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Part |

Part 1 — Path and Motion Planning
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Introduction to Path Planning

Robot Motion Planning — Motivational problem

® How to transform high-level task specification (provided by humans) into a low-level
description suitable for controlling the actuators?

To develop algorithms for such a transformation.
The motion planning algorithms provide transformations how to move a robot (object)
considering all operational constraints.

Introduction to Path Planning

Piano Mover's Problem
A classical motion planning problem
Having a CAD model of the piano, model of the environment, the problem is how to move the
piano from one place to another without hitting anything.
4

Basic motion planning algorithms are focused primarily on rotations and translations.
m We need notion of model representations and formal definition of the problem.

u Moreover, we also need a context about the problem and realistic assumptions.
The plans have to be admissible and feasible.

Introduction to Path Planning

Robotic Planning Context

A= - N\
Mission Planning

Tasks and Actions Plans

Path (Motion) Planning / Trajectory Planning

Problem Path Planning Trajectory Generation
. =D =0
Models of
Path
° robot and
workspace

‘geometric” level

Trajectory VOps’Hmp control?

Sensing and Acting

feedback control
controller - drives (motors) - sensors

Robot Control

Sources of uncertainties
because of real environment

"physical” level

Real Mobile Robots

In a real deployment, the problem is more complex.

® The world is changing.
® Robots update the knowledge about the
environment.

localization, mapping and navigation

= New decisions have to be made based on

the feedback from the environment.
Motion planning is a part of the mission re-
planning loop.

An example of robotic mission:

. . . Josef Strunc, Bachelor thesis, CTU, 2009.
Multi-robot exploration of unknown environment.

How to deal with real-world complexity?
Relaxing constraints and considering realistic assumptions.
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Notation Notation
Notation Path / Motion Planning Problem
= YW — World model describes the robot workspace and its boundary determines the = Path is a continuous mapping in C-space such that

obstacles O;. ,
2D world, W = R

= A Robot is defined by its geometry, parameters (kinematics) and it is controllable by
the motion plan.

= C - Configuration space (C-space)
A concept to describe possible configurations of the robot. The robot’s configuration
completely specify the robot location in W including specification of all degrees of

freedom.
E.g., a robot with rigid body in a plane C = {x,y, ¢} = R? x S1.

u Let A be a subset of W occupied by the robot, A = A(q).
® A subset of C occupied by obstacles is
Cobs = {q € C: A(gq) N O;,Vi}.
= Collision-free configurations are
Ctree = C \ Cobs- A
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70,1 = Cpee, with 7(0) = qo, and (1) = gy.

= Trajectory is a path with explicit parametrization of time, e.g., accompanied by a

description of the motion laws (v : [0,1] — U, where U is robot’s action space).
It includes dynamics.

[To, Te] 3t~ 7 €[0,1] : q(t) = 7(7) € Crree
The path planning is the determination of the function ().

Additional requirements can be given:
® Smoothness of the path;
® Kinodynamic constraints, e.g., considering friction forces;
Optimality criterion — shortest vs fastest (length vs curvature).

Path planning - planning a collision-free path in C-space.
Motion planning — planning collision-free motion in the state space.
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Notation

Planning in C-space
Robot path planning for a disk-shaped robot with a radius p.

Goal position

Goal configuration
.

Start position
Start configuration
.
s Point robot
Disk robot
C-space
Motion planning problem in
C-space representation.

Motion planning problem in
geometrical representation of W.
C-space has been obtained by enlarging obstacles by the disk .A with the radius p.
By applying Minkowski sum: O ® A= {x+y | x€ O,y € A}.
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Example of Cops for a Robot with Rotation

y
o=n2 %Lﬂibol body
X

Reference point

= Deterministic algorithms exist.

Notation

A simple 2D obstacle — has a complicated Cops.

ial time in C dii

J. Canny, PAMI, 8(2):200-209, 1986.

q
m Explicit representation of Cpe. is impractical to compute.
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Notation

Representation of C-space

How to deal with continuous representation of C-space?

Continuous Representation of C-space J

0

Discretization
processing critical geometric events, (random) sampling
roadmaps, cell decomposition, potential field

Graph Search Techniques
BFS, Gradient Search, A*
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Path Planning Methods

Planning Methods - Overview
(selected approaches)

= Point-to-point path/motion planning. Multi-goal path/motion/trajectory planning later

L Roadmap based methods — Create a connectivity graph of the free space.
= Visibility graph;
= Cell decomposition;
= Voronoi graph.

= Discretization into a grid-based (or lattice-based) representation

(Complete but impractical)

(Resolution complete)

(Complete only for a “navigation function”, which is hard to compute
in general)

= Potential field methods

Classic path planning algorithms

= Randomized sampling-based methods
® Creates a roadmap from connected random samples in Cree.

= Probabilistic roadmaps.
Samples are drawn from some distribution.

= Very successful in practice.

Jan Faigl, 2025 B4M36UIR — Lecture 03: Path Planning 16 / 118

1. Compute visibility graph.
2. Find the shortest path.

Problem

Visibility graph

Constructions of the visibility graph:

= Naive — all segments between n vertices of the map O(n?);

Visibility Graph

= Using rotation trees for a set of segments — O(n?).

Jan Faigl, 2025
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Path Planning Methods

E.g., by Dijkstra’s algorithm.

Found shortest path

M. H. Overmars and E. Welzl, 1988
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Path Planning Methods

Minimal Construct: Efficent Shortest Path in Polygonal Maps
= Minimal Construct algorithm computes visibility graph during the A* search instead of first computation of the
complete visibility graph and then finding the shortest path using A* or Dijkstra algorithm.
F
= Based on A* search with line intersection tests are delayed until M ovemars e —
they become necessary.

® The intersection tests are further accelerated using bounding
boxes.

250 3000

QO 0
Q

LS
SN i%Q'
Full Visibility Graph
Marcell Missura, Daniel D. Lee, and Maren Bennewitz (2018): Minimal Construct: Efficient Shortest Path Finding for Mobile Robots in
Polygonal Maps. IROS. :

-\

(7 AR
Minimal Construct
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Path Planning Methods
Voronoi Graph

1. Roadmap is Voronoi graph that maximizes clearance from the obstacles.
2. Start and goal positions are connected to the graph.
3. Path is found using a graph search algorithm.

Found path

Path in graph

Voronoi graph
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Visibility graph

= Shortest path, but it is close to obstacles. We have to consider safety

of the path.

Visibility Graph vs Voronoi Graph

An error in plan execution can lead to a

collision.

= Complicated in higher dimensions

Path Planning Methods

Voronoi graph

= |t maximize clearance, which can provide conservative paths.
= Small changes in obstacles can lead to large changes in the graph.

= Complicated in higher dimensions.

Jan Faigl, 2025

A combination is called Visibility-Voronoi — R. Wein, J. P. van den Berg,

D. Halperin, 2004.

For higher dimensions we need other types of roadmaps.
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Path Planning Methods

Cell Decomposition

1. Decompose free space into parts. Any two points in a convex region can be directly connected by a
segment.

2. Create an adjacency graph representing the connectivity of the free space.
3. Find a path in the graph.

Trapezoidal decomposition

Centroids represent cells Connect adjacency cells Find path in the adjacency graph

u Other decomposition (e.g., triangulation) are possible.
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Path Planning Methods Path Planning Methods F Path Planning Methods

Shortest Path Map (SPM) Point Location Problem Approximate Shortest Path and Navigation Mesh
= Speedup computation of the shortest path towards a particular goal location p, for a polygonal = Fora given pa‘rtitioning of the polygonal domain into a discrete set of cells, determine the cell = We can use any convex partitioning of the polygonal map to speed up shortest path queries.
domain P with n vertices. ————— for a given point p. 1. Precompute all shortest paths from map vertices to p, using visibility graph.

= A partitioning of the free space into cells with respect to the
particular location p,.

