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Introduction to Path Planning Notation Path Planning Methods Introduction to Path Planning Notation Path Planning Methods
Robot Motion Planning — Motivational problem
® How to transform high-level task specification (provided by humans) into a low-level
description suitable for controlling the actuators?

To develop algorithms for such a transformation.
Part | The motion planning algorithms provide transformations how to move a robot (object)

Part 1 — Path and Motion Planning
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considering all operational constraints.




Introduction to Path Planning

Piano Mover's Problem

A classical motion planning problem

Having a CAD model of the piano, model of the environment, the problem is how to move the
piano from one place to another without hitting anything.

Basic motion planning algorithms are focused primarily on rotations and translations.

® We need notion of model representations and formal definition of the problem.
®m Moreover, we also need a context about the problem and realistic assumptions.
The plans have to be admissible and feasible.
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Introduction to Path Planning

Robotic Planning Context

Mission Planning

Tasks and Actions Plans

Path (Motion) Planning / Trajectory Planning

symbol level

Problem Path Planning Trajectory Generation
® —_ =
Models of
Path
° robot and
workspace
"geometric" level
Trajectory Open-loop control?
Robot Control

Sensing and Acting

feedback control
controller - drives (motors) — sensors

Sources of uncertainties

" " because of real environment
physical” level
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Introduction to Path Planning

Real Mobile Robots

In a real deployment, the problem is more complex.

m The world is changing.

m Robots update the knowledge about the
environment.

localization, mapping and navigation

®m New decisions have to be made based on

the feedback from the environment.
Motion planning is a part of the mission re-
planning loop.

An example of robotic mission:
. . . Josef Strunc, Bachelor thesis, CTU, 2009.
Multi-robot exploration of unknown environment.

How to deal with real-world complexity?
Relaxing constraints and considering realistic assumptions.
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Notation

Notation

= W — World model describes the robot workspace and its boundary determines the

obstacles O;. 2D world, W = R?
world, =

® A Robot is defined by its geometry, parameters (kinematics) and it is controllable by
the motion plan.

® C — Configuration space (C-space)
A concept to describe possible configurations of the robot. The robot’s configuration
completely specify the robot location in W including specification of all degrees of

freedom.
E.g., a robot with rigid body in a plane C = {x,y, ¢} = R? x S1.

® Let A be a subset of W occupied by the robot, A = A(q).
= A subset of C occupied by obstacles is
Cobs = {q eC: .A(q) n O;,Vi}.

= Collision-free configurations are
Cfree =C \ Cobs-
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Notation

Path / Motion Planning Problem
® Path is a continuous mapping in C-space such that
71 [0,1] = Cfree, with w(0) = go, and 7(1) = gr.

= Trajectory is a path with explicit parametrization of time, e.g., accompanied by a

description of the motion laws (y : [0, 1] — U, where U is robot’s action space).
It includes dynamics.

[TO’ Tf] St TE [07 1] : q(t) = 77(7—) € Cree
The path planning is the determination of the function (-).

Additional requirements can be given:
® Smoothness of the path;
m Kinodynamic constraints, e.g., considering friction forces;
® Optimality criterion — shortest vs fastest (length vs curvature).

® Path planning - planning a collision-free path in C-space.
® Motion planning — planning collision-free motion in the state space.

@)

Notation

Planning in C-space
Robot path planning for a disk-shaped robot with a radius p.

Goal position

Q Goal configuration
L]

C.

o6

Cosst

Start position
Start .configuration
. Point robot
Disk robot
C-space
Motion planning problem in
C-space representation.

Motion planning problem in
geometrical representation of W.

C-space has been obtained by enlarging obstacles by the disk A with the radius p.
By applying Minkowski sum: O @ A={x+y |x€ O,y € A}.

/)
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Notation Notation
Example of C,ps for a Robot with Rotation Representation of C-space
0=n/2 / Robot body 6 . . .
N - , How to deal with continuous representation of C-space?
eference point
Continuous Representation of C-space J

A simple 2D obstacle — has a complicated C,ps.
® Deterministic algorithms exist.
Requires exponential time in C dimension, J. Canny, PAMI, 8(2):200-209, 1986.
m Explicit representation of Cgee is impractical to compute.
Jan Faigl, 2025
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0

Discretization
processing critical geometric events, (random) sampling
roadmaps, cell decomposition, potential field

Graph Search Techniques
BFS, Gradient Search, A*

=)
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Path Planning Methods

Planning Methods - Overview
(selected approaches)

u POint—tO—pOint path/motion planning. Multi-goal path/motion/trajectory planning later

= Road map based methods — Create a connectivity graph of the free space.
= Visibility graph;
= Cell decomposition;
= Voronoi graph.

(Complete but impractical)

m Discretization into a grid-based (or lattice-based) representation  (Resolution complete)

m Potential field methods (Complete only for a “navigation function”, which is hard to compute

in general)

Classic path planning algorithms

® Randomized sampling-based methods

m Creates a roadmap from connected random samples in Cgee.

