tO—pOint path/motlon p|anning. Multi-goal path/motion/trajectory planning later

m Road map based methods — Create a connectivity graph of the free space.
m Visibility graph; (Complete but impractical)
= Cell decomposition;
= Voronoi graph.

m Discretization into a grid-based (or lattice-based) representation (Resolution complete)

m Potential field methods (Complete only for a “navigation function”, which is hard to compute
in general)

Classic path planning algorithms

® Randomized sampling-based methods

m Creates a roadmap from connected random samples in Cfee.

® Probabilistic roadmaps. o
Samples are drawn from some distribution.

m Very successful in practice.

Jan Faigl, 2025 B4M36UIR — Lecture 03: Path Planning 16 / 118

Introduction to Path Planning Notation Path Planning Methods

1. Compute visibility graph. VISIblllty Graph
2. Find the shortest path. E.g., by Dijkstra’s algorithm.

Visibility graph Found shortest path

ft

Jan Faigl, 2025 B4M36UIR — Lecture 03: Path Planning 17 / 118

Introduction to Path Planning Notation Path Planning Methods

1. Compute visibility graph. VlSIblllty Gl’aph
2. Find the shortest path. E.g., by Dijkstra’s algorithm.

Problem Visibility graph Found shortest path

Constructions of the visibility graph:
= Naive — all segments between n vertices of the map O(n®); %
= Using rotation trees for a set of segments — O(n?). M. H. Overmars and E. Welzl, 1988

Jan Faigl, 2025 B4M36UIR — Lecture 03: Path Planning 17 / 118

Path Planning Methods

Minimal Construct: Efficent Shortest Path in Polygonal Maps
® Minimal Construct algorithm computes visibility graph during the A* search instead of first computation of the
complete visibility graph and then finding the shortest path using A* or Dijkstra algorithm.

® Based on A* search with line intersection tests are delayed until Minimal Construct —
they become necessary.

150 - Lazy Theta” —
A

Time [ms]
2
g

® The intersection tests are further accelerated using bounding
boxes.

0 /‘/

0 500 1000 1500 2000 2500 3000
Edges

o)
BIHAL A
S5 Jéry

L0 S

Minimal Construct

Marcell Missura, Daniel D. Lee, and Maren Bennewitz (2018): Minimal Construct: Efficient Shortest Path Finding for Mobile Robots in J
Polygonal Maps. IROS.

Jan Faigl, 2025 B4M36UIR — Lecture 03: Path Planning 18 / 118

Introduction to Path Planning Notation Path Planning Methods

Voronoi Graph

1. Roadmap is Voronoi graph that maximizes clearance from the obstacles.
2. Start and goal positions are connected to the graph.
3. Path is found using a graph search algorithm.

Voronoi graph Path in graph

Jan Faigl, 2025 B4M36UIR — Lecture 03: Path Planning 19 / 118

Path Planning Methods

Visibility Graph vs Voronoi Graph
Visibility graph

m Shortest path, but it is close to obstacles. We have to consider safety
of the path.

An error in plan execution can lead to a
collision.

m Complicated in higher dimensions

Voronoi graph
® |t maximize clearance, which can provide conservative paths.
® Small changes in obstacles can lead to large changes in the graph.
m Complicated in higher dimensions.

A combination is called Visibility-Voronoi — R. Wein, J. P. van den Berg,
D. Halperin, 2004.

For higher dimensions we need other types of roadmaps.

Jan Faigl, 2025 B4M36UIR — Lecture 03: Path Planning 20 / 118

Path Planning Methods

Cell Decomposition

1. Decompose free space into parts. Any two points in a convex region can be directly connected by a
segment.

2. Create an adjacency graph representing the connectivity of the free space.
3. Find a path in the graph.

Trapezoidal decomposition

Centroids represent cells Connect adjacency cells Find path in the adjacency graph
® Other decomposition (e.g., triangulation) are possible.

Jan Faigl, 2025 B4M36UIR — Lecture 03: Path Planning 21 /118

Path Planning Methods

Shortest Path Map (SPM)

Speedup computation of the shortest path towards a particular goal location p, for a polygonal

domain P with n vertices.
m A partitioning of the free space into cells with respect to the
particular location p,.

Each cell has a vertex on the shortest path to p,.

Shortest path from any point p is found by determining the cell
(in O(log n) using point location alg.) and then travesing the
shortest path with up to k bends, i.e., it is found in O(log n+k).

Determining the SPM using “wavefront” propagation based on

continuous Dijkstra paradigm.

Joseph S. B. Mitchell: A new algorithm for shortest paths among obstacles in the plane,
Annals of Mathematics and Artificial Intelligence, 3(1):83-105, 1991.

SPM is a precompute structure for the given P and pg;
B single-point query.

A similar structure can be found for two-point query, e.g., H. Guo, A. Maheshwari, J.-R. Sack, 2008.

Jan Faigl, 2025 B4M36UIR — Lecture 03: Path Planning 22 /118

Path Planning Methods

Point Location Problem

= For a given partitioning of the polygonal domain into a discrete set of cells, determine the cell
for a given point p.

| _

(HEN

(NN

Masato Edahiro, lwao Kokubo and Takao Asano: A new point-location algorithm and its practical efficiency: comparison with
existing algorithms, ACM Trans. Graph., 3(2):86—109, 1984.

Jan Faigl, 2025 B4M36UIR — Lecture 03: Path Planning 23 /118

Path Planning Methods

Point Location Problem

= For a given partitioning of the polygonal domain into a discrete set of cells, determine the cell
for a given point p.

Jan Faigl, 2025

Masato Edahiro, lwao Kokubo and Takao Asano: A new point-location algorithm and its practical efficiency: comparison with
existing algorithms, ACM Trans. Graph., 3(2):86-109, 1984.

® |t can be implemented using interval trees — slabs and slices.

HENEEE

|1

]
]

e

-4 >

] ;;- ~—
A | T A

] HA]

Point location problem, SPM and similarly problems are from the Computational Geometry field.

B4M36UIR — Lecture 03: Path Planning

23 /118

Path Planning Methods

Approximate Shortest Path and Navigation Mesh

= We can use any convex partitioning of the polygonal map to speed up shortest path queries.

1. Precompute all shortest paths from map vertices to pg using visibility graph.
2. Then, an estimation of the shortest path from p to p, is the shortest path among the one

of the cell vertex.

A VDY

® The estimation can be further improved by “ray-shooting” technique combined with walking in
(Faigl, 2010)
24 /118

triangulation (convex partitioning).
B4M36UIR — Lecture 03: Path Planning

Jan Faigl, 2025

Path Planning Methods

Path Refinement

= Testing collision of the point p with particular vertices of the estimation of the shortest path.

® Let the initial path estimation from p to p, be a sequence of k vertices (p, vi, ..., vk, pg)-
= We can iteratively test if the segment (p,v;), 1 < i < k is collision free up to (p, pg).

Path over v Path over v; Full refinement

With the precomputed structures, an estimate of the shortest path is determined in units of microseconds.

Jan Faigl, 2025 B4M36UIR — Lecture 03: Path Planning 25 / 118

Path Planning Methods

Navigation Mesh

= In addition to robotic approaches, fast shortest path queries are studied in computer games.
® There is a class of algorithms based on navigation mesh.

® A supporting structure representing the free space.
It usually originated from the grid based maps, but it is represented as CDT — Constrained

Delaunay triangulation.

e

Grid mesh Merged grid mesh CDT mesh Merged CDT mesh

= E.g., Polyanya algorithm based on navigation mesh and best-first search.

M. Cui, D. Harabor, A. Grastien: Compromise-free Pathfinding on a Navigation Mesh, IJCAI 2017, 496-502.
https://bitbucket.org/dharabor/pathfinding

Jan Faigl, 2025 B4M36UIR — Lecture 03: Path Planning 26 / 118

https://bitbucket.org/dharabor/pathfinding

Path Planning Methods

Artificial Potential Field Method

= The idea is to create a function f that will provide a direction towards the goal for any
configuration of the robot.

® Such a function is called navigation function and —Vf(q) points to the goal.

= Create a potential field that will attract robot towards the goal g while obstacles will
generate repulsive potential repelling the robot away from the obstacles.

The navigation function is a sum of potentials.

1x10°

Previous local mini

0

Potential

-1
87\

W

5
o
.

P I A AR

AR

s aay
NN
[l

,,,,,,

Such a potential function can have several local minima.

Jan Faigl, 2025 B4M36UIR — Lecture 03: Path Planning 27 / 118

Introduction to Path Planning Notation Path Planning Methods

Avoiding Local Minima in Artificial Potential Field
= Consider harmonic functions that have only one extremum
V3f(q) = 0.

= Finite element method with defined Dirichlet and Neumann boundary conditions.

J. Macak, Master thesis, CTU, 2009 %

Jan Faigl, 2025 B4M36UIR — Lecture 03: Path Planning 28 / 118

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning

Part |l

Part 2 — Grid and Graph based Path Planning Methods

ft

Jan Faigl, 2025 B4M36UIR — Lecture 03: Path Planning 29 / 118

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning

Outline

= Grid-based Planning

ft

Jan Faigl, 2025 B4M36UIR — Lecture 03: Path Planning 30 / 118

Grid-based Planning

Grid-based Planning

® A subdivision of Cgee into smaller cells.
® Grow obstacles can be simplified by growing bor-
ders by a diameter of the robot.

® Construction of the planning graph G = (V/, E) for
V as a set of cells and E as the neighbor-relations.

® 4-neighbors and 8-neighbors

® A grid map can be constructed from the so-called
occupancy grid maps. E.g., using thresholding.

Jan Faigl, 2025 B4M36UIR — Lecture 03: Path Planning 31 /118

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning

Grid-based Environment Representations

m Hiearchical planning with coarse resolution and re-planning on finer resqutlon.
Holte, R. C. et al. (1996): Hierarchical A *: searching abstraction hierarchies
efficiently. AAAL.

TEERELEEERY

m QOctree can be used for the map representation.

In addition to squared (or rectangular) grid a hexagonal
grid can be used.

® 3D grid maps — OctoMap https://octomap.github. io.
Memory grows with the size of the environment.
— Due to limited resolution it may fail in narrow passages of

Cfree-
Jan Faigl, 2025 B4M36UIR — Lecture 03: Path Planning 32 /118

https://octomap.github.io

Grid-based Planning

Example of Simple Grid-based Planning

= Wave-front propagation using path simplication

Initial map with a robot and goal.

Obstacle growing.

Wave-front propagation — “flood fill".

Find a path using a navigation function.
Path simplification.

m “Ray-shooting” technique combined with
Bresenham’s line algorithm.
® The path is a sequence of “key” cells for avoiding

obstacles. .

A

Jan Faigl, 2025 B4M36UIR — Lecture 03: Path Planning 33 /118

Grid-based Planning

Example of Simple Grid-based Planning

= Wave-front propagation using path simplication

Initial map with a robot and goal.

Obstacle growing.

Wave-front propagation — “flood fill".

Find a path using a navigation function.
Path simplification.

m “Ray-shooting” technique combined with
Bresenham’s line algorithm.

® The path is a sequence of “key” cells for avoiding
obstacles.

)
/WSy

Jan Faigl, 2025 B4M36UIR — Lecture 03: Path Planning 33 /118

Grid-based Planning

Example of Simple Grid-based Planning

= Wave-front propagation using path simplication 8171615141312 11
® |nitial map with a robot and goal. s1716151a131211
m Obstacle growing. 317 5
m Wave-front propagation — “flood fill". 318 3
® Find a path using a navigation function.

m Path simplification. 919 4

m “Ray-shooting” technique combined with 10410110(10 5
Bresenham’s line algorithm.