2. Then, an estimation of the shortest path from p to p; is the shortest path among the one
of the cell vertex.

= Each cell has a vertex on the shortest path to pg.

w

= Shortest path from any point p is found by determining the cell
(in O(log n) using point location alg.) and then travesing the

e : =

Masato Edahiro, lwao Kokubo and Takao Asano: A new point-location algorithm and its practical efficiency: comparison with It

shortest path with up to k bends, i.e., it is found in O(log n+k). existing algorithms, ACM Trans. Graph., 3(2):86-109, 1984. . !
. — " . = |t can be implemented using interval trees — slabs and slices.
= Determining the SPM using “wavefront” propagation based on i
continuous Dijkstra paradigm. ] 1
Joseph S. B. Mitchell: A new algorithm for shortest paths among obstacles in the plane, B
Annals of Mathematics and Artificial Intelligence, 3(1):83-105, 1991. - | | -1
. . ] 1
= SPM is a precompute structure for the given P and py; - 1H il i
= single-point query. Ll Y= H = The estimation can be further improved by “ray-shooting” technique combined with walking in
- . . triangulation (convex partitioning). Faigl, 2010,
A similar structure can be found for two-point query, e.g., H. Guo, A. Maheshwari, J.-R. Sack, 2008. Point location problem, SPM and similarly problems are from the Computational Geometry field. g ( P g) (Faig )
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Path Planning Methods Path Planning Methods Path Planning Methods
Path Refinement Navigation Mesh Artificial Potential Field Method

= |n addition to robotic approaches, fast shortest path queries are studied in computer games.

= Testing collision of the point p with particular vertices of the estimation of the shortest path. ® There is a class of algorithms based on navigation mesh

® The idea is to create a function f that will provide a direction towards the goal for any

u Let the ir\itial lpath estirpation from p to pg be a sequence of k‘errtices (P vise o Vi Pg)- = A supporting structure representing the free space. configuration of the robot.
= We can iteratively test if the segment (p,v;), 1 < i < k is collision free up to (p, F’g)- It usually originated from the grid based maps, but it is represented as CDT — Constrained ® Such a function is called navigation function and 7vf(q) points to the goal.
- - - Delaunay triangulation. .
. o . = —r—— - = Create a potential field that will attract robot towards the goal gr while obstacles will
o o o o o o I generate repulsive potential repelling the robot away from the obstacles.
" | The navigation function is a sum of potentials.
r
o Prviouslocal minimap
. . . S fo
! P I
o o o - L | )
. ./ J AR e X
— — — = xn
0 ) Grid mesh Merged grid mesh CDT mesh Merged CDT mesh o "4
\ s
Path over vo Path over v; Full refinement m E.g., Polyanya algorithm based on navigation mesh and best-first search. 2576t m :
M. Cui, D. Harabor, A. Grastien: C ise-fr ona i Mesh, 1JCAI 2017, 496-502. . . .
With the precomputed structures, an estimate of the shortest path is determined in units of microseconds. https://bitbucket. org/dharabor/pathf inding Such a potential function can have several local minima.
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Path Planning Methods Grid-based Planning
Avoiding Local Minima in Artificial Potential Field Grid-based Planning
= Consider harmonic functions that have only one extremum = A subdivision of Cre into smaller cells.
) = Grow obstacles can be simplified by growing bor-
V=f(q) = 0. ders by a diameter of the robot.

Part I = Construction of the planning graph G = (V, E) for

= Finite element method with defined Dirichlet and Neumann boundary conditions. V as a set of cells and E as the neighbor-relations

Part 2 — Grid and Graph based Path Planning Methods

= 4-neighbors and 8-neighbors

\ 1
I | [

= A grid map can be constructed from the so-called
occupancy grid maps. E.g., using thresholding.
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Grid-based Planning Plan E Grid-based Planning Grid-based Planning

Grid-based Environment Representations Example of Simple Grid-based Planning Example — Wave-Front Propagation (Flood Fill)
[

= Wave-front propagation using path simplication -:
= |nitial map with a robot and goal.

L] Hlearchlcal planning with coarse resolution and re-planning on finer resolution.
. R. C. et al. (1996): Hierarchical A *: searching abstraction hierarchies o
efﬁclen!ly AAAL

= Wave-front propagation — “flood fill".

= Find a path using a navigation function.
= Path simplification.

I
I
[
|
= Obstacle growing. }
i
I
I
L

" - . . . 1 1 8 122
= Qctree can be used for the map representation. = “Ray-shooting _technlque_ combined with BoHaaa0a il
. . Bresenham'’s line algorithm. 8ss 88888 9 9101
In addition to squared (or rectangular) grid a hexagonal . o . Trrriae g8 sm
. = The path is a sequence of "key” cells for avoiding A 666665 10 T8 sm
grid can be used. 55555561 5678 stm
obstacles. | (| iaa Grnn 5678 0t
= 3D grid maps — OctoMap https://octomap.github.io. 132230934 S i la e e
. . . R saaa1 1z o0 11
— Memory grows with the size of the environment. 13210123 5432107723 w0 n
PEERIEEIEI 58320423 nAnnn
— mi 1 i HE 43222223 543222223 1BRHR121212
Due to limited resolution it may fail in narrow passages of / LEHEARHAE slaizlzizlz 2l3Bule | frleie
Chree-
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Grid-based Planning Grid-based Planning DT for Path Planning
Path Simplification Bresenham's Line Algorithm Distance Transform based Path Planning

= Filling a grid by a line with avoding float numbers.

= The initial path is found in a grid using 8-neighborhood. = A line from (xo. yo) to (x1,y1) is given by y = 2=22(x — xo) + yo.

= For a given goal location and grid map compute a navigational function using wave-front