® Probabilistic roadmaps. o
Samples are drawn from some distribution.

® Very successful in practice.
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Visibility Graph

1. Compute visibility graph.
2. Find the shortest path.

Problem Visibility graph

Constructions of the visibility graph:
= Naive — all segments between n vertices of the map O(n3);
= Using rotation trees for a set of segments — O(n?).

Jan Faigl, 2025

M. H. Overmars and E. Welzl, 1988
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Path Planning Methods

E.g., by Dijkstra’s algorithm.

Found shortest path

Path Planning Methods

Minimal Construct: Efficent Shortest Path in Polygonal Maps

= Minimal Construct algorithm computes visibility graph during the A* search instead of first computation of the
complete visibility graph and then finding the shortest path using A* or Dijkstra algorithm.

® Based on A* search with line intersection tests are delayed until o) —
150 L Theta* —
they become necessary. T e
s 100
® The intersection tests are further accelerated using bounding £
50
boxes. —
° o 500 1000 1500 2000 2500 3000
Edges
) )
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Minimal Construct
Marcell Missura, Daniel D. Lee, and Maren Bennewitz (2018): Minimal Construct: Efficient Shortest Path Finding for Mobile Robots in
Polygonal Maps. IROS.
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Voronoi Graph

Path Planning Methods

1. Roadmap is Voronoi graph that maximizes clearance from the obstacles.

2. Start and goal positions are connected to the graph.

3. Path is found using a graph search algorithm.

Path in graph

Voronoi graph

Jan Faigl, 2025
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Path Planning Methods Path Planning Methods

Visibility Graph vs Voronoi Graph Cell Decomposition

Visibility graph ;
1. Decompose free space into parts. Any two points in a convex region can be directly connected by a

S . segment.
m Shortest path, but it is close to obstacles. We have to consider safety . . .
of the path 2. Create an adjacency graph representing the connectivity of the free space.
An error in plan execution can lead to a 3. Find a path in the graph.
collision. idal d .
® Complicated in higher dimensions Trapezoida eco‘mposmon * +
Voronoi graph
® |t maximize clearance, which can provide conservative paths.
® Small changes in obstacles can lead to large changes in the graph. /\ e
m Complicated in higher dimensions. 1
A combination is called Visibility-Voronoi — R. Wein, J. P. van den Berg, Centroids represent cells Connect adjacency cells Find path in the adjacency graph

D. Halperin, 2004. .- . . .
apern m Other decomposition (e.g., triangulation) are possible.

For higher dimensions we need other types of roadmaps.
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Path Planning Methods Path Planning Methods
Shortest Path Map (SPM) Point Location Problem
= Speedup computation of the shortest path towards a particular goal location p, for a polygonal = For a given partitioning of the polygonal domain into a discrete set of cells, determine the cell
domain P with n vertices. for a given point p.
® A partitioning of the free space into cells with respect to the

particular location pg.

® Each cell has a vertex on the shortest path to p,.
® Shortest path from any point p is found by determining the cell 3 g
(in O(Iog n) USing pOint |Ocati0n alg) and then traVeSing the M?sa.to Edah{'ro, Iwao Kokubo and Takao Asano: A new point-location algorithm and its practical efficiency: comparison with
shortest path with up to k bends, i.e., it is found in O(log n+k). existing algorithms, ACM Trans. Graph., 3(2):86-109, 1954. )
. o ., . ® |t can be implemented using interval trees — slabs and slices.
m Determining the SPM using “wavefront” propagation based on

continuous Dijkstra paradigm.

Joseph S. B. Mitchell: A new algorithm for shortest paths among obstacles in the plane,
Annals of Mathematics and Artificial Intelligence, 3(1):83-105, 1991.

SPM is a precompute structure for the given P and pg;
B single-point query.

ENEEN

A similar structure can be found for two-point query, e.g., H. Guo, A. Maheshwari, J.-R. Sack, 2008. Point location problem, SPM and similarly problems are from the Computational Geometry field.
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Path Planning Methods

Approximate Shortest Path and Navigation Mesh

® We can use any convex partitioning of the polygonal map to speed up shortest path queries.

1. Precompute all shortest paths from map vertices to p, using visibility graph.
2. Then, an estimation of the shortest path from p to p, is the shortest path among the one
of the cell vertex.

o

® The estimation can be further improved by “ray-shooting” technique combined with walking in
triangulation (convex partitioning). (Faigl, 2010)
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Path Planning Methods

Path Refinement

m Testing collision of the point p with particular vertices of the estimation of the shortest path.

® Let the initial path estimation from p to p; be a sequence of k vertices (p, v1, ..., vk, pg).
= We can iteratively test if the segment (p,v;), 1 < i < k is collision free up to (p, pg).