® The path is a sequence of “key” cells for avoiding HIHIT]T0 6

obstacles. .11 1019|877

11/10{9 |8 |8 |8

Jan Faigl, 2025 B4M36UIR — Lecture 03: Path Planning

Grid-based Planning

Example of Simple Grid-based Planning

= Wave-front propagation using path simplication

Initial map with a robot and goal.

Obstacle growing.

Wave-front propagation — “flood fill".

Find a path using a navigation function.
Path simplification.

m “Ray-shooting” technique combined with
Bresenham’s line algorithm.

® The path is a sequence of “key” cells for avoiding
obstacles.

Jan Faigl, 2025 B4M36UIR — Lecture 03: Path Planning 33 /118

Grid-based Planning

Example of Simple Grid-based Planning

= Wave-front propagation using path simplication

Initial map with a robot and goal.

Obstacle growing.

Wave-front propagation — “flood fill".

Find a path using a navigation function.
Path simplification.

m “Ray-shooting” technique combined with
Bresenham’s line algorithm.

® The path is a sequence of “key” cells for avoiding
obstacles.

)
/¥

Jan Faigl, 2025 B4M36UIR — Lecture 03: Path Planning 33 /118

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning

Example — Wave-Front Propagation (Flood Fill)

202222
111 201112
1001 201012
111 201112
202222

1111 11111111 1111 11 12131414 131212 12

10 10 10 10 10 10 10 10 111

99999999 10 10 1011

888 688088 991101

17777778 88 9101

666666 78 77 80910M

5555561 6678 910m

444 5 444 50678 9101

133333334 5433333334567 891011

432(222234 543 2222234566780

43211123 50432011 1]2 910 11

43210123 543210 723 131211104910 11

43211123 543211123 B2uinnn

43222223 543222223 BrpRREZE2

13333333 5/433(33 333 1313131313313

Jan Faigl, 2025 B4M36UIR — Lecture 03: Path Planning 34 /118

Grid-based Planning

Path Simplification

® The initial path is found in a grid using 8-neighborhood.

® The rayshoot cast a line into a grid and possible collisions of the robot with obstacles

are checked.

® The “farthest” cells without collisions are used as “turn” points.

m The final path is a sequence of straight line segments.

-

.

uf

a2

Initial and goal locations

Jan Faigl, 2025

Obtacle growing, wave-front

propagation

Ray-shooting

B4M36UIR — Lecture 03: Path Planning

Simplified path

35 / 118

Grid-based Planning

Bresenham's Line Algorithm

= Filling a grid by a line with avoding float numbers.
® A line from (xg, yo) to (x1,y1) is given by y = 2= (x — x5) + yo.

X1 — X(

1 CoordsVector& bresenham(const Coords& ptl, const Coords& pt2, 216 ° int twoDy = 2 * dy;

CoordsVector& line) 27 int twoDyTwoDx = twoDy - 2 * dx; //2*#Dy - 2%Dx

2 A 28 int e = twoDy - dx; //2#Dy - Dx

3 // The pt2 point is not added into line 29 int y = y0;

4 int x0 = ptl.c; int yO = ptl.r; 30 int xDraw, yDraw;

5 int x1 = pt2.c; int y1 = pt2.r; 31 for (int x = x0; x !'= x1; x += xstep) {
6 Coords p; 32 if (steep) {

7 int dx = x1 - x0; 33 xDraw = y;

8 int dy = y1 - y0; 34 yDraw = x;

9 int steep = (abs(dy) >= abs(dx)); 35 } else {

10 if (steep) { 36 xDraw = x;

11 SWAP(x0, yO0); 37 yDraw = y;

12 SWAP(x1, y1); 38 }

13 dx = x1 - x0; // recompute Dx, Dy 39 p.c = xDraw;

14 dy = y1 - yO; 40 p.r = yDraw;

15 } 41 line.push_back(p); // add to the line
16 int xstep = 1; 42 if (e > 0) {

17 if (dx < 0) { 43 e += twoDyTwoDx; //E += 2#Dy - 2%Dx
18 xstep = -1; 44 y =y + ystep;

19 dx = -dx; 45 } else {

20 } 46 e += twoDy; //E += 2xDy
21 int ystep = 1; 47 }
22 if (dy < 0) { 48 }
23 ystep = -1; 49 return line;
24 dy = -dy; 50 }
25 }

Jan Faigl, 2025 B4M36UIR — Lecture 03: Path Planning 36 / 118

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning

Outline

= DT for Path Planning

ft

Jan Faigl, 2025 B4M36UIR — Lecture 03: Path Planning 37 / 118

DT for Path Planning

Distance Transform based Path Planning

m For a given goal location and grid map compute a navigational function using wave-front
algorithm, i.e., a kind of potential field.

® The value of the goal cell is set to 0 and all other free cells are set to some very high
value.

m For each free cell compute a number of cells towards the goal cell.

® |t uses 8-neighbors and distance is the Euclidean distance of the centers of two cells, i.e.,
EV=1 for orthogonal cells or EV = /2 for diagonal cells.

® The values are iteratively computed until the values are changing.

® The value of the cell ¢ is computed as

8
cost(c) = nﬂ? (cost(ci) + EVe),
where ¢; is one of the neighboring cells from 8-neighborhood of the cell c.
® The algorithm provides a cost map of the path distance from any free cell to the goal cell.
® The path is then used following the gradient of the cell cost.

Jarvis, R. (2004): Distance Transform Based Visibility Measures for Covert Path Planning in Known but Dynamic Environments.

Jan Faigl, 2025 B4M36UIR — Lecture 03: Path Planning 38 / 118

DT for Path Planning

Distance Transform Path Planning
Algorithm 1: Distance Transform for Path Planning
for y := 0 to yMax do

for x := 0 to xMax do

if goal [x,y] then

‘ cell [x,y] :=0;
else

L cell [x,y] := xMax * yMax; //initialization, e.g., pragmatic of the use longest distance as oo ;
repeat

for y := 1 to (yMax - 1) do
for x := 1 to (xMax - 1) do
if not blocked [x,y] then
| cell [xy] := cost(x, y);

for y := (yMax-1) downto 1 do

for x := (xMax-1) downto 1 do
if not blocked [x,y] then
| celllx,y] := cost(x, y);

until no change;
Jan Faigl, 2025

B4M36UIR — Lecture 03: Path Planning

39 /118

DT for Path Planning

Distance Transform based Path Planning — Impl. 1/2

1 Grid& DT::compute(Grid& grid) const 35 for (int r =H - 2; v > 0; --1) {

2 { 36 for (int ¢ =W - 25 ¢ > 0; --¢) {

3 static const double DIAGONAL = sqrt(2); 37 if (map[r][c] != FREESPACE) {

4 static const double ORTOGONAL = 1; 38 continue;

5 const int H = map.H; 39 } //obstacle detected

6 const int W = map.W; 40 double t[4];

7 assert(grid.H == H and grid.W == W, "size"); 41 t[1] = grid[r + 1]1[c] + ORTOGONAL;
8 bool anyChange = true; 42 t[0] = grid[r + 1]1[c + 1] + DIAGONAL;
9 int counter = 0; 43 t[3] = grid[r][c + 1] + ORTOGONAL;
10 while (anyChange) { 44 t[2] = grid[r + 1][c - 1] + DIAGONAL;
11 anyChange = false; 45 double pom = grid[r][cl;

12 for (int r = 1; r <H - 1; ++r) { 46 bool s = false;

13 for (int ¢ = 1; ¢ < W - 1; ++c) { 47 for (int i = 0; i < 4; i++) {

14 if (map[r][c] != FREESPACE) { 48 if (pom > t[il]) {

15 continue; 49 pom = t[il;

16 } //obstacle detected 50 s = true;

17 double t[4]; 51 b

18 t[0] = grid[r - 1][c - 1] + DIAGONAL; 52 ¥

19 t[1] = grid[r - 1][c] + ORTOGONAL; 53 if (s) {

20 t[2] = grid[r - 11[c + 1] + DIAGONAL; 54 anyChange = true;

21 t[3] = grid[r]l[c - 1] + ORTOGONAL; 55 grid[r][c] = pom;

22 double pom = grid[r][c]; 56 b

23 for (int i = 03 i < 4; i++) { 57 }

24 if (pom > t[il) { 58 }

25 pom = t[il; 59 counter++;

26 anyChange = true; 60 } //end while any change

27 b 61 return grid;

28 } 62 }

29 if (anyChange) {

30 grid[r][c] = pom; A boundary is assumed around the rectangular map

31 }

32 }

¥
Jan Faigl, 2025 B4M36UIR — Lecture 03: Path Planning 40 / 118

DT for Path Planning

Distance Transform based Path Planning — Impl. 2/2

® The path is retrived by following the minimal value towards the goal using

min8Point ().
1 Coords& min8Point(const Grid& grid, Coords& p) 22 CoordsVector& DT::findPath(const Coords& start, const Coords&
2 { goal, CoordsVector& path)
3 double min = std::numeric_limits<double>::max(); 23 {
4 const int H = grid.H; 24 static const double DIAGONAL = sqrt(2);
5 const int W = grid.W; 25 static const double ORTOGONAL = 1;
6 Coords t; 26 const int H = map.H;
7 27 const int W = map.W;
8 for (int r = p.r - 1; r <= p.r + 1; r++) { 28 Grid grid(H, W, H*W); // H*W max grid value
9 if (r < 0 or r >= H) { continue; } 29 grid[goal.r] [goal.c] = 0;
10 for (int ¢ = p.c - 1; ¢ <= p.c + 1; c++) { 30 compute (grid) ;
11 if (c < 0 or ¢ >= W) { continue; } 31
12 if (min > grid[r]l[c]) { 32 if (grid[start.r][start.c] >= H¥W) {
13 min = grid[r][cl; 33 WARN("Path has not been found");
14 t.r =1; t.c = c; 34 } else {
15 ¥ 35 Coords pt = start;
16 ¥ 36 while (pt.r != goal.r or pt.c != goal.c) {
17 } 37 path.push_back(pt) ;
18 p=t; 38 min8Point (grid, pt);
19 return p; 39 }
20 } 40 path.push_back(goal) ;
41 }
42 return path;
43)

Jan Faigl, 2025 B4M36UIR — Lecture 03: Path Planning 41 / 118

DT for Path Planning

Bf=10cm, L=272m

mjJ=30cm, L=42.8m

Jan Faigl, 2025 42 / 118

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning

Outline

= Graph Search Algorithms

ft

Jan Faigl, 2025 B4M36UIR — Lecture 03: Path Planning 43 / 118

Graph Search Algorithms

Graph Search Algorithms

® The grid can be considered as a graph and the path can be found using graph search
algorithms.
® The search algorithms working on a graph are of general use, e.g.,
® Breadth-first search (BFS);
® Depth first search (DFS);
m Dijktra’s algorithm;
m A* algorithm and its variants.
m There can be grid based speedups techniques, e.g.,
® Jump Search Algorithm (JPS) and JPS™.
® There are many search algorithms for on-line search, incremental search and with

any-time and real-time properties, e.g.,
= Lifelong Planning A* (LPA¥*).
Koenig, S., Likhachev, M. and Furcy, D. (2004): Lifelong Planning A*. AlJ.

m E-Graphs — Experience graphs

Phillips, M. et al. (2012): E-Graphs: Bootstrapping Planning with Experience Graphs. RSS.