- . . . . %o X ; . A
= The rayshoot cast a line into a grid and possible collisions of the robot with obstacles 1 Coorastectork bresennan(const Coordsk i, const Cooraak pr2, 26 int twoby = 2 + ay; algorithm, ie., a kind of potential field.
CoordsVectork line! 27 int twoDyTwoDx = twoDy - 2 % dx; //2+Dy - 2+Dx . .
are checked. 2 ¢ 28 woDy - dx; //24Dy - Dx = The value of the goal cell is set to 0 and all other free cells are set to some very high
3 // The pt2 point is not added into line 29 5
= The “farthest” cells without collisions are used as “turn” points 4 imtx0 = ptl.c; int yO = ptir; 30 int xbrau, ybrau; value.
. 5 int x1 = pt2.c; int yi = pt2.r; 31 for (int x = x0; x != x1; x += xstep) { = For each free cell compute a number of cells towards the goal cell.
. . . . 6 Coords p; 32 £ I L . . .
= The final path is a sequence of straight line segments. 7 ot de 2 a1 - x0s pey i (steep) f,; = |t uses 8-neighbors and distance is the Euclidean distance of the centers of two cells, i.e
8 int dy = y1 - y0; 34 yDraw = x; = = It
il TTTTT]I TTTTTI ] } { A At T, bt ) o EV=1 for ortho.gonall cells or EV \/ifor diagonal cells. .
[N 1T 10 i veep) € o xDraw = x; ® The values are iteratively computed until the values are changing.
—— —— -~ SWAP(x0, y0); yDraw = y; .
] 1 | 12 SUAP(x1, y1); 38 3 = The value of the cell ¢ is computed as
| 1 13 dx = xi - x0; // recompute Dx, Dy 39 p.c = xDraw;
1 ay = y1 - yoi 40 p.r = yDraw; 8
T 15 a1 Line.push_back(p); // add to the line cost(c) = min (cost(ci) + EVe,e),
T 16 int xstep = 1; 42 if (e > 0) { i= '
T 17 if (dx < 0) { 43 e += twoDyTwoDx; //E += 2Dy - 2+Dx X ) ) .
—— —— \ 18 xstep = -1; 44 y =y + ystep; where ¢; is one of the neighboring cells from 8-neighborhood of the cell c.
Il 1 19 ax - -ax; 45 ¥ else { . ) .
1 — 1 ﬁ: » b b J oD //E 2y ® The algorithm provides a cost map of the path distance from any free cell to the goal cell.
int ystep = 1;
ImE! L 2 it @y <o 8 reen 1in: % ® The path is then used following the gradient of the cell cost. ow
Initial and goal locations Obtacle g::;;‘;‘;il‘::"e -front Ray-shooting. Simplified path 2 :; ?,;y: ’ 50 ) etumm dines st Jarvis, R. (2004): Distance Transform Based Visibility Measures for Covert Path Planning in Known but Dynamic Environments. | 7.5/
25 ¥
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DT for Path Planning DT for Path Planning DT for Path Planning
Distance Transform Path Planning Distance Transform based Path Planning — Impl 1/2 Distance Transform based Path Planning — Impl. 2/2
Algorithm 1: Distance Transform for Path Planning § i prcompuce(Oridk gria) const 4 P RS : - - . :
- e 20 atie const doubte DIAGONAL - sare(@); ¥ AR A ® The path is retrived by following the minimal value towards the goal using
for y := 0 to yMax do 4 static const double ORTOGONAL = 1; 38 continue; : s
0w yMaxds P mmeom = s ningPoint ().
N 6 40 double t[4]; 1 Coordsk min8Point(const Gridk grid, Coords& p) 22 CoordsVectork DT::findPath(const Coordsk start, const Coordsé
if goal [x.y] then ? \ iz a o0 - grsale + 1))+ owTOgon 2 ¢ goal, CoordsVoctork path)
| cell [xy] :=0; 5 b I3 - Al e 11+ ontocomks 3 inumeric_limits<double>: imax(); 23
else 10 while (anyChange) { a4 2] - gridlr + 11[c - 1] + DIAGONAL; 4 24 static const double DIAGONAL = sqrt(2);
| cell [xy] ;= xMax * yMax; //initialization, e.g., pragmatic of the use longest distance as oo ; u anychange = t;lsa: e . b double pon = ridlx][c); 2 gonse i gg zz:::ci::nzt d;:‘;l; ORTOGONAL = 1;
or Gat x - 15 1 < H - 13 e ool 5 = falsa; ; = nep.F;
|- - 13 for (int ¢ =1; ¢ - 1; ++0) { a7 for (int i = 0; i < 4; i++) { 7 27 const int W =
14 if (maplr]lc] != m:zsmcz) < a8 if (pom > t[iD) 8 for (int r = p.r - 1; T <= p.r + 1; r+4) { 28 Grid grid(H, W, H»w), // H¥ max grid value
repeat 15 continue; 49 pom = t[il; 9 if (r < 0 or r >= H) { continue; } 29 grid(goal.r] [goal.c] = 0;
for y := 1 to (yMax - 1) do 16 ) //obstacle detected 50 s = true; 10 for (int ¢ = p.c - 13 ¢ <= p.c + 1; c+4) { 30 compute (grid) ;
for x := 1 to (xMax - 1) do ia e e - 1 + bIacomAL; o N 1 if (¢ <0 or ¢ >= W) { continue; } 31
i e : 12 if (min > grid(z][c]) { 32 if (grid(start.r] [start.c] >= H#W) {
if not blocked [x,y] then 19 53 i () € b _ . " ")
1 g . 2 o anyChange = trues min = grid(r) [c]; 33 WARN("Path has not been found");
| cell [xy] := cost(x, y); > o ke i 1 tor =1t = o) 34 } else {
22 double pom = grid[r][c]; 56 ¥ 15 ) 35 Coords pt = start;
- 23 for (m‘; 0 s cay e € 57 ¥ 16 ¥ 36 while (pt.r != goal.r or pt.c != goal.c) {
for y := (yMax-1) downto 1 do 24 if (pom > t[i]) { 58 ¥ 17 ¥ 37 path.push_back(pt) ;
— _ 25 pom = t[i]; 59 counter++; 18 - 38 in8Poi id, A
for X = (xMax-1) downto 1 do 26 anyChange = true; 60 } //end while any change 19 fetu:n s 39 y o cin(erid, 70
if not blocked [x.y] then 27 b o1 return grid; 20 3 b 20 path.push_back (goal) ;
| celllxy] == cost(x, ); = %, (anycmange) € @ a ) '
L 30 g’xl!l[z] (= pom; A boundary is assumed around the rectangular map ﬁ ) return path;
31 f
until no change; 32 b3 ’
3

3 b
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DT for Path Planning

DT Example

md=10cm, L=272m

S

m§)=30cm, L=428m

s
Ve,

Graph Search Algorithms

Graph Search Algorithms

The grid can be considered as a graph and the path can be found using graph search
algorithms.
= The search algorithms working on a graph are of general use, e.g.,
® Breadth-first search (BFS);

Depth first search (DFS);
Dijktra's algorithm;
A* algorithm and its variants.
There can be grid based speedups techniques, e.g.,

= Jump Search Algorithm (JPS) and JPS™.
There are many search algorithms for on-line search, incremental search and with
any-time and real-time properties, e.g.,

= Lifelong Planning A* (LPA*).

Koenig, S., Likhachev, M. and Furcy, D. (2004): Lifelong Planning A*. AlJ.

m E-Graphs — Experience graphs

Graph Search Algorithms

Examples of Graph/Grid Search Algorithms

omp pln

A* (general)

Wre Phillips, M. et al. (2012): E-Graphs: Planning with Experience Graphs. RSS.
https://wu. youtube . com/watch?v=U2XNjCoKZjM.mp4
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Graph Search Algorithms Graph Search Algorithms Graph Search Algorithms
. . . , .
A* Algorithm A* Implementation Notes Dijktra's vs A* vs Jump Point Search (JPS
= A* uses a user-defined h-values (heuristic) to focus the search. = The most costly operations of A* are: J . =

Peter Hart, Nils Nilsson, and Bertram Raphael, 1968
u Prefer expansion of the node n with the lowest value

= [nsert and lookup an element in the closed list;
= Insert element and get minimal element (according to f() value) from the open list.

f(n) = g(n) + h(n), ® The closed list can be efficiently implemented as a hash set.
where g(n) is the cost (path length) from the start to n and h(n) is the estimated cost = The open list is usually implemented as a priority queue, e.g.,
from n to the goal. = Fibonacii heap, binomial heap, k-level bucket;
= h-values approximate the goal distance from particular nodes. ® binary heap is usually sufficient with O(logn).
. - . . = Forward A*
= Admissiblity condition — heuristic always underestimate the remaining cost to reach orward L )
the goal 1. Create a search tree and initiate it with the start location.
. . 2. Select generated but not yet expanded state s with the smallest f-value,
u Let h*(n) be the true cost of the optimal path from n to the goal. (s) — h
= Let (n) be the true cost of the op . v (5) = &(s) + h(s).
en h(n) is admissible if for all n: h(n) < h*(n). Do we need admissible? When and why? O
! . . T 3. Stop if s is the goal.
® E.g., Euclidean distance is admissible.
A straight I o al be the shortest path 4. Expand the state s.
.
straigi ine will always be e shortest path. 5 Goto Step 2.
= Dijkstra’s algorithm — h(n) = 0. Similar to Dijktra’s algorithm but it uses f(s) with the heuristic h(s) instead of pure g(s).
) ) ) ) ) https://www . youtube . com/watch?v=ROG4UdOBLLY
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Graph Search Algorithms Graph Search Algorithms Graph Search Algorithms
Jump Point Search Algorithm for Grid-based Path Planning Theta* — Any-Angle Path Planning Algorithm Theta* Any-Angle Path Planning Examples
® Jump Point Search (JPS) algorithm is based on a macro operator that identifies and = Any-angle path planning algorithms simplify the path during the search. = Example of found paths by the Theta* algorithm for the same problems as for the DT-based
selectively expands only certain nodes (jump points). = Theta* is an extension of A* with Line0fSight (). ! 2 3 4 i examples on Slide 42.
Harabor, D. and Grastien, A. (2011): Online Graph Pruning for Pathfinding on Grid Maps. AAAI. Nash, A., Daniel, K, Koenig, S. and Felner, A. (2007): Theta*: Any-Angle Path A 7
Planning on Grids. AAAI. ’ st
= Natural neighbors after neighbor prunning with e e - = - e
forced neighbors because of obstacle. menE v Algorithm 2: Theta* Any-Angle Planning B £
if LineOfSight(parent(s), s') then
e[| [s]7 e /* Path 2 — any-angle path */
i . if g(parent(s))+ c(parent(s), s') < g(s') then
= Intermediate nodes on a path connecting two L parent(s’) = parent(s); sl g
jump points are never expanded. g(s') = g(parent(s)) + c(parent(s), s'); 1 2 3 4 5
else A
/* Path 1 — A* path */ 7 )
| if g(s) + c(s,s") < g(s’) then L7
= No preprocessing and no memory overheads while it speeds up A*. L P?’?)"t )i(=)5jr o) B & g S5—10cm L—263m 5—30cm, L—403m
g(s') := g(s) + c(s.s'); " - ' -
https://harablog.wordpress.com/2011/09/07/jump-point-search/ The same path planning problems solved by DT (without path smoothing) have Ls—19 =
. . . . . 27.2 d Ls—30 = 42.8 m, while DT to be significantly faster.
= JPS™ is optimized preprocessed version of JPS with goal bounding. ® Path 2: considers path from start to parent(s) and from parent(s) to s’ £ mane M- m W = ‘Seems © D¢ Senficanty e
https://github.com/SteveRabin/JPSP1lusWithGoalBounding if s’ has line-of-sight to parent(s). ® Lazy Theta* - reduces the number of line-of-sight checks.
o ) ) ) - -~ Path 1 Path 2 Nash, A., Koenig, S. and Tovey, C. (2010): Lazy Theta*: Any-Angle Path Planning and Path Length Analysis
http://www.gdcvault. com/play/1022094/JPS-0ver-100x-Faster-than hetp://aiganedev. con/open/tutorials/theta- star-any-angle-paths/ in 3D. AAAL http://aiganedev.con/open/tutorial/lazy-theta-star/
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Graph Search Algorithms