Full refinement

Path over vy

Path over vy

With the precomputed structures, an estimate of the shortest path is determined in units of microseconds.
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Path Planning Methods

Navigation Mesh

= |n addition to robotic approaches, fast shortest path queries are studied in computer games.
® There is a class of algorithms based on navigation mesh.
= A supporting structure representing the free space.

It usually originated from the grid based maps, but it is represented as CDT — Constrained
Delaunay triangulation.

f
S S

Merged CDT mesh

Grid mesh Merged grid mesh CDT mesh

= E.g., Polyanya algorithm based on navigation mesh and best-first search.
M. Cui, D. Harabor, A. Grastien: Compromise-free Pathfinding on a Navigation Mesh, IJCAI 2017, 496-502.
https://bitbucket.org/dharabor/pathfinding
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Path Planning Methods

Artificial Potential Field Method

® The idea is to create a function f that will provide a direction towards the goal for any
configuration of the robot.

® Such a function is called navigation function and —Vf(q) points to the goal.

m Create a potential field that will attract robot towards the goal gr while obstacles will
generate repulsive potential repelling the robot away from the obstacles.

The navigation function is a sum of potentials.

Previous local minimt

Potential

Such a potential function can have several local minima.
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Introduction to Path Planning Notation

Avoiding Local Minima in Artificial Potential Field

m Consider harmonic functions that have only one extremum

V3f(q) = 0.

= Finite element method with defined Dirichlet and Neumann boundary conditions.

Path Planning Methods

J. Macsk, Master thesis, CTU, 2009 r%\%g
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Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning

Part |l

Part 2 — Grid and Graph based Path Planning Methods

Jan Faigl, 2025 29 /118
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Grid-based Planning DT for Path Planning Graph Search Algorithms

Grid-based Planning

® A subdivision of Cgee into smaller cells.

D* Lite

m Grow obstacles can be simplified by growing bor-
ders by a diameter of the robot.

= Construction of the planning graph G = (V, E) for
V as a set of cells and E as the neighbor-relations.

RD-based Planning

® 4-neighbors and 8-neighbors

® A grid map can be constructed from the so-called

occupancy gl’ld maps. E.g., using thresholding.
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Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning

Grid-based Environment Representations

® Hiearchical planning with coarse resolution and re-planning on finer resolutlon
Holte, R. C. et al. (1996): Hierarchical A *: searching abstraction hierarchies
efficiently. AAAL.

= Qctree can be used for the map representation.

® In addition to squared (or rectangular) grid a hexagonal
grid can be used.

= 3D grid maps — OctoMap

— Memory grows with the size of the environment.

https://octomap.github.io.

— Due to limited resolution it may fail in narrow passages of

Cfree-
Jan Faigl, 2025
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Grid-based Planning Grid-based Planning
Example of Simple Grid-based Planning Example — Wave-Front Propagation (Flood Fill)
= Wave-front propagation using path simplication .:
® [nitial map with a robot and goal.
m Obstacle growing.
22222
® Wave-front propagation — “flood fill". 1 TGN
. . . . . 1101 21112
® Find a path using a navigation function. 22222
® Path simplification.
“ . 1 . . . 11111111 1111 11 11 11 1213 14 14 131212 12
| | I 10 10 10 10 10 10 10 10 1mn
Ray-shooting .technlque. combined with 999999099 w0101
Bresenham'’s line algorithm. 88388888 9 91011
. “ " . T1T 17 7|T71 8 88 91011
® The path is a sequence of “key" cells for avoiding 4 Huoooauos - oo
6 7 1"
obstacles. . ( 444 5444 567 8 9101
433333334 5433 3/3333456/78910Mn1
— \J 43/22222 34 543222223 6 9 1011
I I 43 2111|2|3 543211172 1910 11
43210123 543210 123 131211104910 11
43211123 543211123 1312111 4111 11 11
432 22 2|23 543222223 1312121212 12 12
43333333 543333333 131313 13131313
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Grid-based Planning Grid-based Planning
. L . ) . .
Path Simplification Bresenham's Line Algorithm
L . . . . . = Filling a grid by a line with avoding float numbers.
® The initial path is found in a grid using 8-neighborhood. INg 3 gric by cing Va—yo
= A line from (xo, yo) to (x1,y1) is given by y = 2222 (x — x0) + yo.
m The rayshoot cast a line into a grid and possible collisions of the robot with obstacles 1 GoordsVectork bresenham(const Coordst pti, comst Coordsk pt2, 26 int twoDy = 2 * dy;
CoordsVector& line) 27 int twoDyTwoDx = twoDy - 2 * dx; //2+Dy - 24Dx
are checked. 2 1 28 int e = twoDy - dx; //2+Dy - Dx
3 // The pt2 point is not added into line 29 int y = y0;
® The “farthest” cells without collisions are used as “turn” points. 4 invx0 = prl.c; int y0 = pri.z; 30 int xDraw, yDraw;
5 int x1 = pt2.c; int yl1 = pt2.r; 31 for (int x = x0; x != x1; x += xstep) {
. . . . 6 Coords p; 32 if (steep) {
m The final path is a sequence of straight line segments. 7 ine e okl - %05 3 Y e = 3
T 8 int dy = y1 - yO; 34 yDraw = x;
:f-:rll [ 1] [T l 9 int steep = (abs(dy) >= abs(dx)); 35 } else {
| Sy 10 if (steep) { 36 xDraw = x;
\ 11 SWAP(x0, y0); 37 yDraw = y;
P 12 SWAP(x1, y1); 38 ¥
13 dx = x1 - x0; // recompute Dx, Dy 39 p.c = xDraw;
6 14 dy = y1 - yO; 40 p.r = yDraw;
15 } 41 line.push_back(p); // add to the line
4 16 int xstep = 1; 42 if (e > 0) {
\\ \\ 17 if (dx < 0) { 43 e += twoDyTwoDx; //E += 24Dy - 2*Dx
18 xstep = -1; 44 y =y + ystep;
- 1 19 dx = -dx; 45 } else {
— h— ;2 } 46 N e += twoDy; //E += 2#Dy
int ystep = 1; a7
[ 1 1 22 if @y <o { 48 ¥ 5
- 23 tep = -1; 49 turn line; “1%5
Initial and goal locations Obtacle Err:'\;\g;ii::‘ave—front Ray-shooting Simplified path 24 g; ip_dy; 50 Tt ame Vg ‘]
25
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DT for Path Planning