Jan Faigl, 2025 B4M36UIR — Lecture 03: Path Planning 44 / 118

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning

wplimal path
& endpoims

A* (general) %

https://www.youtube.com/watch?v=U2XNjCoKZjM.mp4
Jan Faigl, 2025 B4M36UIR — Lecture 03: Path Planning 45 / 118

https://www.youtube.com/watch?v=U2XNjCoKZjM.mp4

Graph Search Algorithms

A* Algorithm
m A* uses a user-defined h-values (heuristic) to focus the search.
Peter Hart, Nils Nilsson, and Bertram Raphael, 1968
= Prefer expansion of the node n with the lowest value
f(n) = g(n) + h(n),

where g(n) is the cost (path length) from the start to n and h(n) is the estimated cost

from n to the goal.
® h-values approximate the goal distance from particular nodes.
m Admissiblity condition — heuristic always underestimate the remaining cost to reach

the goal.
m Let h*(n) be the true cost of the optimal path from n to the goal.
® Then h(n) is admissible if for all n: h(n) S h*(n) Do we need admissible? When and why?

m E.g., Euclidean distance is admissible.
® A straight line will always be the shortest path.

m Dijkstra's algorithm — h(n) = 0.

Jan Faigl, 2025 B4M36UIR — Lecture 03: Path Planning 46 / 118

Graph Search Algorithms

A* Implementation Notes

The most costly operations of A* are:

® Insert and lookup an element in the closed list;
® Insert element and get minimal element (according to f() value) from the open list.

The closed list can be efficiently implemented as a hash set.

The open list is usually implemented as a priority queue, e.g.,

= Fibonacii heap, binomial heap, k-level bucket;
® binary heap is usually sufficient with O(logn).

Forward A*

1. Create a search tree and initiate it with the start location.

2. Select generated but not yet expanded state s with the smallest f-value,
f(s) = g(s) + h(s).

3. Stop if s is the goal.

Expand the state s.

5. Goto Step 2.
Similar to Dijktra's algorithm but it uses f(s) with the heuristic h(s) instead of pure g(s).

>

Jan Faigl, 2025 B4M36UIR — Lecture 03: Path Planning 47 / 118

Graph Search Algorithms

Dijktra's vs A* vs Jump Point Search (JPS:

. https://wuw .3youtube .com/watch?v=R0G4Ud081LY
Jan Faigl, 2025 B4M36UIR — Lecture 03: Path Planning 48 / 118

https://www.youtube.com/watch?v=ROG4Ud08lLY

Graph Search Algorithms

Jump Point Search Algorithm for Grid-based Path Planning

® Jump Point Search (JPS) algorithm is based on a macro operator that identifies and

selectively expands only certain nodes (jump points).
Harabor, D. and Grastien, A. (2011): Online Graph Pruning for Pathfinding on Grid Maps. AAAI.

m Natural neighbors after neighbor prunning with e s I PR I

forced neighbors because of obstacle. 1. ..
b

= |ntermediate nodes on a path connecting two
jump points are never expanded. d/

3

® No preprocessing and no memory overheads while it speeds up A*.
https://harablog.wordpress.com/2011/09/07/jump-point-search/

6 7 8 6 7 8

L5l

m JPS* is optimized preprocessed version of JPS with goal bounding.
https://github.com/SteveRabin/JPSPlusWithGoalBounding

http://www.gdcvault.com/play/1022094/JPS-0ver-100x-Faster-than

B4M36UIR — Lecture 03: Path Planning 49 / 118

Jan Faigl, 2025

https://harablog.wordpress.com/2011/09/07/jump-point-search/
https://github.com/SteveRabin/JPSPlusWithGoalBounding
http://www.gdcvault.com/play/1022094/JPS-Over-100x-Faster-than

Graph Search Algorithms

Theta* — Any-Angle Path Planning Algorithm
® Any-angle path planning algorithms simplify the path during the search.

m Theta* is an extension of A* with Line0OfSight ().

Nash, A., Daniel, K, Koenig, S. and Felner, A. (2007): Theta*: Any-Angle Path
Planning on Grids. AAAI.

Algorithm 2: Theta* Any-Angle Planning
if LineOfSight(parent(s), s’) then
/* Path 2 — any-angle path */
if g(parent(s))+ c(parent(s), s’) < g(s’) then
parent(s') := parent(s);
g(s") := g(parent(s)) + c(parent(s), s');

else
/* Path 1 — A* path */
if g(s) + c(s,;s’) < g(s’) then
L parent(s'):=s;
g(s") = g(s) + c(s:s);

m Path 2: considers path from start to parent(s) and from parent(s) to s’
if s' has line-of-sight to parent(s).

http://aigamedev.com/open/tutorials/theta-star-any-angle-paths/

Jan Faigl, 2025 B4M36UIR — Lecture 03:

1 2 3 4 5
A rY
Sstart
B
q0al
1 2 3 4 5
A Py
7 | Setart
7’
’
s
Be
s’ S
Sgoal
-=-- Path 1 Path 2

Path Planning

50 / 118

http://aigamedev.com/open/tutorials/theta-star-any-angle-paths/

Graph Search Algorithms

Theta* Any-Angle Path Planning Examples

m Example of found paths by the Theta* algorithm for the same problems as for the DT-based
examples on Slide 42.

6=10cm, L =263 m 6=30cm, L =403 m

The same path planning problems solved by DT (without path smoothing) have Ls—19 =
27.2 m and Ls—_39 = 42.8 m, while DT seems to be significantly faster.

® Lazy Theta* — reduces the number of line-of-sight checks. s
Nash, A., Koenig, S. and Tovey, C. (2010): Lazy Theta*: Any-Angle Path Planning and Path Length Analysis
in 3D. AAALI. http://aigamedev.com/open/tutorial/lazy-theta-star/

Jan Faigl, 2025 B4M36UIR — Lecture 03: Path Planning 51 / 118

http://aigamedev.com/open/tutorial/lazy-theta-star/

Graph Search Algorithms

A* Variants — Online Search

® The state space (map) may not be known exactly in advance.
= Environment can dynamically change.
® True travel costs are experienced during the path execution.
® Repeated A* searches can be computationally demanding.
® Incremental heuristic search
m Repeated planning of the path from the current state to the goal.
= Planning under the free-space assumption.
® Reuse information from the previous searches (closed list entries).
® Focused Dynamic A* (D*) — h* is based on traversability, it has been used, e.g., for the

Mars rover “Opportunity”
Stentz, A. (1995): The Focussed D* Algorithm for Real-Time Replanning. 1JCAI.

m D* Lite — similar to D*
Koenig, S. and Likhachev, M. (2005): Fast Replanning for Navigation in Unknown Terrain. T-RO.
m Real-Time Heuristic Search
m Repeated planning with limited look-ahead — suboptimal but fast

® Learning Real-Time A* (LRTA¥) Korf, E. (1990): Real-time heuristic search. JAI.
® Real-Time Adaptive A* (RTAA*) Koenig, S. and Likhachev, M. (2006): Real-time adaptive A*. AAMAS.

Jan Faigl, 2025 B4M36UIR — Lecture 03: Path Planning 52 / 118

Graph Search Algorithms

Real-Time Adaptive A* (RTAA*)

® Execute A* with limited look-ahead.

while (sc,r ¢ GOAL) do

m Learns better informed heuristic from astar(lookahead);
the experience, initially h(s), e.g., Eu- if s' — FAILURE then
clidean distance. | return FAILURE;
m Look-ahead defines trade-off between for all s € CLOSED do
optimality and computational cost. | H(s) :=g(s") + h(s') - &(s);
® astar(lookahead) | execute(plan); // perform one step

A* expansion as far as "lookahead” nodes return SUCCESS;
and it terminates with the state s’.

s’ is the last state expanded during the previous A*
search.

Jan Faigl, 2025 B4M36UIR — Lecture 03: Path Planning 53 / 118

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning

Outline

= D* Lite

ft

Jan Faigl, 2025 B4M36UIR — Lecture 03: Path Planning 54 / 118

D* Lite

D* Lite — Demo

https://www.youtube.com/watch?v=X5a149nSE9s
Jan Faigl, 2025 B4M36UIR — Lecture 03: Path Planning 55 / 118

https://www.youtube.com/watch?v=X5a149nSE9s

D* Lite

D* Lite Overview

It is similar to D*, but it is based on Lifelong Planning A*.

Koenig, S. and Likhachev, M. (2002): D* Lite. AAAL.

It searches from the goal node to the start node, i.e., g-values estimate the goal distance.

Store pending nodes in a priority queue.

Process nodes in order of increasing objective function value.

Incrementally repair solution paths when changes occur.

Maintains two estimates of costs per node:

m g — the objective function value — based on what we know;
® rhs — one-step lookahead of the objective function value — based on what we know.

Consistency:

= Consistent — g = rhs;
B Inconsistent — g # rhs.

Inconsistent nodes are stored in the priority queue (open list) for processing.

Jan Faigl, 2025 B4M36UIR — Lecture 03: Path Planning 56 / 118

D* Lite
D* Lite: Cost Estimates

® rhs of the node u is computed based on g of its successors in the graph and the
transition costs of the edge to those successors

h ()_ 0 if U= Sstart
sty = Ming csucc(u)(&(8") + (s, u)) otherwise

m The key/priority of a node s on the open list is the minimum of g(s) and rhs(s) plus a
focusing heuristic h

[min(g(s), rhs(s)) + h(Sstart, s); min(g(s), rhs(s))].

® The first term is used as the primary key.
® The second term is used as the secondary key for tie-breaking.

Jan Faigl, 2025 B4M36UIR — Lecture 03: Path Planning 57 / 118

D* Lite

D* Lite Algorithm

= Main — repeat until the robot reaches the goal (or g(ssrt) = oo there is no path).

Initialize(); Procedure Initialize
ComputeShortestPath(); Uu=o;
while (Sstart # Sgoar) do foreach s € S do

| rhs(s) := g(s) := oo
rhs(sgoar) == 0;
U.Insert(sgoar, CalculateKey(sgoar)):

Sstart = argmins'ESucc(sﬂm)(C(SSfal’t7 sl) + g(sl));
Move to Sgtart;
Scan the graph for changed edge costs;

if any edge cost changed perform then
foreach directed edges (u, v) with changed edge
costs do

L Update the edge cost c(u, v);

UpdateVertex(u);

foreach s € U do
L U.Update(s, CalculateKey(s));

| ComputeShortestPath();

U is priority queue with the vertices.

Jan Faigl, 2025 B4M36UIR — Lecture 03: Path Planning 58 / 118

D* Lite

D* Lite Algorithm — ComputeShortestPath()

Procedure ComputeShortestPath

while U.TopKey() < CalculateKey(sstart) OR rhs(sstart) 7 g(Sstart) do
u := U.Pop();
if g(u) > rhs(u) then

g(u) := rhs(u);

foreach s € Pred(u) do UpdateVertex(s);

else

g(u) := oo;
foreach s € Pred(u) | J{u} do UpdateVertex(s);

Procedure UpdateVertex

if U # Sgoar then rhs(u) := ming csycc(uy(c(u,) +g(s'));
if u € U then U.Remove(u);
if g(u) # rhs(u) then U.lnsert(u, CalculateKey(u));

Procedure CalculateKey
return [min(g(s), rhs(s)) + h(sstart, s); min(g(s), rhs(s))]

Jan Faigl, 2025 B4M36UIR — Lecture 03: Path Planning 59 / 118

D* Lite

D* Lite — Demo
W o Lite Pein Plannint e F T F |

alens Re sy

L L AT
—

»
wld|w|s

NS
—

https://github.com/mdeyo/d-star-lite
Jan Faigl, 2025 B4M36UIR — Lecture 03: Path Planning 60 / 118

https://github.com/mdeyo/d-star-lite

Grid-based Planning

DT for Path Planning

Graph Search Algorithms D* Lite

D* Lite — Example

3,0

3,1

3,2

3,3

3,4

Legend

Free node _|[Obstacle node |

[On open list HActive node l

2,0

tart = A grid map of the environment
(what is actually known).