A* Variants — Online Search

= The state space (map) may not be known exactly in advance.
= Environment can dynamically change.
= True travel costs are experienced during the path execution.
= Repeated A* searches can be computationally demanding.
= Incremental heuristic search
= Repeated planning of the path from the current state to the goal.
= Planning under the free-space assumption.
= Reuse information from the previous searches (closed list entries).
m Focused Dynamic A* (D*) — h* is based on traversability, it has been used, e.g., for the
Mars rover “Opportunity”
Stentz, A. (1995): The Focussed D* Algorithm for Real-Time Replanning. IJCAI
= D* Lite — similar to D*
Koenig, S. and Likhachev, M. (2005): Fast Replanning for Navigation in Unknown Terrain. T-RO.

Graph Search Algorithms

Real-Time Adaptive A* (RTAA*)

= Execute A* with limited look-ahead.

m Learns better informed heuristic from
the experience, initially h(s), e.g., Eu-
clidean distance.

while (sc,rr ¢ GOAL) do
astar(lookahead);
if s = FAILURE then
|_ return FAILURE;
for all s € CLOSED do
| H(s) = g(s) + h(s)) - g(s):
execute(plan); // perform one step
return SUCCESS;

® Look-ahead defines trade-off between
optimality and computational cost.
= astar(lookahead)
A* expansion as far as "lookahead” nodes
and it terminates with the state s’.

s’ is the last state expanded during the previous A*

D* Lite

D* Lite — Demo

= Real-Time Heuristic Search search.
= Repeated planning with limited look-ahead — suboptimal but fast
= Learning Real-Time A* (LRTA*) Korf, E. (1990): Real-time heuristic search. JAI.
= Real-Time Adaptive A*¥ (RTAA*) Koenig, S. and Likhachev, M. (2006): Real-time adaptive A*. AAMAS.
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D* Lite D* Lite D* Lite
D* Lite Overview D* Lite: Cost Estimates D* Lite Algorithm
= |t is similar to D*, but it is based on Lifelong Planning A*. . . X = Main — repeat until the robot reaches the goal tart) = oo there i h).
€ & ® rhs of the node u is computed based on g of its successors in the graph and the P g0al (o st = o0 there s o pac)
K ig, S d Likhachev, M. (2002): D* Lif AAAIL e tiali . TN D
o S end HiReae (2002) * transition costs of the edge to those successors Initialize(); Procedure Initialize
= |t searches from the goal node to the start node, i.e., g-values estimate the goal distance. ComputeShortestPath(); U=0;
X X L. fu—= while (Sstart # Sgoar) do foreach s € S do
= Store pending nodes in a priority queue. It U = Sstart L rhs(s) = g(s) = oo

Process nodes in order of increasing objective function value.

Incrementally repair solution paths when changes occur.
Maintains two estimates of costs per node:

= g — the objective function value — based on what we know;
® rhs — one-step lookahead of the objective function value — based on what we know.

Consistency:
= Consistent — g = rhs;
= |nconsistent — g # rhs.

Inconsistent nodes are stored in the priority queue (open list) for processing.
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rhs(u) = { 0

Ming e suce(u)(&(S") + c(s',u))  otherwise

u The key/priority of a node s on the open list is the minimum of g(s) and rhs(s) plus a
focusing heuristic h

[min(g(s), rhs(s)) + h(sstart, 5); min(g(s), rhs(s))].

® The first term is used as the primary key.
® The second term is used as the secondary key for tie-breaking.
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Sstart = ABMINGI € S5y (C(Sstart: 5') + 8(5)):

Move to Setart;

Scan the graph for changed edge costs;

if any edge cost changed perform then

foreach directed edges (u, v) with changed edge
costs do

Update the edge cost c(u, v);
UpdateVertex(u);

foreach s € U do
| U.Update(s, CalculateKey(s));

ComputeShortestPath();

rh(Sgoar) = 0;
U.Insert(sgo,/, CalculateKey(sgou));

U is priority queue with the vertices
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D* Lite

D* Lite Algorithm — ComputeShortestPath()

Procedure ComputeShortestPath

while U.TopKey() < CalculateKey(ssart) OR rhs(sstart) # &(sstart) do
u = U.Pop();
if g(u) > rhs(u) then
g(u) = rhs(u);
foreach s € Pred(u) do UpdateVertex(s);

else

g(u) == oo;
foreach s € Pred(u) {u} do UpdateVertex(s);

Procedure UpdateVertex

if U # Sgoar then rhs(u) := mings ¢ suee(u)(c(u,s') + g(s"));
if ue Uthen U.Remove(u);
if g(u) # rhs(u) then U.Insert(u, CalculateKey(u));

Procedure CalculateKey
return [min(g(s), rhs(s)) + h(sstare, s); min(g(s), rhs(s))]

Jan Faigl, 2025 B4M36UIR — Lecture 03: Path Planning 59 / 118

D* Lite

D* Lite — Demo

[ |@]5[4]3]2
5l4]3]2]1
432111

321
2

https://github. con/ndeyo/d-s

B4M36UIR
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D* Lite

D* Lite — Example

30 31 32 33 34 Legend
[Free node J[Obstacle node |
lOn open list “ Active node ]
2,0 ¥ 2 3 4 dtart = A grid map of the environment
(what is actually known).
o = 8-connected graph superimposed
x on the grid (bidirectional).
10 1 2 3 4 . .
= Focusing heuristic is not used
(h=0).
00 Foalfor 2 3 4

Transition costs

= Free space — Free space: 1.0 and 1.4 (for diagonal edge).
= From/to obstacle: oco.
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D* Lite D* Lite D* Lite

D* Lite — Example Planning (1) D* Lite — Example Planning (2) D* Lite — Example Planning (3-init)