Distance Transform based Path Planning

® For a given goal location and grid map compute a navigational function using wave-front
algorithm, i.e., a kind of potential field.
® The value of the goal cell is set to 0 and all other free cells are set to some very high
value.
For each free cell compute a number of cells towards the goal cell.
It uses 8-neighbors and distance is the Euclidean distance of the centers of two cells, i.e.,
EV=1 for orthogonal cells or EV = /2 for diagonal cells.
The values are iteratively computed until the values are changing.
The value of the cell ¢ is computed as

8
cost(c) = ”ﬂ{‘ (cost(ci) + EVe,.c),

where ¢; is one of the neighboring cells from 8-neighborhood of the cell c.
m The algorithm provides a cost map of the path distance from any free cell to the goal cell.
® The path is then used following the gradient of the cell cost.

Jarvis, R. (2004): Distance Transform Based Visibility Measures for Covert Path Planning in Known but Dynamic Environments.
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DT for Path Planning

Distance Transform Path Planning
Algorithm 1: Distance Transform for Path Planning

for y := 0 to yMax do
for x := 0 to xMax do
if goal [x,y] then
‘ cell [x,y] := 0;
else
L cell [x,y] := xMax * yMax; //initialization, e.g., pragmatic of the use longest distance as oo ;

repeat
for y := 1 to (yMax - 1) do
for x := 1 to (xMax - 1) do
if not blocked [x,y] then
L L cell [x,y] := cost(x, y);

for y := (yMax-1) downto 1 do
for x := (xMax-1) downto 1 do
if not blocked [x,y] then
L cell[x,y] := cost(x, y);

until no change;
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DT for Path Planning

Distance Transform based Path Planning — Impl. 1/2

1  Grid& DT::compute(Grid& grid) const 35 for (int r =H - 2; r > 0; --r) {

2 36 for (int ¢ =W - 2; ¢ > 0; --¢) {

3 static const double DIAGONAL = sqrt(2); 37 if (map[r][c] != FREESPACE) {

4 static const double ORTOGONAL = 1; 38 continue;

5 const int H = map.H; 39 } //obstacle detected

6 const int W = map.W; 40 double t[4];

7 assert(grid.H == H and grid.W == W, "size"); 41 t[1] = grid[r + 1][c] + ORTOGONAL;
8 bool anyChange = true; 42 £[0] = gridlr + 1]1[c + 1] + DIAGONAL;
9 int counter = 0; 43 t[3] = gridlr][c + 1] + ORTOGONAL;
10 while (anyChange) { 44 t[2] = grid[r + 11[c - 1] + DIAGONAL;
11 anyChange = false; 45 double pom = grid[r][c];

12 for (int r = 1; r < H - 1; ++r) { 46 bool s = false;

13 for (int ¢ = 15 ¢ < W - 15 ++c) { a7 for (int i = 0; i < 4; i++) {

14 if (map([r][c] != FREESPACE) { 48 if (pom > t[i]) {

15 continue; 49 pom = t[il;

16 } //obstacle detected 50 s = true;

17 double t[4]; 51 }

18 t[0] = grid[r - 1][c - 1] + DIAGONAL; 52 ¥

19 t[1] = grid[r - 11[c] + ORTOGONAL; 53 if (s) {

20 t[2] = gridlr - 1]1[c + 1] + DIAGONAL; 54 anyChange = true;

21 t[3] = grid[r][c - 1] + ORTOGONAL; 55 grid[r][c] = pom;

22 double pom = grid[r][c]; 56

23 for (imt i = 0; i < 4; i++) { 57 3}

24 if (pom > t[i]) { 58 }

25 pom = t[il; 59 counter++;

26 anyChange = true; 60 } //end while any change

27 } 61 return grid;

28 b3 62

29 if (anyChange) {

30 gridlz] [c] = pom; A boundary is assumed around the rectangular map

31 }

32 }

33
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DT for Path Planning

Distance Transform based Path Planning — Impl. 2/2

® The path is retrived by following the minimal value towards the goal using
min8Point ().