® 8-connected graph superimposed
on the grid (bidirectional).

>0

1,0

® Focusing heuristic is not used
(h=0).

0,0

y0a

0,2

® Transition costs

= Free space — Free space: 1.0 and 1.4 (for diagonal edge).

= From/to obstacle: co.

Jan Faigl, 2025

B4M36UIR — Lecture 03: Path Planning

RD-based Planning

ft

61 /118

Grid-based Planning

DT for Path Planning

Graph Search Algorithms D* Lite

D* Lite — Example Planning (1)

3,0 3,1 3,2 3,3 34

g oo g oo g oo g oo g oo

rhs: oo rhs: co rhs: oo rhs: oo rhs: co

2,0 2,1 2,2 2.3 2.4 start

g oo g: 0o g: oo g oo g: 0o

rhs: oo rhs: oo rhs: oo rhs: oo rhs: oo$
ZAY

1,0 11 1,2 1,3 1,4

g 0o g 0o g: oo

rhs: oo rhs: oo rhs: oo

0,0 goal 0,1 0,2 0,3 0,4

g oo g: oo g oo g: oo

rhs: 0 rhs: co rhs: oo rhs: co

Jan Faigl, 2025

Legend

[Free node _|[Obstacle node |
On open list

Initialization
m Set rhs = 0 for the goal.

RD-based Planning

m Set rhs = g = oo for all other nodes.

B4M36UIR — Lecture 03: Path Planning

ft

62 / 118

Grid-based Planning

DT for Path Planning

Graph Search Algorithms D* Lite

D* Lite — Example Planning (2)

3,0 3,1 3,2 3,3 34

g oo g oo g oo g oo g oo

rhs: oo rhs: co rhs: oo rhs: oo rhs: co

2,0 2,1 2,2 2.3 2.4 start

g oo g: 0o g: oo g oo g: 0o

rhs: oo rhs: oo rhs: oo rhs: oo rhs: oo$
ZAY

1,0 11 1,2 1,3 1,4

g 0o g 0o g: oo

rhs: oo rhs: oo rhs: oo

0,0 goal 0,1 0,2 0,3 0,4

g oo g: oo g oo g: oo

rhs: 0 rhs: co rhs: oo rhs: co

Jan Faigl, 2025

Legend

[Free node _|[Obstacle node |
On open list

Initialization
m Put the goal to the open list.

RD-based Planning

It is inconsistent.

B4M36UIR — Lecture 03: Path Planning

ft

63 / 118

Grid-based Planning

DT for Path Planning

Graph Search Algorithms D* Lite RD-based Planning

D* Lite — Example Planning (3—init)

Jan Faigl, 2025

B4M36UIR — Lecture 03: Path Planning

30 31 32 33 34 Legend

g0 |[gx |[go |[ex |[a [Free node | [Obstacle node]
rhs: oo rhs: oo rhs: oo rhs: oo rhs: oo On open list
0 21 2 23 >4 start ComputeShortestPath

g g 0 L5 €2 8t 0 g oo = Pop the minimum element from the
rhs: co ||| rhs: oo ||| rhs: oo ||| rhs: oo ||| rhs: oo$ open list (goal).

o 11 iz i3 T4 a ® |t is over-consistent (g > rhs).
g 00 g: 0o g: 0o

rhs: oo rhs: oo rhs: oo

0,0 goal 0,1 0,2 0,3 0,4

g: oo g: 0o g oo g: oo

rhs: 0 rhs: oo rhs: oo rhs: oo

ft

64 / 118

Grid-based Planning

DT for Path Planning

Graph Search Algorithms D* Lite RD-based Planning

D* Lite — Example Planning (3)

Jan Faigl, 2025

B4M36UIR — Lecture 03: Path Planning

30 31 32 33 34 Legend

g0 |[gx |[go |[ex |[a [Free node | [Obstacle node]

rhs: oo rhs: oo rhs: oo rhs: oo rhs: oo On open list

20 21 22 >3 24 start ComputeShortestPath

g 0 g o0 g o 8 o0 g = Pop the minimum element from the

rhs: co ||| rhs: oo ||| rhs: oo ||| rhs: oo ||| rhs: oo$ open list (goal).

10 11 12 13 12 o m |t is over-consistent (g > rhs)
therefore set g = rhs.

g: oo g: oo g: oo

rhs: oo - - rhs: oo rhs: oo

0,0 gpal [0.1 0,2 0,3 0,4

g 0 g: 0o g: 0o g: 0o

rhs: 0 rhs: oo rhs: oo rhs: oo

ft

65 / 118

D* Lite

D* Lite — Example Planning (4)

Small black arrows denote the node used for computing the rhs value, i.e., using the respective

transition cost.

® The rhs value of (1,1) is oo because the transition to obstacle has cost co.

Jan Faigl, 2025

B4M36UIR — Lecture 03: Path Planning

30 31 32 33 34 Legend
g oo g: 0o g oo g oo g: 0o [Free node HObStacle node l
rhs: oo rhs: oo rhs: oo rhs: oo rhs: oo On open list
0 21 22 >3 24 start ComputeShortestPath
8t 0 g oo L5 €2 8t 0 g oo = Expand popped node (UpdateVertex ()
rhs: co ||| rhs: oo ||| rhs: oo ||| rhs: oo ||| rhs: oo$ on all its predecessors).
10 i1 12 13 12 z = This computes the rhs values for the
predecessors.
g oo g oo g oo g: oo g: oo
= Nodes that become inconsistent are

rhs: 1 rhs: oo rhs: oo rhs: oo rhs: oo added to the open list

0 .
0,0 toa| 0,1 0,2 0,3 0,4
g 0 g: 0o g: 0o g: oo g: 0o
rhs: 0 rhs: 1 rhs: oo rhs: oo rhs: oo

66 / 118

Grid-based Planning

DT for Path Planning

Graph Search Algorithms D* Lite RD-based Planning

D* Lite — Example Planning (5—init)

Jan Faigl, 2025

B4M36UIR — Lecture 03: Path Planning

30 31 32 33 34 Legend
g0 |[gx |[go |[ex |[a [Free node | [Obstacle node]
rhs: oo rhs: oo rhs: oo rhs: oo rhs: oo On open list
20 21 22 >3 24 start ComputeShortestPath
g o0 g g o 8 o0 g = Pop the minimum element from the
rhs: oo rhs: oo rhs: oo rhs: oo rhs: oo$ open list (1,0).
10 11 12 13 12 o m |t is over-consistent (g > rhs).
g: oo g: oo g: oo
rhs: 1 rhs: oo rhs: oo

I
0,0 goal (01 0,2 0,3 0,4
g 0 g: oo g: 0o g: oo

&

rhs: 0 rhs: 1 rhs: oo rhs: oo

ft

67 / 118

Grid-based Planning

DT for Path Planning

Graph Search Algorithms D* Lite RD-based Planning

D* Lite — Example Planning (5)

3,0 3,1 3,2 3,3 3,4

g 0o g oo g: oo g 0o g: oo
rhs: oo rhs: oo rhs: co rhs: oo rhs: oo
2,0 2,1 2,2 2.3 24 start
g: 00 g: oo g: 0o g: 00 g: oo
rhs: oo rhs: oo rhs: oo rhs: oo rhs: oo$
1,0 1,1 1,2 1,3 1,4 =
g1 g: oo g o0
rhs: 1 - - rhs: oo rhs: oo
0,0 |0a| 0,1 0,2 0,3 0,4

g 0 g: 0o g: oo g: 0o
rhs: 0 i rhs: 1 - rhs: oo rhs: oo

Jan Faigl, 2025

Legend

[Free node _|[Obstacle node |
On open list

ComputeShortestPath
= Pop the minimum element from the
open list (1,0).

= |t is over-consistent (g > rhs) set g =
rhs.

ft

B4M36UIR — Lecture 03: Path Planning 68 / 118

D* Lite

D* Lite — Example Planning (6)

30 31 32 33 34 Legend
g0 |[gx |[go |[ex |[a [Free node | [Obstacle node]
rhs: oo rhs: oo rhs: oo rhs: oo rhs: oo On open list
20 21 22 >3 24 start ComputeShortestPath
g: 0 g 9 g o 8 o0 g = Expand the popped node
rhs: 2 rhs: 2.4 ||| rhs: oo ||| rhs: co ||| rhs: oo$ (UpdateVertex() on all prede-
I v A cessors in the graph).
10 | A11 1,2 1,3 1,4
- : . = Compute rhs values of the predecessors
rhs: 1 rhs: oo ||| rhs: oo = Put them to the open list if they be-
0,0 k' oal |01 0.2 0.3 0.4 come inconsistent.
g 0 g: 0o g: 0o g: oo
&
rhs: 0 rhs: 1 rhs: oo rhs: oo
= The rhs value of (0,0), (1,1) does not change.
= They do not become inconsistent and thus they are not put on the open list. IAY
Jan Faigl, 2025 B4M36UIR — Lecture 03: Path Planning 69 / 118

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning

D* Lite — Example Planning (7)

30 31 32 33 34 Legend

g0 |60 (e |[eo |[eo [Free node _|[Obstacle node |
rhs: oo rhs: oo rhs: oo rhs: oo rhs: oo On open list

0 21 2 23 24 start ComputeShortestPath

8: 0 g: co L5 €2 8t 0 g oo = Pop the minimum element from the
rhs: 2 rhs: 2.4 ||| rhs: co ||| rhs: oo ||| rhs: oo$ open list (0,1).

10 i rfl iz i3 14 B = |t is over-consistent (g > rhs) and thus
1 S A set g = rhs.

& - -)) m Expand the popped element, e.g., call
rhs:ll rhs: oo ||| rhs: oo UpdateVertex().

0,0 goal (01 0,2 0,3 0,4

g 0 g1 g: oo g o
¢
rhs: 0 rhs: 1 rhs: oo rhs: co

Jan Faigl, 2025 B4M36UIR — Lecture 03: Path Planning 70 / 118

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning

D* Lite — Example Planning (8)

30 31 32 33 34 Legend

g |[go |[go |[ex o [Free node | [Obstacle node |
rhs: oo rhs: oo rhs: oo rhs: oo rhs: oo On open list

20 21 22 23 24 start ComputeShortestPath
g 2 g g oo g: 0 g o0 = Pop the minimum element from the
rhs: 2 rhs: 2.4 ||| rhs: oo ||| rhs: co ||| rhs: oo$ open list (2,0).

| / ZAY

10 | 71 i3 14 = |t is over-consistent (g > rhs) and thus

1,2
set g = rhs.
g1 g: oo g: oo
rhs: 1 - - rhs: oo rhs: oo

0,0 goal (01 0,2 0,3 0,4

g 0 g1 g: oo g o
¢
rhs: 0 rhs: 1 rhs: oo rhs: oo

Jan Faigl, 2025 B4M36UIR — Lecture 03: Path Planning 71 / 118

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning

D* Lite — Example Planning (9)

30 31 32 33 34 Legend

g |[Ex |[go |[ex | [Free node | [Obstacle node]
rhs: 3 rhs: 3.4 ||| rhs: oo ||| rhs: oo ||| rhs: oo On open list
I 7

Y.
20 | 21 22 23 >4 start ComputeShortestPath
g 2 g g © & © g oo ® Expand the popped element and put the
rhs: 2 rhs: 2.4 ||| rhs: oo rhs: oo rhs: 009 predecessors that become inconsistent

o j, {1 s = v X onto the open list.
g1 g: 0o g: 0o

rhs: 1 - - rhs: oo rhs: oo

0,0 |0a| 0,1 0,2 0,3 0,4

g 0 g1 g: oo g o
¢
rhs: 0 rhs: 1 rhs: oo rhs: co

Jan Faigl, 2025 B4M36UIR — Lecture 03: Path Planning 72 / 118

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning

D* Lite — Example Planning (10-init)

30 31 32 33 34 Legend

g |[Ex |[go |[ex | [Free node | [Obstacle node]
rhs: 3 rhs: 3.4 ||| rhs: oo ||| rhs: oo ||| rhs: oo On open list
I 7

Y.