30 31 32 33 34 Legend 30 31 32 33 34 Legend 30 31 32 33 34 Legend
g oo |[eo |[eo |[eo |[&x [Free node |[Obstacle node | g oo |[e> |[eoc |[eo &< [Free node _|[Obstacle node | g oo |[goo e oo |feioo |[g o [Free node _|[Obstacle node |
rhs: oo ||| rhs: oo ||| rhs: oo : oo || rhs: o0 [on open list HActive node | ths: oo ||| rths: oo ||| rhs: oo ||| rhs: oo ||| rhs: oo [on open list HActive node | rhs: oo ||| rhs: oo ||| rhs: oo ||| rhs: oo ||| rhs: oo [on open list HActive node |
2,0 21 22 23 24 start Initialization 2.0 21 22 23 24 start Initialization 2,0 21 22 23 24 start ComputeShortestPath
8 o 8 oo €450 B C & = Set rhs = 0 for the goal. €350 & & o 8 o = Put the goal to the open list. & 8 o 8 o 8 oo €320 = Pop the minimum element from the
rhs: oo ||| rhs: oo ||| rhs: oo ||| rhs: oo ||| rhs: 009 ® Set rhs — g — o for all other nodes. ths: oo ||| ths: oo ||| rhs: oo ||| rhs: oo ||| rhs: oo It is inconsistent. ths: 0o ||| rhs: oo ||| rhs: oo ||| rhs: oo ||| rhs: 0@ open list (goal).
~ ~ ~ . X
10 11 12 13 14 10 11 12 13 14 10 11 12 13 14 " It is over-consistent (g > rhs).
g 0o g oo g oo g oo g oo g oo g oo g oo g oo g oo g oo g oo g oo g oo g oo
rhs: oo rhs: oo rhs: oo rhs: oo rhs: oo rhs: oo rhs: oo rhs: oo rhs: oo rhs: oo rhs: oo rhs: oo rhs: oo rhs: oo rhs: co
00 goal |01 02 03 04 00 goal |01 0.2 03 0.4 00 goal |01 0.2 03 04
g oo g oo g oo g oo g oo g oo g oo g 0o g oo g oo g oo g oo g oo g oo g oo
rhs: 0 rhs: oo rhs: oo rhs: oo rhs: oo rhs: 0 rhs: oo ||[rhsi 80 ||| rhs: oo rhs: oo rhs: 0 rhs: oo rhs: o0 ||| rhs: oo rhs: oo
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D* Lite D* Lite D* Lite
D* Lite — Example Planning (3) D* Lite — Example Planning (4) D* Lite — Example Planning (5-init)
30 31 32 33 34 Legend 3.0 31 32 33 34 Legend 30 31 32 33 34 Legend
g oo g oo g oo g 0o g 0o [Free node ”Obstacle node ] g oo g 0o g 0o g 0o g oo [Free node ”Obstacle node ] g 0o g 00 ) g oo g o [Free node ”Obstacle node ]
rhs: oo ||| rhs: co ||| rhs: oo ||| rhs: oo ||| rhs: oo lon open list “Active e ] rhs: oo ||| rhs: co ||| rhs: 0o ||| rhs: co ||| rhs: oo l()n open list “Active node ] rhs: 0o ||| rhs: oo ||| rhs: oo ||| rhs: oo ||| rhs: oo lon open list “Active node ]
20 21 22 23 24 start ComputeShortestPath 22 23 24 start ComputeShortestPath 21 22 >3 24 start ComputeShortestPath
g o g o g g oo g o0 = Pop the minimum element from the g o 5 = Expand popped node (UpdateVertex () g o g o 3 e3 & e = Pop the minimum element from the
rhs: oo rhs: oo ||| rhs: oo rhs: oo rhs: 0@ open list (goal). rhs: oo on all its predecessors). rhs: oo rhs: oo rhs: oo rhs: 0@ open list (1,0).
) 13 17 = It is over-consistent (g > rhs) 12 = This computes the rhs values for the 11 12 13 14 = It is over-consistent (g > rhs).
therefore set g = rhs. predecessors.
g oo g oo g oo g 0o . . g oo g oo g oo g oo
= Nodes that become inconsistent are
rhs: oo rhs: oo rhs: oo rhs: o0 ||| rhs: oo rhs: oo added to the open list. rhs: o0 ||| rhs: o0 ||| rhs: oo rhs: oo
02 03 04 02 03 04 01 0.2 03 04
g oo g oo g oo g 0o g oo g oo g oo g oo g oo g oo
rhs: oo rhs: oo rhs: oo rhs: 00 ||| rhs: co rhs: oo rhs: 1 rhs: o0 ||| rhs: oo rhs: oo
Small black arrows denote the node used for computing the rhs value, i.e., using the respective
transition cost. <
® The rhs value of (1,1) is co because the transition to obstacle has cost co.
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D* Lite D* Lite D* Lite

D* Lite — Example Planning (5) D* Lite — Example Planning (6) D* Lite — Example Planning (7)

3.0 31 32 33 34 Legend 30 31 32 33 34 Legend 30 31 32 33 34 Legend
g |[go |[ex |[eo |[&x [Free node |[Obstacle node | g o g oo |[g o || o [Free node _|[Obstacle node | g oo |[goo e oo |feioo |[e o [Free node _|[Obstacle node |
rhs: oo ||| rhs: oo ||| rhs: oo ||| rhs: oo ||| rhs: oo [on open list “Active node | rhs: oo ||| rhs: oo ||| rhs: oo ||| rhs: oo ||| rhs: oo [on open list “Active node | rhs: oo ||| rhs: oo ||| rhs: oo ||| rhs: oo ||| rhs: oo [on open list “Active node |
22 23 24 start ComputeShortestPath 22 23 24 start ComputeShortestPath 22 23 24 start ComputeShortestPath
E2400 G0 & = Pop the minimum element from the & & o 8 o = Expand the popped node 8 o 8 oo E300) = Pop the minimum element from the
rhs: oo ||| rhs: co ||| rhs: 00Q) open list (1,0). ths: 0o ||| rhs: oo ||| rhs: oo (UpdateVertex() on all prede- rhs: 0o ||| rhs: oo ||| rhs: 0@ open list (0,1).
= = R ® It is over-consistent (g > rhs) set g = = = o cessors in the graph). = 3 R ® It is over-consistent (g > rhs) and thus
5 6o eI B rhs. B Hes Bes = Compute rhs values of the predecessors & 6 Hes B set g = rhs.
. ' . ‘ ’ ) ‘ ' ] ’ . ‘ ’ . ‘ accordingly. . ’ ! ‘ ’ ) ‘ = Expand the popped element, e.g., call
thsi o0 ||| rhs: oo || rhs: oo ths: oo ||| rhs: oo || rhs: oo » Put them to the open list if they be- thsi o0 ||| rhs: oo ||| rhs: oo Uniatevoreen(y.
02 03 04 0.2 03 0.4 come inconsistent. 0.2 03 04
g oo g 00 g o g0 g g oo g 0o g oo g oo g oo g oo
rhs: 50 ||| rhs: oo ||| rhs: oo rhs: 0 rhs: 1 rhs: 60 ||| rhs: oo ||| rhs: oo rhs: 50 ||| rhs: oo ||| rhs: oo

= The rhs value of (0,0), (1,1) does not change. Dy
= They do not become inconsistent and thus they are not put on the open list.
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D* Lite D* Lite D* Lite

D* Lite — Example Planning (8) D* Lite — Example Planning (9) D* Lite — Example Planning (10-init)

32 33 34 Legend 32 33 34 Legend 3,0 31 3.2 33 3.4 Legend
g oo g oo g oo [Free node HObstacIe node ] g oo g oo g oo [Free node HObstacle node l g o g o g o g o g oo [Free node HObstacIe node l
rhs: oo ; rhs: oo lon open list “Active node ] rhs: oo || rhs: 0o ||| rhs: oo lOn open list HActive node ] : rhs: oo || rhs: oo ||| rhs: oo lOn open list HActive node ]
22 23 24 start ComputeShortestPath 22 23 24 start ComputeShortestPath 22 23 24 start ComputeShortestPath
€450 B C & = Pop the minimum element from the & & o 8 o = Expand the popped element and put the 8 o 8 oo €320 = Pop the minimum element from the
rhs: oo rhs: oo rhs: 009 open list (2,0). rhs: oo rhs: oo rhs: oo predecessors that become inconsistent rhs: oo rhs: oo rhs: 009 open list (2,1).
= “ PR ® It is over-consistent (g > rhs) and thus = - e E— onto the open list. = 3 o ® It is over-consistent (g > rhs).
set g = rhs.
g g oo g o0 g g o g o g o g oo g o
thsi 00 ||| rhs: oo ‘ rhs: oo ‘ ths: o0 ] rhs: oo ‘ rhs: oo ‘ ths: 00 ||| rhs: o ‘ rhs: oo ‘
02 03 04 02 03 04 02 03 04
g g oo g oo g g o g oo g o g g
rhs: oo rhs: oo rhs: oo rhs: o0 ||| rhs: oo rhs: oo rhs: o0 ||| rhs: oo rhs: oo
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D* Lite D* Lite D* Lite