1 Coords& min8Point (const Grid& grid, Coords& p) 22 CoordsVector& DT::findPath(const Coords& start, const Coords&
2 goal, CoordsVector& path)
3 double min = std::numeric_limits<double>::max(); 23 {
4 const int H = grid.H; 24 static const double DIAGONAL = sqrt(2);
5 const int W = grid.W; 25 static const double ORTOGONAL = 1;
6 Coords t; 26 const int H = map.H;
7 27 const int W = map.W;
8 for (int r = p.r - 1; r <= p.r + 1; r++) { 28 Grid grid(H, W, H*W); // H*W max grid value
9 if (r < 0 or r >= H) { continue; } 29 grid[goal.r] [goal.c] = 0;
10 for (int ¢ = p.c - 1; ¢ <= p.c + 1; c++) { 30 compute (grid) ;
11 if (c < 0 or ¢ >= W) { continue; } 31
12 if (min > grid[r][c]) { 32 if (grid[start.r][start.c] >= H¥W) {
13 min = grid[r]lcl; 33 WARN("Path has not been found");
14 t.r =r; t.c = c; 34 } else {
15 b 35 Coords pt = start;
16 i 36 while (pt.r != goal.r or pt.c != goal.c) {
17 } 37 path.push_back(pt) ;
18 pP=t; 38 min8Point (grid, pt);
19 return p; 39 }
20 } 40 path.push_back(goal) ;
41
42 return path;
43}
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B j=10cm, L =272 m

B §f=30cm, L=428m

Jan Faigl, 2025

DT for Path Planning

DT Example
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Graph Search Algorithms

Graph Search Algorithms

m The grid can be considered as a graph and the path can be found using graph search
algorithms.
® The search algorithms working on a graph are of general use, e.g.,
Breadth-first search (BFS);
Depth first search (DFS);
Dijktra’s algorithm;
A* algorithm and its variants.
® There can be grid based speedups techniques, e.g.,
m Jump Search Algorithm (JPS) and JPS™.
® There are many search algorithms for on-line search, incremental search and with
any-time and real-time properties, e.g.,
= Lifelong Planning A* (LPA¥).

Koenig, S., Likhachev, M. and Furcy, D. (2004): Lifelong Planning A*. AlJ.
m E-Graphs — Experience graphs i
Phillips, M. et al. (2012): E-Graphs: Bootstrapping Planning with Experience Graphs. RSS. A
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Graph Search Algorithms

A* (general)

AL

https://wuw.youtube.com/watch?v=U2XNjCoKZjM.mp4
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Graph Search Algorithms

A* Algorithm
® A* uses a user-defined h-values (heuristic) to focus the search.

Peter Hart, Nils Nilsson, and Bertram Raphael, 1968
m Prefer expansion of the node n with the lowest value

f(n) = &(n) + h(n),
where g(n) is the cost (path length) from the start to n and h(n) is the estimated cost
from n to the goal.
® h-values approximate the goal distance from particular nodes.
m Admissiblity condition — heuristic always underestimate the remaining cost to reach
the goal.

® Let h*(n) be the true cost of the optimal path from n to the goal.
® Then h(n) is admissible if for all n: h(n) < h*(n).
m E.g., Euclidean distance is admissible.

m A straight line will always be the shortest path. L
m Dijkstra’s algorithm — h(n) = 0. ’%%5

Do we need admissible? When and why?
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Graph Search Algorithms

A* Implementation Notes

® The most costly operations of A* are:

® |nsert and lookup an element in the closed list;
® Insert element and get minimal element (according to f() value) from the open list.

® The closed list can be efficiently implemented as a hash set.
® The open list is usually implemented as a priority queue, e.g.,

= Fibonacii heap, binomial heap, k-level bucket;
® binary heap is usually sufficient with O(logn).

® Forward A*

1. Create a search tree and initiate it with the start location.

2. Select generated but not yet expanded state s with the smallest f-value,
f(s) = g(s) + h(s).

3. Stop if s is the goal.

Expand the state s.