20 L 21 2 23 24 start ComputeShortestPath
g 2 g 0 L5 €2 8t 0 g oo = Pop the minimum element from the
rhs: 2 rhs: 2.4 ||| rhs: co ||| rhs: co ||| rhs: oo$ open list (2,1).
o i rfl 12 3 iz B = |t is over-consistent (g > rhs).
g1 g: oo g: oo
rhs: 1 rhs: oo rhs: oo

I
0,0 goal (01 0,2 0,3 0,4

g 0 g1 g: oo g o
¢
rhs: 0 rhs: 1 rhs: oo rhs: oo

Jan Faigl, 2025 B4M36UIR — Lecture 03: Path Planning 73 / 118

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning

D* Lite — Example Planning (10)

30 31 32 33 34 Legend

g |[Ex |[go |[ex | [Free node | [Obstacle node]
rhs: 3 rhs: 3.4 ||| rhs: oo ||| rhs: oo ||| rhs: oo On open list
I 7

Y.
20 L 21 2 23 24 start ComputeShortestPath
g 2 g 2.4 L5 €2 8t 0 g oo = Pop the minimum element from the
rhs: 2 rhs: 2.4 ||| rhs: oo ||| rhs: co ||| rhs: oo$ open list (2,1).
o i i 12 3 iz B = |t is over-consistent (g > rhs)
and thus set g = rhs.
g1 g: oo g: oo
rhs: 1 - - rhs: oo rhs: oo
|
0,0 goal (01 0,2 0,3 0,4

g 0 g1 g: oo g o
¢
rhs: 0 rhs: 1 rhs: oo rhs: oo

Jan Faigl, 2025 B4M36UIR — Lecture 03: Path Planning 74 / 118

Grid-based Planning

DT for Path Planning

Graph Search Algorithms D* Lite RD-based Planning

D* Lite — Example Planning (11)

3,0 3,1 3,2 33 3,4

g oo g: oo g: oo g oo g oo
rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: oo rhs: oo
2,0 ,]I, 'gl l/g.z 23 24 start
g2 g 2.4 g: oo g: 00 g: 0o
rhs: 2 rhs: 2.4 | rhs: 3.4 ||| rhs: oo rhs: oo$
1,0 i '{,1 1,2 1,3 1,4 =
g1 g: 0o g: 0o
rhs: 1 - - rhs: oo rhs: oo
0,0 |0a| 0,1 0,2 0,3 0,4

g 0 g1 g: oo g o
rhs: 0 l rhs: 1 - rhs: oo rhs: oo

Jan Faigl, 2025

Legend

[Free node _|[Obstacle node |
On open list

ComputeShortestPath

m Expand the popped element and put the
predecessors that become inconsistent
onto the open list.

ft

B4M36UIR — Lecture 03: Path Planning 75 / 118

D* Lite

D* Lite — Example Planning (12)

3,0 3,1 3,2 3,3 3,4
g 3 g: oo g: oo g: 0o g: 0o
rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: oo rhs: oo

T 7 7
20 | A21 /22 2,3 2,4 start
g 2 g 2.4 g: oo g: o g: oo
rhs: 2 rhs: 2.4 | ths: 3.4 ||| rhs: oo ||| rhs: oo$
1,0 i {'{,1 1,2 1,3 1,4 =
g1 g: 0o g: 0o
rhs: 1 - - rhs: oo rhs: oo
0,0 |0a| 0,1 0,2 0,3 0,4
g 0 g 1 g: oo g o
rhs: 0 l rhs: 1 - rhs: oo rhs: oo

Jan Faigl, 2025

Legend

[Free node _|[Obstacle node |
On open list

ComputeShortestPath

= Pop the minimum element from the
open list (3,0).

= |t is over-consistent (g > rhs) and thus
set g = rhs.

® Expand the popped element and put the
predecessors that become inconsistent
onto the open list.

= |n this cases, none of the predecessors
become inconsistent.

ft

B4M36UIR — Lecture 03: Path Planning 76 / 118

D* Lite

D* Lite — Example Planning (13)

3,0 3,1 3,2 3,3 3,4
g 3 g 3.4 g: 0o g: o0 g: 0o
rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: oo rhs: oo

I y4 /
20 | A21 /22 2,3 2,4 start
g 2 g 2.4 g: oo g: o g: oo
rhs: 2 rhs: 2.4 | ths: 3.4 ||| rhs: oo ||| rhs: oo$
1,0 i {'{,1 1,2 1,3 1,4 =
g1 g: 0o g: 0o
rhs: 1 - - rhs: oo rhs: oo
0,0 |0a| 0,1 0,2 0,3 0,4
g 0 I g 1 - g: oo g o
rhs: 0 rhs: 1 rhs: oo rhs: oo

Jan Faigl, 2025

Legend

[Free node _|[Obstacle node |
On open list

ComputeShortestPath

= Pop the minimum element from the
open list (3,0).

= |t is over-consistent (g > rhs) and thus
set g = rhs.

® Expand the popped element and put the
predecessors that become inconsistent
onto the open list.

= |n this cases, none of the predecessors
become inconsistent.

ft

B4M36UIR — Lecture 03: Path Planning 77 / 118

Grid-based Planning

DT for Path Planning

Graph Search Algorithms D* Lite RD-based Planning

D* Lite — Example Planning (14)

3,0 3,1 3,2 33 3,4
g 3 g 3.4 g: 0o g: o0 g: 0o
rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: oo rhs: oo

I y4 /
2,0 J, 2,1 {'2,2 2,3 2,4 start
g 2 g 2.4 g: 3.4 g: o0 g: o0
rhs: 2 rhs: 2.4 ||| rhs: 3.4 ||| rhs: co ||| rhs: 009,
1,0 i '{,1 1,2 1,3 1,4 =
g1 g: 0o g: 0o
rhs: 1 - - rhs: oo rhs: oo
0,0 |0a| 0,1 0,2 0,3 0,4
g 0 g 1 g: oo g oo
rhs: 0 l rhs: 1 - rhs: oo rhs: oo

Jan Faigl, 2025

Legend

[Free node _|[Obstacle node |
On open list

ComputeShortestPath
= Pop the minimum element from the
open list (2,2).

= |t is over-consistent (g > rhs) and thus
set g = rhs.

ft

B4M36UIR — Lecture 03: Path Planning 78 / 118

Grid-based Planning

DT for Path Planning

Graph Search Algorithms D* Lite RD-based Planning

D* Lite — Example Planning (15)

3,0 3,1 3,2 3,3 3,4
g 3 g 3.4 g: 0o g: oo g: 0o
rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: co

T 7 7 7
2,0 J, 2,1 {'2,2 2,3 2,4 start
g 2 g 2.4 g: 3.4 g: 0o g: 0o
rhs: 2 rhs: 2.4 ||| rhs: 3.4 | rhs: 4.4 ||| rhs: 009,
1,0 i '{,1 1,2 \Qs 1,4 =
g1 g: 0o g: 0o
rhs: 1 - - rhs: 4.8 ||| rhs: co
0,0 I0a| 0,1 0,2 0,3 0,4
g 0 g 1 g: oo g oo
rhs: 0 l rhs: 1 - rhs: oo rhs: oo

Jan Faigl, 2025

Legend

[Free node _|[Obstacle node |
On open list

ComputeShortestPath

m Expand the popped element and put
the predecessors that become inconsis-
tent onto the open list, i.e., (3,2), (3,3),
(2,3).

ft

B4M36UIR — Lecture 03: Path Planning 79 / 118

D* Lite

D* Lite — Example Planning (16)

3,0 3,1 3,2 3,3 3,4
g 3 g 34 g: 3.8 g o g: o
rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: oo

I y4 / /
20 | A21 /22 /23 24 start
g 2 g 2.4 g 3.4 g 00 g: o

| |

rhs: 2 rhs: 2.4 ||| rhs: 3.4 ||| rhs: 4.4 ||| rhs: 009

I y4 K ZAY
1,0 J, l/'1,1 1,2 \Qs 1,4
g1 g: o g: oo
rhs: 1 rhs: 4.8 ||| rhs: co

I
0,0 goal (01 0,2 0,3 0,4
g 0 J g1 g: o0 g oo
rhs: 0 rhs: 1 rhs: oo rhs: co

Jan Faigl, 2025

Legend

[Free node _|[Obstacle node |
On open list

ComputeShortestPath

® Pop the minimum element from the
open list (3,2).

= |t is over-consistent (g > rhs) and thus
set g = rhs.

® Expand the popped element and put the
predecessors that become inconsistent
onto the open list.

= |n this cases, none of the predecessors
become inconsistent.

B4M36UIR — Lecture 03: Path Planning 80 / 118

Grid-based Planning

DT for Path Planning

Graph Search Algorithms D* Lite RD-based Planning

D* Lite — Example Planning (17)

3,0 3,1 3,2 33 3,4
g 3 g: 3.4 g: 3.8 g: oo g: oo
rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: oo

I y4 y4 /
20 | (2,1 /22 (2,3 24 start
g 2 g 2.4 g 3.4 g 4.4 g: 0o
rhs: 2 rhs: 2.4 li rhs: 3.4 i rhs: 4.4 ||| rhs: OO$
1,0 i '{,1 1,2 \Qs 1,4 =
g1 g: 0o g: 0o
rhs: 1 - - rhs: 4.8 ||| rhs: co
0,0 |0a| 0,1 0,2 0,3 0,4
g 0 g 1 g: oo g oo
rhs: 0 i rhs: 1 - rhs: oo rhs: oo

Jan Faigl, 2025

Legend

[Free node _|[Obstacle node |
On open list

ComputeShortestPath
® Pop the minimum element from the
open list (2,3).