D* Lite — Example Planning (10) D* Lite — Example Planning (11) D* Lite — Example Planning (12)

32 33 34 Legend 32 33 34 Legend 34 Legend
g oo g 0o g 0o [Free node ”Obstacle node ] g oo g 0o g oo [Free node ”Obstacle node ] g oo [Free node HObstacIe node ]
rhs: co ||| rhs: oo ||| rhs: oo [On open list |[Active node | ths: 3.8 ||| rhs: oo ||| rhs: oo [On open list |[Active node | ths: oo [On open list__|[Active node |
22 23 24 start ComputeShortestPath 22 23 24 start ComputeShortestPath 24 start ComputeShortestPath
g & & = Pop the minimum element from the & e g = Expand the popped element and put the d = Pop the minimum element from the
rhs: oo ||| rhs: oo ||| rhs: 0@ open list (2,1). rhs: 3.4 predecessors that become inconsistent open list (3,0).
12 13 14 = It is over-consistent (g > rhs) 12 onto the open list. W = = It is over-consistent (g > rhs) and thus
and thus set g = rhs. set g = rhs.
g g oo g oo g g
‘ ‘ ] ‘ ‘ ‘ » Expand the popped element and put the
rhs: oo rhs: co rhs: oo rhs: oo rhs: oo rhs: oo rhs: oo rhs: oo rhs: oo predecessors that become inconsistent
0,2 03 0,4 0,2 03 0.4 0.2 03 0,4 onto the open list.
g g oo g o0 g oo g oo g: o g: 0o g oo g oo = In this cases, none of the predecessors
b i istent.
ths: 00 ||| rhs: oo ||| rhs: 0o ths: 50 ||| rhs: 0o ||| rhs: oo ths: 0 ||| rhs: oo ||| rhs: o0 ecome Inconsisten
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D* Lite D* Lite D* Lite

D* Lite — Example Planning (13) D* Lite — Example Planning (14) D* Lite — Example Planning (15)

31 32 33 34 Legend 32 33 34 Legend 34 Legend
g 3.4 g oo g oo g oo [Free node HObstacle node ] g oo g oo g oo [Free node HObstacle node ] g oo [Free node HObstacIe node ]
rhs: 3.4 ||| rhs: 3.8 ||| rhs: oo || rhs: o0 [On open list |[Active node | ths: 3.8 ||| rhs: oo ||| rhs: 0o [On open fist |[Active node | rhs: oo [On open list |[Active node ]
L4 23 24 start ComputeShortestPath 22 23 24 start ComputeShortestPath ComputeShortestPath
g 2.4 B2 (8 €9 L3 €9 = Pop the minimum element from the g 3.4 & o 8 o = Pop the minimum element from the = Expand the popped element and put
rhs: 2.4 ||| rhs: 3.4 ||| rhs: oo rhs: 009 open list (3,0). rhs: 3.4 ||| rhs: 0o rhs: oo open list (2,2). the predecessors that become inconsis-
2 3 R ® It is over-consistent (g > rhs) and thus 2 3 R ® It is over-consistent (g > rhs) and thus EZ";)OMO the open list, ie., (32), (3.3).
set g = rhs. set g = rhs. .3).
g oo g oo g oo g o g oo g 0o
L § = Expand the popped element and put the § .
thsi 60 ||| rhs: oo ||| rhs: o0 predecessors that become inconsistent rhsi 80 ||| rhs: oo || rhs: o
0.2 03 0.4 onto the open list. 0.2 03 0.4
g oo g g = In this cases, none of the predecessors g oo g oo g oo
become inconsistent.
rhs: 50 ||| rhs: oo ||| rhs: oo rhs: 60 ||| rhs: oo ||| rhs: oo
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D* Lite

D* Lite — Example Planning (16)

D* Lite

D* Lite — Example Planning (17)

D* Lite

D* Lite — Example Planning (18)

31 32 34 Legend 3,0 31 32 33 34 Legend 3.2 33 3.4 Legend

g 3.4 g: 3.8 g oo [Free node HObstacIe node ] g 3.8 g oo g oo [Free node HObstacle node ] g 3.8 g oo g oo [Free node HObstacIe node ]

rhs: 3.4 ||| rhs: 3.8 rhs: oo lOn open list HActive node ] rhs: 3.8 ||| rhs: 4.8 ||| rhs: oo lOn open list HActive node ] rhs: 3.8 ||| rhs: rhs: 5.8 lO" open list HActive node ]

2L 22 24 start ComputeShortestPath s 24 start ComputeShortestPath 22 ComputeShortestPath

g 24 g 34 & e & = Pop the minimum element from the g 3.4 g 44 8 o = Pop the minimum element from the = Expand the popped element and put

ths: 2.4 ||| rhs: 3.4 [[| rhs: 4.4 ||| rhs: 502 open list (3,2). rhs: 34 rhs: 4.4 ||| rhs: oc! open list (2,3). the predecessors that become inconsis-
2 K\Q; R = It is over-consistent (g > rhs) and thus \U R ® It is over-consistent (g > rhs) and thus Ei":)om the open list, i.e., (3.4), (24),
5 & 3 & e set g = rhs. B T & Bes set g = rhs. )

) ) ‘ = Expand the popped element and put the ] : : ‘ = The start node is on the open list.
rhs: o0 ||| rhs: 4.8 ||| rhs: oo predecessors that become inconsistent rhs: 00 ||| rhs: 4.8 ||| rhs: oo = However, the search does not finish at
0.2 03 0.4 onto the open list. 0.0 éoal 01 0.2 03 0.4 this stage.
B s < |z o = In this cases, none of the predecessors Z 0 B (=~ [ = = There are still inconsistent nodes (on
become inconsistent. the open list) with a lower value of rhs.
rhs: oo rhs: oo rhs: oo rhs: 0 rhs: 00 ||| rhs: oo rhs: oo
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D* Lite D* Lite D* Lite

D* Lite — Example Planning (19)

30 31 32 33 34 Legend
g3 g 3.4 g 3.8 g 48 g oo [Free node ”Obstacle node ]
rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8 lOn open list “Active node l
gfasd ’ ComputeShortestPath
g 4.4 = Pop the minimum element from the
rhs: 4.4 open list (3,2).
) B = It is over-consistent (g > rhs) and thus
set g = rhs.
g: 0o
. ® Expand the popped element and put the
BN | hs: 4.8 | rhs: 5.8 predecessors that become inconsistent
0.2 03 0.4 onto the open list.
g: g: oo g oo ® In this cases, none of the predecessors
become inconsistent.
rhs: oo rhs: oo rhs: oo
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D* Lite — Example Planning (20)

32 33 Legend

g 3.8 g 48 [Free node ” Obstacle node ]

rhs: 3.8 ||| rhs: 4.8 lOn open list “Active node l
ComputeShortestPath

= Pop the minimum element from the

g 3.4
rhs: 3. 4 open list (1,3).

= It is over-consistent (g > rhs) and thus

t g = rhs.
T ] set g = rhs

rhs: oo

0,2 0,3 04

rhs: 00 ||| rhs: co rhs: oo

__ |

Jan Faigl, 2025

B4M36UIR — Lecture 03: Path Planning 84 / 118

D* Lite — Example Planning (21)

32 33 34 Legend

g 3.8 g 48 g [Free node HObstacIe node ]
rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8 lOn open list “Active node l
22 ComputeShortestPath

= Expand the popped element and put the
predecessors that become inconsistent

onto the open list, i.e., (0,3) and (0,4).

rhs:

=) rhs: 6.2
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D* Lite

D* Lite — Example Planning (22)

32 33 34 Legend

g: 3.8 g 4.8 g oo [Free node HObstacle node ]
rhs: 3.8 rhs: 5.8 lOn open list “Active node ]
22 24 start ComputeShortestPath

= Pop the minimum element from the
open list (2,4).