5. Goto Step 2.
Similar to Dijktra’s algorithm but it uses f(s) with the heuristic h(s) instead of pure g(s).

>

Graph Search Algorithms

Dijktra’'s vs A* vs Jump Point Search (JPS:

I
(DijKstra's Algorithm

. . . https://www.youtube.com/watch?v=R0G4UdO81LY
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Graph Search Algorithms Graph Search Algorithms
Jump Point Search Algorithm for Grid-based Path Planning Theta* — Any-Angle Path Planning Algorithm
® Jump Point Search (JPS) algorithm is based on a macro operator that identifies and = Any-angle path planning algorithms simplify the path during the search.
. . . . % - * . . .
selectively expands only certain nodes (jump points). ® Theta™ is an extension of A* with Line0fSight (). ! 2 3 4 5
Harabor, D. and Grastien, A. (2011): Online Graph Pruning for Pathfinding on Grid Maps. AAAL. Nash, A., Daniel, K, Koenig, S. and Felner, A. (2007): Theta*: Any-Angle Path A * s
Planning on Grids. AAAI. st
= Natural neighbors after neighbor prunning with 2| s 12| ] . . ) e - ; _
forced neighbors because of obstacle. e L TS 1. - Algorithm 2: Theta* Any-Angle Planning B
if LineOfSight(parent(s), s’) then
6 | 7 | e 6 | 7 |8 6|7 |8 6 | 7 /* Path 2 — any-angle path */
. . if g(parent(s))+ c(parent(s), s’) < g(s’) then c
= Intermediate nodes on a path connecting two ] ‘ RRANAE L parent(s') = parent(s); Sgol
jump points are never expanded. LA g(s") := g(parent(s)) + c(parent(s), '); I 2 3 4 5
: - else A * 7 | Sotart
47h\ /* Path 1 — A* path */ 7 |
[ ] - if g(s) + c(s,s’) < g(s’) then e
® No preprocessing and no memory overheads while it speeds up A*. L P(afff)"t(S’)i(=)S_;F o) B g 4
g(s) = g(s) + c(ss');
https://harablog.wordpress.com/2011/09/07/jump-point-search/ L
= JPSTt is Optimized preprocessed version of JPS with goal bounding. ® Path 2: considers path from start to parent(s) and from parent(s) to s’ S
: i i i i if s’ has line-of-sight to parent(s).
https://github.com/SteveRabin/JPSPlusWithGoalBounding g . P (s) ‘ —— - Path 1 Path 2
http://www.gdcvault.com/play/1022094/JPS-0ver-100x-Faster-than hetp://aigamedev. con/open/tutorials/theta- star-any-angle-paths/
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Graph Search Algorithms

Theta* Any-Angle Path Planning Examples

® Example of found paths by the Theta* algorithm for the same problems as for the DT-based
examples on Slide 42.

§=10cm, L =263 m §=30cm, L=403m

The same path planning problems solved by DT (without path smoothing) have Ls—19 =
27.2 m and Ls_39 = 42.8 m, while DT seems to be significantly faster.

m Lazy Theta* — reduces the number of line-of-sight checks.
Nash, A., Koenig, S. and Tovey, C. (2010): Lazy Theta*: Any-Angle Path Planning and Path Length Analysis |
in 3D. AAAL. http://aigamedev.com/open/tutorial/lazy-theta-star/ =
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Graph Search Algorithms

A* Variants — Online Search

m The state space (map) may not be known exactly in advance.
= Environment can dynamically change.
® True travel costs are experienced during the path execution.
® Repeated A* searches can be computationally demanding.
® Incremental heuristic search
= Repeated planning of the path from the current state to the goal.
= Planning under the free-space assumption.
® Reuse information from the previous searches (closed list entries).
® Focused Dynamic A* (D*) — h™ is based on traversability, it has been used, e.g., for the

Mars rover “Opportunity”
Stentz, A. (1995): The Focussed D* Algorithm for Real-Time Replanning. IJCAI.

= D* Lite — similar to D*
Koenig, S. and Likhachev, M. (2005): Fast Replanning for Navigation in Unknown Terrain. T-RO.
m Real-Time Heuristic Search
= Repeated planning with limited look-ahead — suboptimal but fast
= Learning Real-Time A* (LRTA¥*) Korf, E. (1990): Real-time heuristic search. JAI.
® Real-Time Adaptive A* (RTAA*) Koenig, S. and Likhachev, M. (2006): Real-time adaptive A*. AAMAS.
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Graph Search Algorithms

Real-Time Adaptive A* (RTAA*)

® Execute A* with limited look-ahead. -
while (scur ¢ GOAL) do

astar(lookahead);

if s’ = FAILURE then
| return FAILURE;

for all s € CLOSED do
| H(s) = g(s') + h(s") - g(s);
execute(plan); // perform one step
return SUCCESS;

s’ is the last state expanded during the previous A*
search.