= |t is over-consistent (g > rhs) and thus
set g = rhs.

ft

B4M36UIR — Lecture 03: Path Planning 81 / 118

D* Lite

D* Lite — Example Planning (18)

3,0 3.1 3.2 33 3.4 Legend
g 3 g 3.4 g 3.8 g oo g: oo [Free node HObstacIe node l
rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8 On open list
T Lz Lz 7 v
20 1 21 22 23 24 start ComputeShortestPath
g 2 g 2.4 g 3.4 g 44) @ e9 ® Expand the popped element and put
rhs: 2 rhs: 2.4 ||| rhs: 3.4 ||| rhs: 4.4 ||| rhs: S,Q the predecessors that become inconsis-
I Lz Ky N ZAY tent onto the open list, i.e., (3,4), (2,4),
1,0 l A11 1,2 N3 N4 (1,4).
g1 g o g o g o0 g o0 ® The start node is on the open list.
rhs: 1 ths: oo ||| rhs: oo ||| rhs: 4.8 || rhs: 5.8 = However, the search does not finish at
B— — .
00 goal |01 02 03 0,4 this stage.
g 0 g1 g: oo g oo g: oo m There are still inconsistent nodes (on
he: 0 1 rhe: 1 thet 00 ||| rhs: oo Il rhs: oo the open list) with a lower value of rhs.
Jan Faigl, 2025 B4M36UIR — Lecture 03: Path Planning 82 / 118

D* Lite

D* Lite — Example Planning (19)

3,0 3.1 3.2 33 3.4 Legend
g 3 g: 3.4 g: 3.8 g 4.8 g: 0o [Free node HObStacle node l
rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8 On open list
I Lz Lz Lz v
20 1 21 22 23 «|2* start ComputeShortestPath
g 2 g 2.4 g 3.4 | & 4.4 | & > = Pop the minimum element from the
rhs: 2 rhs: 2.4 ||| rhs: 3.4 ||| rhs: 4.4 ||| rhs: 5.Q open list (3,2).
To i rfl 12 K\{3 K\{‘l A = |t is over-consistent (g > rhs) and thus
set g = rhs.
g1 g: oo g: oo g: oo g: oo
. .)) ® Expand the popped element and put the
rhs: 1 ths: oo ||| rhs: oo ||| rhs: 4.8 || rhs: 5.8 predecessors that become inconsistent
B— — -
00 &oal |01 0.2 0.3 0.4 onto the open list.
g 0 g1 g: oo g oo g: oo = |n this cases, none of the predecessors
£l become inconsistent.
rhs: 0 rhs: 1 rhs: oo rhs: oo rhs: oo
Jan Faigl, 2025 B4M36UIR — Lecture 03: Path Planning 83 / 118

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning

D* Lite — Example Planning (20)

30 31 32 33 34 Legend
g 3 g 3.4 g 3.8 g 4.8 g c9 _
rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8 On open list
2,0 I 'gl 'gz 43 44
o4 ' e ’ 4 start ComputeShortestPath
g 2 g 2.4 i & 3.4 L & 4.4 & > ® Pop the minimum element from the
rhs: 2 rhs: 2.4 ||| rhs: 3.4 ||| rhs: 4.4 || rhs: 5-9 open list (1,3).
o i AT " 3 G o = |t is over-consistent (g > rhs) and thus
. . ' set g = rhs.
g1 g: 4.8 g: ©
rhs: 1 rhs: 4.8 ||| rhs: 5.8
|
0,0 goal (01 0,2 0,3 0,4
g 0 g1 g: 00 g: 0o
¢
rhs: 0 rhs: 1 rhs: oo ||| rhs: oo

ft

Jan Faigl, 2025 B4M36UIR — Lecture 03: Path Planning 84 / 118

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning

D* Lite — Example Planning (21)

30 31 32 33 34 Legend
g 3 g 3.4 g 3.8 g 4.8 g c9 _
rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8 On open list
2,0 I 'gl 'gz 43 44
ol ' qf ’ 4 start ComputeShortestPath
g 2 g 24 o & 3.4 o & 4.4 & > = Expand the popped element and put the
rhs: 2 rhs: 2.4 ||| rhs: 3.4 ||| rhs: 4.4 ||| rhs: S.Q predecessors that become inconsistent
T 7 N 4 ZAY onto the open list, i.e., (0,3) and (0,4).
1,0 J, 1,1 1,2 N3 N4
g1 g 4.8 g: oo
rhs: 1 rhs: 4.8 ||| rhs: 5.8
T x
00 &oal |01 0,2 0,3 | \Q4
g 0 g1 g: oo g o
&
rhs: 0 rhs: 1 rhs: 5.8 ||| rhs: 6.2

ft

Jan Faigl, 2025 B4M36UIR — Lecture 03: Path Planning 85 / 118

D* Lite

D* Lite — Example Planning (22)

30 31 32 33 34 Legend
g 3 g: 3.4 g: 3.8 g 4.8 g: 0o [Free node HObStacle node l
rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8 On open list

T Lz Lz Lz v
20l 21 K22 qfa > start ComputeShortestPath
g2 g 2.4 g 3.4 g 4.4 N g 54 = Pop the minimum element from the
rhs: 2 rhs: 2.4 ||| rhs: 3.4 ||| rhs: 4.4 ||| rhs: 5.@ open list (2,4).

T Z K K 7a) . .
10 A1 12 NG 3 NGz = |t is over-consistent (g > rhs) and thus
0] 4 N3 N+ set g = rhs.
g1 g: 00 g: 0o g: 4.8 g: oo

. .) ® Expand the popped element and put the
rhs: 1 ths: oo | | thsi o0 ||| rhs: 4.8 ||| rhs: 5.8 predecessors that become inconsistent
0,0 koal 01 0.2 0.3 I \Q4 (none in this case) onto the open list.
g 0 g1 g:. o0 g: o0 g. o0
€|

rhs: 0 rhs: 1 rhs: oo rhs: 5.8 ||| rhs: 6.2

® The start node becomes consistent and the top key on the open list is not less than the key of the start node.

= An optimal path is found and the loop of the ComputeShortestPath is breaked.

Jan Faigl, 2025

B4M36UIR — Lecture 03: Path Planning 86 / 118

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning

D* Lite — Example Planning (23)

30 31 32 33 34 Legend

g 3 g 3.4 g 3.8 g 4.8 g c9 _
rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8

i 'I '/ '/ ,/
2,0 2,1 2,2 2,3 24 start
e = Follow the gradient of g values from the
g 2 g 2.4 g 3.4 g: 4.; g 5.4 start node
Ly Ly P .

rhs: 2 rhs: 2.4 ||| rhs: 3.4 ||| rhs: 4.4 ||| rhs: 5.@

| / [AY
1,0 J, 1,1 1,2 \{,3 \{4
g1 g 4.8 g: o0
rhs: 1 rhs: 4.8 ||| rhs: 5.8

T x
00 &oal |01 0,2 03 | N4

g 0 g1 g: o0 g o
"
rhs: 0 rhs: 1 rhs: 5.8 ||| rhs: 6.2

Jan Faigl, 2025 B4M36UIR — Lecture 03: Path Planning 87 / 118

Grid-based Planning

DT for Path Planning

Graph Search Algorithms D* Lite RD-based Planning

D* Lite — Example Planning (24)

30 31 32 33 34 Legend
g 3 g 3.4 g 3.8 g 4.8 g c9 _
rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8 On open list
I y4 y4 /
2.0 2.1 (2,2 (24 start
- éL o4 ¢ 3 54 = Follow the gradient of g values from the
& g < i3 & %II |g—'. start node.
rhs: 2 rhs: 2.4 ||| rhs: 3.4 rhs: 5.4
I y4
10 | 1,1 1,2 N N4
g1 : 4. g: o
rhs: 1 rhs: 4.8 ||| rhs: 5.8
T x
00 &oal |01 0,2 0,3 | \Q‘*
g 0 g1 g: oo g o
¢
rhs: 0 rhs: 1 rhs: 5.8 ||| rhs: 6.2
Jan Faigl, 2025 B4M36UIR — Lecture 03: Path Planning 88 / 118

Grid-based Planning

DT for Path Planning

D* Lite — Example Planning (25)

Graph Search Algorithms D* Lite RD-based Planning

30 31 32 33 34 Legend
g 3 g 3.4 g 3.8 g 4.8 g c9 _
rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8 On open list
I y4 /
2,0 2,1 (24 start
. éL o4] 54 = A new obstacle is detected during the
& S g movement from (2,3) to (2,2).
rhs:l2 rhs: 2.4 rhs: 5.4 » Replanning is needed!
10 | N4
g1 g 4.8 g: o
rhs: 1 rhs: 4.8 ||| rhs: 5.8
I Z 3
0,0 goal 03 | N4
g 0 g: o0 g o
rhs: 0 rhs: 5.8 ||| rhs: 6.2
Jan Faigl, 2025 B4M36UIR — Lecture 03: Path Planning 89 / 118

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning

D* Lite — Example Planning (25 update)

30 31 32 33 34 Legend

g 3 g 3.4 g 3.8 g 4.8 g c9 _
rhs: 3 rhs:\&{l rhs:| 3.8 r)xsf:4.8 rhs: 5.8
3

i '/ 2 y4 '/ ,/
2,0 2,1 2 2, 2,4 start
o o4 4 4 54 m All directed edges with changed edge,
S e (R TR we need to call the UpdateVertex().
rhs:l2 ,rhs: 2.4 AEB B4 = All edges into and out of (2,2) have to
10 | 1,1 1,2 N3 N4 be considered.
g1 gN\4.8 g: o
rhs: 1 rhs: 4.8 ||| rhs: 5.8
I Z 3
00 &oal |01 0,2 0,3 | \Q“
g 0 J g1 g: o0 g o
rhs: 0 rhs: 1 rhs: 5.8 ||| rhs: 6.2

ft

Jan Faigl, 2025 B4M36UIR — Lecture 03: Path Planning 90 / 118

Grid-based Planning

DT for Path Planning

D* Lite — Example Planning (26 update 1/2)

Graph Search Algorithms

D* Lite RD-based Planning

30 31 32 33 34 Legend

g 3 g: 3.4 g: 3.8 g 4.8 g: 00 _

rhs: 3 rhs:\s\{l rhs:[3.8 rps{4.8 rhs: 5.8

20 | o 2(€'2 /43 {{,4 start Update Vertex

g 2 g 2.4 g g 44 ||g 54 = Outgoing edges from (2,2).

rhs: 2 rhs: 2.4 ||| rhs: 4. rhs: 5.4 = Call UpdateVertex() on (2,2).

1,0 i '{,1 1,2 K\{,3 N4 = The transition costs are now co because

e 1 - g\.\l“r.8 g oo of obstacle.

ths: 1 ths: 4.8 ||| rhs: 5.8 u Therefc?re the: rhs = oo a.nd (2,2) be-
T S comes inconsistent and it is put on the

0,0 &oal (01 0.2 03 | \Q4 open list.

g 0 g1 g: 0o g: 0o

rhs: 0 l rhs: 1 - rhs: 5.8 ||| rhs: 6.2

Jan Faigl, 2025 B4M36UIR — Lecture 03: Path Planning o1 /118

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning

D* Lite — Example Planning (26 update 2/2)

3.0 31 32 33 34 Legend

g 3 g 3.4 g: 3.8 g 4.8 g oo _

rhs: 3 rhs:\S\{l rhs:| 3.8 r)){4.8 rhs: 5.8

2.0 i & 2(22 /'§’3 r/é"‘ start Update Vertex

g 2 g 24 &: g 4.4 || & 5.4 = Incomming edges to (2,2).

rhs: 2 rhs: 2.4 ||| rbs: rhs: 4. rhs: 5.4 = Call UpdateVertex() on the neighbors

1,0 i '{,1 1,2 K\{,3 N4 (2.2).

g 1 - g\.\4.8 g 0o ® The transition cos:t is co, and therefqre,
the rhs value previously computed using

rhs:I 1 rhs;4.8 rhs: 5.8 (2,2) is changed.