= |t is over-consistent (g > rhs) and thus
set g = rhs.

= Expand the popped element and put the
predecessors that become inconsistent
(none in this case) onto the open list.

® The start node becomes consistent and the top key on the open list is not less than the key of the start node.

= An optimal path is found and the loop of the ComputeShortestPath is breaked.
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D* Lite

D* Lite — Example Planning (23)

30 31 32 33 34 Legend
g 3.8 g 4.8 g oo [Free node HObstacle node ]
rhs: 3.8 rhs: 5.8 lOn open list “Active node ]

» Follow the gradient of g values from the
g 3.4
start node.
rhs: 34
g oo
rhs: oo
T

00 boal [0 02

g0 g1 g oo

rhs: 0 rhs: 1 rhs: 00 ||| rhs: 5.8 ||| rhs: 6.2
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D* Lite

D* Lite — Example Planning (24)

30 31 32 33 34 Legend
g3 g 3.4 g 3.8 g 4.8 g [Free node HObstacIe node ]
rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8 lOn open list “Active node ]
T
22 23 24
start & Follow the gradient of g values from the
start node.
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D* Lite D* Lite D* Lite

D* Lite — Example Planning (25) D* Lite — Example Planning (25 update) D* Lite — Example Planning (26 update 1/2)

23 ,ﬁﬂ start
g 4.4
rhs: 2.%

= A new obstacle is detected during the
movement from (2,3) to (2,2).

= Replanning is needed!

= All directed edges with changed edge,
we need to call the UpdateVertex().

23 ,ﬁ 24 start
g 4.4

rhs: 2.%

= All edges into and out of (2,2) have to

30 31 32 33 34 Legend 30 31 32 33 34 Legend 34 Legend

g3 g 3.4 g: 3.8 g 4.8 g oo [Free node HObstacIe node ] g3 g 34 g 3.8 g 4.8 g oo [Free node HObstacle node ] g [Free node HObstacIe node ]

rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8 lOn open list “Active node ] rhs: 3 rhS:\3\4 rhs:|3.8 r/hs{4,8 rhs: 5.8 lon open list “Active node ] rhs: 5.8 lon open list “Active node ]
24 start

Update Vertex
= Outgoing edges from (2,2).
= Call UpdateVertex() on (2,2).

N3 N3 4 be considered. N = The transition costs are now oo because
g 48 ||[g o 248 ||[e oo g o 548 ||[g oo of obstacle.
rhs: 4.8 ||| rhs: 5.8 rhs: 4.8 ||| rhs: 5.8 ths: 0o ||| rhs: 4.8 ||| rhs: 5.8 ® Therefore the rhs = co and (2,2) be-
S < y: S—t comes inconsistent and it is put on the
03 | X 03 | 4 0.2 03 | N4 open list.
g: oo g: 0o g0 g oo g 0o g: oo g: oo g: oo g oo
rhs: 5.8 ||| rhs: 6.2 rhs: 0 rhs: 1 rhs: oo rhs: 5.8 ||| rhs: 6.2 rhs: oo rhs: 5.8 ||| rhs: 6.2
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D* Lite D* Lite D* Lite
D* Lite — Example Planning (26 update 2/2) D* Lite — Example Planning (27) D* Lite — Example Planning (28)
30 31 32 33 34 Legend 3.0 31 32 33 34 Legend 30 31 32 33 34 Legend
g3 g 3.4 g 3.8 g 4.8 g oo [Free node ”Obstacle node ] g3 g 3.4 g 3.8 g 48 g oo [Free node ”Obstacle node ] g3 g 3.4 g 3.8 g 48 g [Free node ”Obstacle node ]
rhs: 3 || rhs: 3.4 ||| rhs:| 3.8 ||| rhs? 4.8 || rhs: 5.8 [On open list _|[Active node | rhs: 3 ||| rhs: 3.4 ||| rhs: 3.8 []| rhs? 4.8 ||| rhs: 5.8 [On open list |[Active node | ths: 3 ||| rhs: 3.4 || rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8 [On open list  |[Active node |
4
23 24 start Update Vertex ’ 23 24 start Update Vertex Update Vertex
g 4.4 = Incomming edges to (2,2). g 54 = The neighbor of (2,2) is (3,3). = (2,3) is also a neighbor of (2,2).
rhs: 4. = Call UpdateVertex() on the neighbors ® The minimum possible rhs value of ® The minimum possible rhs value of
V] (2,2). (3.3) is 4.8 but it is based on the g X (2,3) is 5.2 because (2,2) is an obstacle
2 4.8 g 0o = The transition cost is oo, and therefore, & oo ‘t’:m: ‘:f (ff)ba:d |"0t (2,2), which is & o5 o 48 D (using (3,2) with 3.8 + 14)
the rhs value previously computed using e detected obstacle. _ = The rhs value of (2,3) is different from
(2,2) is changed. rhs: 5.8 = The node (3,3) is still consistent and ths: 60T || rhs: 4.8 ||| rhs: 5.8 & thus, (2,3) is put on the open list.
03 I g thus it is not put on the open list. 02 03 I g
g g g oo g o g oo g o
rhs: 5.8 ||| rhs: 6.2 rhs: 6.2 rhs: oo rhs: 5.8 ||| rhs: 6.2
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D* Lite

D* Lite — Example Planning (29)

= Another neighbor of (2,2) is (1,3).

D* Lite

D* Lite — Example Planning (29 update)

° = None of the other neighbor of (2,2) end

D* Lite

D* Lite — Example Planning (30)

3.0 31 32 33 34 Legend 32 33 34 Legend 30 31 32 33 34 Legend
g 3 g 34 |||g38 |||g4a8 |[g oo [Free node [Obstacle node | g 38 |||g48 |||& o [Free node J[Obstacle node ] g 3 g 34 |||e38 ||| 48 || oo [Free node |[Obstacle node ]
rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8 lOn open list “Active node ] ;3.8 ||| rhs: 4.8 ||| rhs: 5.8 lOn open list “Active node ] rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8 lOn open list “Active node ]
.4 T =
Update Vertex : 24 start Update Vertex ComputeShortestPath

= Pop the minimum element from the

= The minimum possible rhs value of Ao ths: 5.4 up being inconsistent. open list (2,2), which is obstacle.
(13) is 5.4 computed based on g of . " We go back to calling u It is under-consistent (g < rhs), there-
(2,3) with 4.4 4+ 1 =5.4. 5 *g‘ = ComputeShortestPath()  until an fore set g = oco.
= The rhs value is always computed using . optimal path is determined. ] = Expand the popped element and put the
the g values of its successors. rhs: o0 ||| rhs: 5.4 ||| rhs: 5.8 rhs: o0 ||| rhs: 5.4 predecessors that become inconsistent
52 53 T K o 52 o3 T (none in this case) onto the open list.
g oo g: oo g: 0o g 0 g1l g oo g oo g oo
rhs: 00 ||| rhs: 5.8 ||| rhs: 6.2 rhs: 0 rhs: 1 rhs: o0 ||| rhs: 5.8 ||| rhs: 6.2
= The node corresponding to the robot's current position is inconsistent and its key is greater than & = Because (2,2) was under-consistent (when popped), UpdateVertex() has to be called on it.
the minimum key on the open list. = However, it has no effect as its rhs value is up to date and consistent.
= Thus, the optimal path is not found yet.
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D* Lite

D* Lite — Example Planning (31-init)

32 33 34 Legend

e38 |[g 48 | [Free node _|[Obstacle node |

rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8 lOn open list “Active node ]
4

22 ComputeShortestPath

= Pop the minimum element from the
open list (2,3).

® It is under-consistent g < rhs.

.b.

o
0
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D* Lite

D* Lite — Example Planning (31)

30 31 32 33 34 Legend
€3 |34 |[e38 |[e4s |[eo [Free node _|[Obstacle nade |
rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8 lOn open list “Active node ]
T .4
ComputeShortestPath

= Pop the minimum element from the
open list (2,3).