® Learns better informed heuristic from
the experience, initially h(s), e.g., Eu-
clidean distance.
m | ook-ahead defines trade-off between
optimality and computational cost.
®m astar(lookahead)

A* expansion as far as "lookahead” nodes
and it terminates with the state s’.
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D* Lite

D* Lite — Demo

https://www.youtube.com/watch?v=X5a149nSE9s
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D* Lite D* Lite

D* Lite Overview D* Lite: Cost Estimates

It is simil * iti Lifel Planning A*. . : .
tis similar to D, but it is based on Lifelong Planning ® rhs of the node u is computed based on g of its successors in the graph and the

Koenig, S. and Likhachev, M. (2002): D* Lite. AAAL. ..
transition costs of the edge to those successors

m |t searches from the goal node to the start node, i.e., g-values estimate the goal distance.
= Store pending nodes in a priority queue. rhs(u) = { 0 if U= Sstart
- H / / H

® Process nodes in order of increasing objective function value. Minsesuce(u)(8(s) + c(s', u)) ~ otherwise
= Incrementally repair solution paths when changes occur. ® The key/priority of a node s on the open list is the minimum of g(s) and rhs(s) plus a
= Maintains two estimates of costs per node: focusing heuristic h

® g — the objective function value — based on what we know;

® rhs — one-step lookahead of the objective function value — based on what we know. [min(g(s), rhs(s)) + h(Sstart, s); min(g(s), rhs(s))].
= Consistency:

m Consistent — g = rhs;

® Inconsistent — g % rhs. ® The first term is used as the primary key.

= The second term is used as the secondary key for tie-breaking.

® |nconsistent nodes are stored in the priority queue (open list) for processing.
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D* Lite D* Lite
D* Lite Algorithm D* Lite Algorithm — ComputeShortestPath()
® Main — repeat until the robot reaches the goal (or g(ssar) = oo there is no path). Procedure ComputeShortestPath
_ while U.TopKey() < CalculateKey(sstart) OR rhs(sstart) 7 g(Sstart) do
Initialize(); Procedure Initialize u := U.Pop();
ComputeShortestPath(); u=0; if g(u) > rhs(u) then
while (Sstart # Sgoa) do foreach s € S do g(u) := rhs(u);

L rhs(s) := g(s) := oc; foreach s € Pred(u) do UpdateVertex(s);
rhs(sgoar) := 0; else
U.Insert(sgoa, CalculateKey(sgoar)); g(u) == oo;

foreach s € Pred(u) | J{u} do UpdateVertex(s);

Sstart = argmins’ESucc(sﬁm)(C(sstaftv 5/) + g(s’));
Move to Sstart;

Scan the graph for changed edge costs;

if any edge cost changed perform then

foreach directed edges (u, v) with changed edge
costs do A _ Procedure UpdateVertex
L Update the edge.cost c(u,v); I 0 Sg00 then rhs(u) = miny csuce(n(c(us') + £(s));
UpdateVertex(u); if u € U then U.Remove(u);
foreach s € U do if g(u) # rhs(u) then U.Insert(u, CalculateKey(u));
L U.Update(s, CalculateKey(s));
| ComputeShortestPath(); Procedure CalculateKey

U is priority queue with the vertices. return [min(g(s), rhs(s)) + h(sstart, s); min(g(s), rhs(s))]
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D* Lite D* Lite

D* Lite — Demo D* Lite — Example
30 31 32 33 34 Legend
\Free node H Obstacle node ]
_ On open list Active node
"' 5 4 \; 2 2,0 1 2 3 4 dtart = A grid map of the environment
5l4l131211 (what is actually known).
‘- o ® 8-connected graph superimposed
41312]1 1 X on the grid (bidirectional).
1,0 1 2 3 4 . T
3 D 1 ® Focusing heuristic is not used
(h=0).
0,0 g:roa 1 0,2 0,3 4
= Transition costs
= Free space — Free space: 1.0 and 1.4 (for diagonal edge).
= From/to obstacle: oo.
https://github.com/mdeyo/d-star-1lite
Jan Faigl, 2025 B4M36UIR — Lecture 03: Path Planning 60 / 118 Jan Faigl, 2025 B4M36UIR — Lecture 03: Path Planning 61 / 118
D* Lite D* Lite

D* Lite — Example Planning (1) D* Lite — Example Planning (2)