00 &oal |01 0,2 03 | N4

g 0 g1 g: o0 g o

rhs: 0 i rhs: 1 - rhs: 5.8 ||| rhs: 6.2

ft

Jan Faigl, 2025 B4M36UIR — Lecture 03: Path Planning 92 / 118

D* Lite

D* Lite — Example Planning (27)

3,0 3,1 3,2 3,3 3,4
g 3 g: 3.4 g: 3.8 g 4.8 g: 0o
¢

rhs: 3 rhs: 3.4 ||| rhs: 3.8 r}){4.8 rhs: 5.8
I y4 y4 /

20 | A21 /22 2,3 /24 start

12 1 2.4 He) : 4.4 : 5.4

g g g oo |le I

rhs: 2 rhs: 2.4 ||| rhs: co rhs: 4. rhs: 5.4
I y4 K

1,0 J, l/'1,1 1,2 \{,3 N4

g1 g 4.8 g: o

rhs: 1 rhs: 4.8 ||| rhs: 5.8
I S N

00 &oal |01 0,2 0,3 | \Q“

g 0 J g1 g: o0 g o

rhs: 0 rhs: 1 rhs: 5.8 ||| rhs: 6.2

Legend

[Free node _|[Obstacle node |
On open list

Update Vertex

= The neighbor of (2,2) is (3,3).

® The minimum possible rhs value of
(3,3) is 4.8 but it is based on the g
value of (3,2) and not (2,2), which is
the detected obstacle.

® The node (3,3) is still consistent and
thus it is not put on the open list.

ft

Jan Faigl, 2025 B4M36UIR — Lecture 03: Path Planning 93 / 118

D* Lite

D* Lite — Example Planning (28)

30 31 32 33 34 Legend
g 3 g 3.4 g 3.8 g 4.8 g c9 _
n

rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8 On open list

| '/ '/ K‘ ,/
20 | A2 |22 K3 |2 start Update Vertex
g2 g 24 B ce g 44 ||g 54 ® (2,3) is also a neighbor of (2,2).
rhs: 2 rhs: 2.4 ||| rhs: oo ||| rhs: 5. rhs: 5.4 = The minimum possible rhs value of
o i {rfvl 12 R\{’?’ % (2,3) is 5.2 because (2,2) is an obstacle

- y s (using (3,2) with 3.8 + 1.4).

& - - & . _ = The rhs value of (2,3) is different from
rhs:I 1 rhs;4-8K rhs: 5.8 g; thus, (2,3) is put on the open list.
00 &oal |01 0,2 03 | N4
g 0 J g1 g: 0o g: 0o
rhs: 0 rhs: 1 rhs: 5.8 ||| rhs: 6.2

ft

Jan Faigl, 2025 B4M36UIR — Lecture 03: Path Planning 94 / 118

D* Lite

D* Lite — Example Planning (29)

30 31 32 33 34 Legend
g 3 g 3.4 g 3.8 g 4.8 g c9 _
n
rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8
| '/ '/ K‘ ,/
20 | A2 |22 K3 |2 start Update Vertex
g 2 g 2.4 B g 44 ||g 54 = Another neighbor of (2,2) is (1,3).
rhs: 2 rhs: 2.4 rhSI%Q rhs: 5. rhs: 5.4 ® The minimum possible rhs value of
/ A

o i A 12 SEN G (1,3) is 5.4 computed based on g of

23) with 4.4 +1 =54
g1 g48 g oo 23) . .
_ ® The rhs value is always computed using
rhs: 1 rhs:*5.4K rhs: 5.8 the g values of its successors.
00 &oal |01 0,2 03 | N4

g 0 g1 g: o0 g o
¢
rhs: 0 rhs: 1 rhs: 5.8 ||| rhs: 6.2

ft

Jan Faigl, 2025 B4M36UIR — Lecture 03: Path Planning 95 / 118

D* Lite

D* Lite — Example Planning (29 update)

30 31 32 33 34 Legend
g 3 g: 3.4 g: 3.8 g 4.8 g: 0o [Free node HObStacle node l
&
rhs: 3 rhs:\3x<1 rhs:| 3.8 ||| rhs: 4.8 ||| rhs: 5.8 On open list
T Lz y a— ,{4

M_{u 2 R3 K| %4 start Update Vertex
g 2 g 24 830 g 4.4 o & 5.4 = None of the other neighbor of (2,2) end
rhs: 2 rhs: 2.4 ||| rhs:| oo rhs: 5.9 rhs: 5.4 up being inconsistent.
10 i /{vl 12 13 T K\{‘l = We go back to calling

- : - - ; ComputeShortestPath() until an
g1 g & g 4.8 g optimal path is determined.

rhs: 1 rhs: oo rhs: oo rhs: 5.4 rhs: 5.8
N E— — S 4 R
0,0 toa| 0,1 0,2 0,3 | \Q4

g 0 g1 g:. o0 g: o0 g. o0

€|
rhs: 0 rhs: 1 rhs: oo rhs: 5.8 ||| rhs: 6.2

= The node corresponding to the robot's current position is inconsistent and its key is greater than

the minimum key on the open list.
® Thus, the optimal path is not found yet.
Jan Faigl, 2025 B4M36UIR — Lecture 03: Path Planning 96 / 118

D* Lite

D* Lite — Example Planning (30)

30 31 32 33 34 Legend

g 3 g: 3.4 g: 3.8 g 4.8 g: 00 Free node _
"
rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8 On open list Active node
y4 y4 K‘ /

2,0 i l/'2,1 {'2,2 VE l/'2,4 start

ComputeShortestPath
g 2 g 2.4 g 44 ||g 54 ® Pop the minimum element from the
rhs: 2 rhs: 2.4 rhs: 5. rhs: 5.4 open list (2,2), which is obstacle.
o i {rfvl 3 T G ® |t is under-consistent (g < rhs), there-

i s fore set g = oo.
g 4 :

rhs: 5.4 rhs: 5.8

g1
rhs: 1

® Expand the popped element and put the
predecessors that become inconsistent

0,0 kl oal [o.1 0,3 T K\Q‘; (none in this case) onto the open list.
g 0 g1 g: o0 g o
¢

o -
N N

rhs: 0 rhs: 1 rhs: 5.8 ||| rhs: 6.2

= Because (2,2) was under-consistent (when popped), UpdateVertex() has to be called on it.

. . . . S
= However, it has no effect as its rhs value is up to date and consistent. /¥

Jan Faigl, 2025 B4M36UIR — Lecture 03: Path Planning 97 / 118

Grid-based Planning

DT for Path Planning

Graph Search Algorithms D* Lite

D* Lite — Example Planning (31-init)

Jan Faigl, 2025

B4M36UIR — Lecture 03: Path Planning

RD-based Planning

30 31 32 33 34 Legend
g 3 g 3.4 g 3.8 g 4.8 g c9 _
&
rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8 On open list
I y4 y4 /
Y. Y- N V.
20 L 21]2 R3 K2 start ComputeShortestPath
g 2 g 24 g 4.4 || & 5.4 ® Pop the minimum element from the
rhs: 2 rhs: 2.4 rhs: 5. rhs: 5.4 open list (2,3).
o i AT " 3 T G = |t is under-consistent g < rhs.
g1 g 4.8 g: o
rhs: 1 rhs: 5.4 ||| rhs: 5.8
I 7
00 &oal |01 0,2 03 | N4
g 0 J g1 g: o0 g o
rhs: 0 rhs: 1 rhs: 5.8 ||| rhs: 6.2

ft

98 / 118

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning

D* Lite — Example Planning (31)

3,0 3,1 3,2 3,3

34 Legend

g 3 g 3.4 g 3.8 g 4.8 g c9 _
"

rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8

On open list
I y4 y4 y4
2,0 J, 2,1

Y.
4 2 24 start ComputeShortestPath
g 2 g 24 SES || & 5.4 ® Pop the minimum element from the
rhs: 2 rhs: 2.4 rhs: 5. rhs: 5.4 open list (2,3).
To i r{l Tl T ® |t is under-consistent g < rhs
therefore set g = oo.
g: 4.8 g: o

g1
rhs: 1
0,0 goal (01

g 0 g1
"
rhs: 0 rhs: 1

rhs: 5.4 rhs: 5.8
A~

0,3 | \Q“

g: 0o g: oo

rhs: 5.8 ||| rhs: 6.2

N

o = N
[N N N
p.

ft

99 / 118

Jan Faigl, 2025 B4M36UIR — Lecture 03: Path Planning

Grid-based Planning

DT for Path Planning

Graph Search Algorithms D* Lite

RD-based Planning

D* Lite — Example Planning (32)

3,0 3,1 3,2 3,3 3,4
g 3 g: 3.4 g: 3.8 g 4.8 g: 0o
"
rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8
I y4 y4
20 | 2,1 /22 ‘%3 R4 start
g 2 g 2.4 g: o0 g: 5.4
rhs: 2 rhs: 2.4 rhs: 5.9 rhs: 6.2
I /7 ZAY
1,0 J, 1,1 1,2 1,3 /'1,4
g1 g 4.8 g: o
N
rhs: 1 rhs: 6.8 ||| rhs: 5.8
T S
00 goal |01 0,2 0,3 | \Q‘*
g 0 g1 g: o0 g
"
rhs: 0 rhs: 1 rhs: 5.8 ||| rhs: 6.2

Jan Faigl, 2025

B4M36UIR — Lecture 03: Path Planning

Legend

[Free node _|[Obstacle node |
On open list

ComputeShortestPath

® Expand the popped element and update
the predecessors.

® (2,4) becomes inconsistent.

m (1,3) gets updated and still inconsis-
tent.

® The rhs value (1,4) does not changed,

but it is now computed from the g value
of (1,3).

ft

100 / 118

Grid-based Planning

DT for Path Planning

Graph Search Algorithms D* Lite

RD-based Planning

D* Lite — Example Planning (33)

3,0 3,1 3,2 3,3 3,4
g 3 g 34 g: 3.8 g 4.8 g: o
&
rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8
I y4 y4
20 | 2,1 /22 ‘%3 R4 start
g 2 g 2.4 g: oo g 5.4
rhs: 2 rhs: 2.4 rhs: 5.9 rhs: 6.2
I y4 [AY
1,0 J, 1,1 1,2 1,3 /'1,4
g1 g 4.8 g: o
¢
rhs: 1 rhs: 5.4 ||| rhs: 5.8
T 7x
00 goal |01 0,2 0,3 | \Q“
g 0 g1 g: o0 g
¢
rhs: 0 rhs: 1 rhs: 5.8 ||| rhs: 6.2

Jan Faigl, 2025

B4M36UIR — Lecture 03: Path Planning

Legend

[Free node _|[Obstacle node |
On open list

ComputeShortestPath

® Because (2,3) was under-consistent
(when popped), a call UpdateVertex ()
on it is needed.

® As it is still inconsistent it is put back
onto the open list.

ft

101 / 118

Grid-based Planning

DT for Path Planning

Graph Search Algorithms

D* Lite RD-based Planning

D* Lite — Example Planning (34)

3,0 3,1 3,2 3,3 3,4
g 3 g: 3.4 g: 3.8 g 4.8 g: 0o
¢
rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8
I y4 y4
20 | 2,1 /22 ‘%3 R4 start
g 2 g 2.4 g: oo g 5.4
rhs: 2 rhs: 2.4 rhs: 5.9 rhs: 6.2
I y4 [AY
1,0 J, 1,1 1,2 1,3 /'1,4
g1 g: oo g: oo
¢
rhs: 1 rhs: 6.8 ||| rhs: 5.8
T 1+ KN
00 goal |01 0,2 0,3 | \Q“
g 0 g1 g: o0 g
¢
rhs: 0 rhs: 1 rhs: 5.8 ||| rhs: 6.2

Jan Faigl, 2025

B4M36UIR — Lecture 03: Path Planning

Legend
[Free node | [Obstacle node |

On open list

ComputeShortestPath

® Pop the minimum element from the
open list (1,3).