= It is under-consistent g < rhs
therefore set g = co.
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D* Lite

D* Lite — Example Planning (32)

32 33 34 Legend

£38 |[g4s |[&e [Free node ] [Obstaclenode |

rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8 lOn open list “Active node ]
=

22

4 start

ComputeShortestPath
= Expand the popped element and update
the predecessors.

(2,4) becomes inconsistent.

(1,3) gets updated and still inconsis-
tent.

I
Y

The rhs value (1,4) does not changed,

o
©

but it is now computed from the g value

of (1,3).
rhs: 6.2
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D* Lite
D* Lite — Example Planning (33)
32 33 34 Legend
rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8 lOn open list “Active node ]
4 4
22 ComputeShortestPath

= Because (2,3) was under-consistent
(when popped), a call UpdateVertex()
on it is needed.

I

2
® As it is still inconsistent it is put back

onto the open list.

°

2
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D* Lite

D* Lite — Example Planning (34)

30 31 32 34 Legend
rhs: 3 rhs: 3.4 ||| rhs: 3.8 lOn open list “Active node ]
X
ComputeShortestPath

= Pop the minimum element from the
open list (1,3).

= It is under-consistent (g < rhs), there-
fore set g = oo.
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D* Lite
D* Lite — Example Planning (35)
30 31 32 33 34 Legend
ths: 3 ||| rhs: 3.4 ||| rhs: 3.8 [[| rhs: 4.8 ||| rhs: 5.8 [On open list  |[Active node |
N =
ComputeShortestPath

= Expand the popped element and update
the predecessors.

® (1,4) gets updated and still inconsis-
tent.

= (0,3) and (0,4) get updated and now
consistent (both g and rhs are o).

Jan Faigl, 2025

B4M36UIR — Lecture 03: Path Planning 103 / 118

B4M36UIR — Lecture 03: Path Planning 101 / 118
D* Lite
D* Lite — Example Planning (36)

32 33 34 Legend

538 |[g 48 |[E [Free node _|[Obstacle nade |

rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8 lOn open list “Active node ]

x =
22 ComputeShortestPath

® Because (1,3) was under-consistent
(when popped), call UpdateVertex()

on it is needed.

Y

= As it is still inconsistent it is put back
onto the open list.

°

2

g
rhs: oo

rhs: 0o
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D* Lite

D* Lite — Example Planning (37)

30 31 32 33 34 Legend
£38 |[g48 | [Free node _|[Obstacle node |
rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8 lOn open list “Active node ]
4
: ComputeShortestPath

= Pop the minimum element from the
open list (2,3).

= It is over-consistent (g > rhs), there-
fore set g = rhs.
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D* Lite

D* Lite — Example Planning (38)

Legend

Free node ) [Obstaclenode |

lOn open list “ Active node ]

ComputeShortestPath
= Expand the popped element and update
the predecessors.

® (1,3) gets updated and still inconsis-
tent.

= The node (2,3) corresponding to the
robot’s position is consistent.

= Besides, the top of the key on the open

list is not less than the key of (2,3).
® The optimal path has been found and

we can break out of the loop.
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D* Lite
D* Lite — Example Planning (39)
33 34 Legend
48 |[Eeo [Free node _|[Obstacle node |
rhs: 4.8 ||| rhs: 5.8 lOn open list “Active node ]
4
3 4 start

= Follow the gradient of g values from the
robot's current position (node).

0,3 0,4
g: 0o g oo
rhs: oo rhs: oo

3.2
.8

2,2

12 §
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D* Lite

D* Lite — Comments

m D* Lite works with real valued costs, not only with binary costs (free/obstacle).

® The search can be focused with an admissible heuristic that would be added to g and
rhs.

® The final version of D* Lite includes further optimization (not shown in the example).

m Updating the rhs value without considering all successors every time.
® Re-focusing the search as the robot moves without reordering the entire open list.
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RD-based Planning

Reaction-Diffusion Processes Background

® Reaction-Diffusion (RD) models — dynamical systems capable to reproduce the au-
towaves.
m Autowaves - a class of nonlinear waves that propagate through an active media.
At the expense of the energy stored in the medium, e.g., grass combustion.
® RD model describes spatio-temporal evolution of two state variables v = u(X, t) and
v = v(X, t) in space X and time t
o = f(u,v)+D,Au
v = g(u,v)+DAv’
where A is the Laplacian.

This RD-based path planning is informative, just for curiosity.
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RD-based Planning

Reaction-Diffusion Background

FitzHugh R, Biophysical Journal (1961)
5(u7u37 v+¢) + DyAu
(u—av+pB)+DAu '
where a, 3, ¢, and ¢ are parameters of the model.

= FitzHugh-Nagumo (FHN) model
0

v =

= Dynamics of RD system is determined by the associated nullcline configurations for 1=0
and v=0 in the absence of diffusion, i.e.,
c(u—u*—v+09)
(u—av+p)
which have associated geometrical shapes.
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RD-based Planning

Nullcline Configurations and Steady States

= Nullclines intersections represent:
y m Stable States (5Ss);
= Unstable States.
= Bistable regime

The system (concentration levels of (u, v) for each grid cell)
tends to be in SSs.

-0.5

-15 -1.0 -05 0.0
u

= \We can modulate relative stability of both SS.

“preference” of SS* over SS—.

05 1.0 15

= System moves from SS~ to SS¥, if a small perturbation is intro-
duced.

® The SSs are separated by a mobile frontier — a kind of traveling
frontwave (autowaves).
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RD-based Planning

RD-based Path Planning — Computational Model

= Finite difference method on a Cartesian grid with Dirichlet boundary
conditions (FTCS). discretization — grid based computation — grid map

® [External forcing — introducing additional information
i.e., constraining concentration levels to some specific values.

= Two-phase evolution of the underlying RD model.
1. Propagation phase
= Freespace is set to SS™ and the start location SS™. .
= Parallel propagation of the frontwave with non-annihilation property.
Vazquez-Otero and Mufiuzuri, CNNA (2010)
= Terminate when the frontwave reaches the goal.
2. Contraction phase
u Different nullclines configuration.
= Start and goal positions are forced towards SS+.
® 5SS~ shrinks until only the path linking the forced points remains.
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RD-based Planning

Example of Found Paths

700 x 700 700 x 700 1200 x 1200

® The path clearance maybe adjusted by the wavelength and size of the computational grid.
Control of the path distance from the obstacles (path safety).
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RD-based Planning

Comparison with Standard Approaches

Distance Transform Voronoi Diagram Reaction-Diffusion

ST

Otero A, Faigl J, Mufuzuri A
IROS (2012)

Beeson P, Jong N, Kuipers B
ICRA (2005)

Jarvis R
Advanced Mobile Robots (1994)

® RD-based approach provides competitive paths regarding path length and clearance,
while they seem to be smooth.
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RD-based Planning

Robustness to Noisy Data

Vazquez-Otero, A., Faigl, J., Duro, N. and Dormido, R. (2014): Reaction-Diffusion based Computational Model for Autonomous Mobile
Robot fon of Unknown Envi ional Journal of L i ing (LJUC).
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Summary of the Lecture
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Topics Discussed

Jan Faigl

Topics Discussed

Motion and path planning problems
® Path planning methods — overview
= Notation of configuration space
Path planning methods for geometrical map representation
m Shortest-Path Roadmaps
= Voronoi diagram based planning
u Cell decomposition method
Distance transform can be utilized for kind of navigational function
= Front-Wave propagation and path simplification
Artificial potential field method
Graph search (planning) methods for grid-like representation
= Dijsktra's, A*, JPS, Theta*
= Dedicated speed up techniques can be employed to decreasing computational burden, e.g., JPS
= Grid-path can be smoothed, e.g., using path simplification or Theta* like algorithms

We can avoid demanding planning from scratch reusing the previous plan for the updated

environment map, e.g., using D* Lite
Unconventional reaction-diffusion based planning (informative)
Next: Robotic Information Gathering — Mobile Robot Exploration
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