® |t is under-consistent (g < rhs), there-
fore set g = oo.

ft

102 / 118

Grid-based Planning

DT for Path Planning

Graph Search Algorithms D* Lite

RD-based Planning

D* Lite — Example Planning (35)

3,0

3,1 3,2 3,3 3,4
g 3 g: 3.4 g: 3.8 g 4.8 g: oo
rhs: 3 rhs: 3.4 (|| rhs: 3.8 i rhs: 4.8 ||| rhs: 5.8
2,0 i 'g,l {'g,z ‘%3 R4 start
g 2 g 2.4 g: o0 g: 5.4
rhs: 2 rhs: 2.4 - rhs: 5.9 rhs: 6.2
I y4 [AY A~
1,0 J, 1,1 1,2 1,3 /'1,4 |
g1 g: oo g: oo
rhs: 1 - - rhs: 6.8 ||| rhs: 6.4
0,0 |0a| 0,1 0,2 0,3 0,4
g 0 g 1 g: oo g oo
rhs: 0 l rhs: 1 - rhs: oo rhs: oo

Jan Faigl, 2025

B4M36UIR — Lecture 03: Path Planning

Legend

[Free node _|[Obstacle node |
On open list

ComputeShortestPath

® Expand the popped element and update
the predecessors.

m (1,4) gets updated and still inconsis-
tent.

= (0,3) and (0,4) get updated and now
consistent (both g and rhs are o).

ft

103 / 118

Grid-based Planning

DT for Path Planning

Graph Search Algorithms D* Lite

RD-based Planning

D* Lite — Example Planning (36)

3,0 3,1 3,2 3,3 3,4
g 3 g: 3.4 g: 3.8 g 4.8 g: oo
rhs: 3 rhs: 3.4 (|| rhs: 3.8 i rhs: 4.8 ||| rhs: 5.8
2,0 i 'g,l {'g,z ‘%3 R4 start
g 2 g 2.4 g: o0 g: 5.4
rhs: 2 rhs: 2.4 - rhs: 5.9 rhs: 6.2
I y4 [AY A~
1,0 J, 1,1 1,2 1,3 /'1,4 |
g1 g: oo g: oo
rhs: 1 - - rhs: 6.8 ||| rhs: 6.4
0,0 |0a| 0,1 0,2 0,3 0,4
g 0 g 1 g: oo g oo
rhs: 0 l rhs: 1 - rhs: oo rhs: oo

Jan Faigl, 2025

B4M36UIR — Lecture 03: Path Planning

Legend

[Free node _|[Obstacle node |
On open list

ComputeShortestPath

® Because (1,3) was under-consistent
(when popped), call UpdateVertex()
on it is needed.

® As it is still inconsistent it is put back
onto the open list.

ft

104 / 118

Grid-based Planning

DT for Path Planning

Graph Search Algorithms

D* Lite RD-based Planning

D* Lite — Example Planning (37)

3,0 3,1 3,2 3,3 3,4
g 3 g: 3.4 g: 3.8 g 4.8 g: oo
rhs: 3 rhs: 3.4 (|| rhs: 3.8 i rhs: 4.8 ||| rhs: 5.8
2,0 i 'g,l {'g,z 3 N4 start
g 2 g 2.4 g: 5.2 g: 5.4
rhs: 2 rhs: 2.4 - rhs: 5.4 rhs: 6.2
I y4 LAY A
1,0 J, 1,1 1,2 1,3 /'1,4 |
g1 g: o g: oo
rhs: 1 - - rhs: 6.8 ||| rhs: 6.4
0,0 |0a| 0,1 0,2 0,3 0,4
g 0 g 1 g: oo g oo
rhs: 0 l rhs: 1 - rhs: oo rhs: oo

Jan Faigl, 2025

B4M36UIR — Lecture 03: Path Planning

Legend
[Free node | [Obstacle node |

On open list

ComputeShortestPath

® Pop the minimum element from the
open list (2,3).

= |t is over-consistent (g > rhs), there-
fore set g = rhs.

ft

105 / 118

Grid-based Planning

DT for Path Planning

Graph Search Algorithms D* Lite

RD-based Planning

D* Lite — Example Planning (38)

3,0 3,1 3,2 3,3 3,4
g 3 g: 3.4 g: 3.8 g 4.8 g: oo
rhs: 3 rhs: 3.4 (|| rhs: 3.8 i rhs: 4.8 ||| rhs: 5.8
2,0 i 'g,l {'g,z 3 N4 start
g 2 g 2.4 g: 5.2 g: 5.4
rhs: 2 rhs: 2.4 - rhs: 5.2 rhs: 6.2
I y4 A LAY A
1,0 J, 1,1 1,2 1,3 | 1,4 |
g1 g: o g: oo
rhs: 1 - - rhs: 6.2 ||| rhs: 6.4
0,0 I0a| 0,1 0,2 0,3 0,4
g 0 g 1 g: o0 g oo
rhs: 0 l rhs: 1 - rhs: oo rhs: oo

Jan Faigl, 2025

Legend

[Free node _|[Obstacle node |
On open list

ComputeShortestPath

® Expand the popped element and update
the predecessors.

= (1,3) gets updated and still inconsis-
tent.

= The node (2,3) corresponding to the
robot’s position is consistent.

= Besides, the top of the key on the open
list is not less than the key of (2,3).

= The optimal path has been found and

we can break out of the loop.

B4M36UIR — Lecture 03: Path Planning 106 / 118

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning

D* Lite — Example Planning (39)

32 33 34 Legend

W4 start

g: 5.4

rhs: 6.2
A

1,4 |

g: oo

rhs: 6.2 ||| rhs: 6.4

= Follow the gradient of g values from the
robot’s current position (node).

0,3 0,4

g: 00 g: oo

rhs: oo rhs: co

o = NN <
[N N N

¢
rhs: 0 rhs: 1

ft

Jan Faigl, 2025 B4M36UIR — Lecture 03: Path Planning 107 / 118

D* Lite

D* Lite — Comments

m D* Lite works with real valued costs, not only with binary costs (free/obstacle).
® The search can be focused with an admissible heuristic that would be added to g and

rhs.
® The final version of D* Lite includes further optimization (not shown in the example).

m Updating the rhs value without considering all successors every time.
m Re-focusing the search as the robot moves without reordering the entire open list.

Jan Faigl, 2025 B4M36UIR — Lecture 03: Path Planning 108 / 118

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning

Outline

= Path Planning based on Reaction-Diffusion Process

ft

Jan Faigl, 2025 B4M36UIR — Lecture 03: Path Planning 109 / 118

RD-based Planning

Reaction-Diffusion Processes Background

® Reaction-Diffusion (RD) models — dynamical systems capable to reproduce the au-
towaves.
m Autowaves - a class of nonlinear waves that propagate through an active media.
At the expense of the energy stored in the medium, e.g., grass combustion.
® RD model describes spatio-temporal evolution of two state variables v = u(x, t) and
v = v(X, t) in space X and time t
u = f(u,v)+D,Au
v g(u,v)+D,Av’

where A is the Laplacian.

This RD-based path planning is informative, just for curiosity.

Jan Faigl, 2025 B4M36UIR — Lecture 03: Path Planning 110 / 118

RD-based Planning

Reaction-Diffusion Background

® FitzHugh-Nagumo (FHN) model FitzHugh R, Biophysical Journal (1961)
u = 5(u—u3—v+¢)+DuAu
v = (u—av+p)+DAu
where «, 3, ¢, and ¢ are parameters of the model.

® Dynamics of RD system is determined by the associated nullcline configurations for 4=0
and v=0 in the absence of diffusion, i.e.,
€(u—u3—v+¢) = 0,
(u—av+p) = 0,

which have associated geometrical shapes.

Jan Faigl, 2025 B4M36UIR — Lecture 03: Path Planning 111 / 118

RD-based Planning

Nullcline Configurations and Steady States

057

= Nullclines intersections represent:

v, | m Stable States (SS5s);
m Unstable States.

m Bistable regime

051 The system (concentration levels of (u, v) for each grid cell)
tends to be in SSs.

15 -10 -05 00 05 1.0 15
u

m \We can modulate relative stability of both SS. -~
“preference” of SST over SS—.
® System moves from SS™ to SST, if a small perturbation is intro-

duced.

m The SSs are separated by a mobile frontier — a kind of traveling
frontwave (autowaves).

Jan Faigl, 2025 B4M36UIR — Lecture 03: Path Planning

RD-based Planning

RD-based Path Planning — Computational Model

= Finite difference method on a Cartesian grid with Dirichlet boundary
conditions (FTCS). discretization — grid based computation — grid map

® External forcing — introducing additional information
i.e., constraining concentration levels to some specific values.

= Two-phase evolution of the underlying RD model.

1. Propagation phase
® Freespace is set to SS™ and the start location SS™. .

= Parallel propagation of the frontwave with non-annihilation property.
Vazquez-Otero and Mufiuzuri, CNNA (2010)

m Terminate when the frontwave reaches the goal.
2. Contraction phase

= Different nullclines configuration.
® Start and goal positions are forced towards SS™.
® S5~ shrinks until only the path linking the forced points remains.

Jan Faigl, 2025 B4M36UIR — Lecture 03: Path Planning 113 / 118

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning

Example of Found Paths

700 x 700 700 x 700 1200 x 1200

® The path clearance maybe adjusted by the wavelength and size of the computational grid.
Control of the path distance from the obstacles (path safety). %

Jan Faigl, 2025 B4M36UIR — Lecture 03: Path Planning 114 / 118

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning

Comparison with Standard Approaches

Distance Transform Voronoi Diagram Reaction-Diffusion

Jarvis R Beeson P, Jong N, Kuipers B Otero A, Faigl J, Mufiuzuri A
Advanced Mobile Robots (1994) ICRA (2005) IROS (2012)

m RD-based approach provides competitive paths regarding path length and clearance, %
while they seem to be smooth.

Jan Faigl, 2025 B4M36UIR — Lecture 03: Path Planning 115 / 118

Grid-based Planning DT for Path Planning Graph Search Algorithms RD-based Planning

Robustness to Noisy Data

Vazquez-Otero, A., Faigl, J., Duro, N. and Dormido, R. (2014): Reaction-Diffusion based Computational Model for Autonomous Mobile
Robot Exploration of Unknown Environments. International Journal of Unconventional Computing (1JUC).

Jan Faigl, 2025 B4M36UIR — Lecture 03: Path Planning 116 / 118

Topics Discussed

Summary of the Lecture

ft

Jan Faigl, 2025 B4M36UIR — Lecture 03: Path Planning 117 / 118

Topics Discussed

Topics Discussed

® Motion and path planning problems
® Path planning methods — overview
= Notation of configuration space

m Path planning methods for geometrical map representation
m Shortest-Path Roadmaps
= Voronoi diagram based planning
m Cell decomposition method

m Distance transform can be utilized for kind of navigational function
= Front-Wave propagation and path simplification

= Artificial potential field method

® Graph search (planning) methods for grid-like representation
= Dijsktra's, A*, JPS, Theta*
® Dedicated speed up techniques can be employed to decreasing computational burden, e.g., JPS
m Grid-path can be smoothed, e.g., using path simplification or Theta* like algorithms

= We can avoid demanding planning from scratch reusing the previous plan for the updated
environment map, e.g., using D* Lite
= Unconventional reaction-diffusion based planning (informative)

m Next: Robotic Information Gathering — Mobile Robot Exploration

Jan Faigl, 2025 B4M36UIR — Lecture 03: Path Planning 118 / 118

	1
	Introduction to Path Planning
	Notation and Terminology
	Path Planning Methods

	2
	Grid-based Planning
	DT for Path Planning
	Graph Search Algorithms
	D* Lite
	Path Planning based on Reaction-Diffusion Process

	Summary
	Topics Discussed