30 31 32 33 34 Legend 30 31 32 33 34 Legend

g oo g: 0o g: oo g oo g: 0o lFree node HObStade node ] g: 0o g: 0o g: oo g oo g: 0o lFree node HObStade node ]
rhs: oo rhs: oo rhs: oo rhs: oo rhs: oo [On open list “Active node ] rhs: oo rhs: oo rhs: oo rhs: oo rhs: oo [On open list “Active node ]
20 21 >2 >3 24 start Initialization 20 21 >2 >3 24 start Initialization

g g o g o0 g g o ® Set rhs = 0 for the goal. g g g o0 g g o = Put the goal to the open list.
rhs: oo rhs: oo rhs: oo rhs: oo rhs: oo% ® Set rhs = g = oo for all other nodes. rhs: oo rhs: oo rhs: oo rhs: oo rhs: oo% It is inconsistent.
1,0 1,1 1,2 1,3 1,4 1,0 1,1 1,2 1,3 1,4

g: oo g: 00 g o0 g: oo g oo g: oo g: 00 g o0 g: oo g oo

rhs: oo rhs: oo rhs: co rhs: oo rhs: oo rhs: oo rhs: co rhs: co rhs: oo rhs: oo

00 goal {01 0,2 0,3 0.4 00 goal |01 0,2 0,3 0,4

g: oo g oo g oo g: oo g oo g: oo g oo g oo g oo g oo

rhs: 0 rhs: oo rhs: co rhs: oo rhs: oo rhs: 0 rhs: oo rhs: co rhs: oo rhs: oo
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D* Lite D* Lite

D* Lite — Example Planning (3-init) D* Lite — Example Planning (3)

30 31 32 33 34 Legend 30 31 32 33 34 Legend
g: 0o g: 0o g: 0o g: 0o g: oo \Free node HObstacIe node ! g: 00 g: oo g: 00 g 00 g oo \Ffee node HObStaCIe node ]
rhs: oo ||| rhs: oo ||| rhs: oo ||| rhs: co ||| rhs: oo On open list Active node rhs: oo ||| rhs: oo ||| rhs: oo ||| rhs: co ||| rhs: oo On open list Active node
2,0 2, 2,2 23 2, 2,0 2, 2,2 23 2,
! 4 start ComputeShortestPath ! 4 start ComputeShortestPath
g g g o g g = Pop the minimum element from the g g g o g g = Pop the minimum element from the
rhs: oo rhs: oo rhs: oo rhs: oo rhs: oo,?, open list (goal). rhs: oo rhs: oo rhs: oo rhs: oo rhs: oo,?, open list (goal).
To i1 ) i3 14 R = |t is over-consistent (g > rhs). To i1 ) i3 14 R ® |t is over-consistent (g > rhs)
therefore set g = rhs.
g: 0o g: 0o g: oo g: 0o g oo g: 0o g: 00 g: oo g: 0o g oo
rhs: oo rhs: oo rhs: oo rhs: oo rhs: oo rhs: oo rhs: oo rhs: oo rhs: oo rhs: oo
00 goal {01 0,2 03 0,4 00 goal |01 0,2 03 0,4
g: 0o g oo g: oo g: 0o g oo g: 0 g oo g: oo g: 0o g oo
rhs: 0 rhs: oo rhs: oo rhs: oo rhs: oo rhs: 0 rhs: oo rhs: oo rhs: oo rhs: oo
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D* Lite D* Lite

D* Lite — Example Planning (4) D* Lite — Example Planning (5-init)

30 31 32 33 34 Legend 30 31 32 33 34 Legend
g oo g: 0o g: oo g oo g: 0o lFree node HObStacle node ] g: 0o g: 0o g: oo g oo g: 0o lFree node HObstacle node ]
rhs: oo rhs: oo rhs: oo rhs: oo rhs: oo [On open list “Active node ] rhs: oo rhs: oo rhs: oo rhs: oo rhs: oo [On open list “Active node ]
20 21 >2 >3 24 start ComputeShortestPath 20 21 >2 >3 24 start ComputeShortestPath
Lp &9 L5 €= L5 Ce Lp &9 L5 €= = Expand popped node (UpdateVertex () Ly &9 L5 €= L5 Ce Lp &9 L5 €= = Pop the minimum element from the
rhs: oo rhs: oo rhs: oo rhs: co rhs: oo.?, on all its predecessors). rhs: co rhs: co rhs: oo rhs: co rhs: oo.?, open list (1,0).
0 11 12 3 12 R ® This computes the rhs values for the 0 11 12 3 1a R = |t is over-consistent (g > rhs).
predecessors.
g oo g oo g o g oo g oo g oo g oo g oo g oo g oo
= Nodes that become inconsistent are
rhs: 1 rhs: oo rhs: oo rhs: oo rhs: oo added to the open list rhs: 1 rhs: oo rhs: oo rhs: oo rhs: oo
I ' I
00 groal |01 02 03 04 0.0 foal |01 02 03 04
g 0 g: 00 g: o0 g: 00 g o0 g 0 g: 00 g: o0 g: 00 g oo
rhs: 0 rhs: 1 rhs: oo rhs: oo rhs: oo rhs: 0 rhs: 1 rhs: oo rhs: oo rhs: oo

Small black arrows denote the node used for computing the rhs value, i.e., using the respective
transition cost.

® The rhs value of (1,1) is co because the transition to obstacle has cost co.
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D* Lite D* Lite

D* Lite — Example Planning (5) D* Lite — Example Planning (6)

3,0 31 32 33 34 Legend 30 31 32 33 34 Legend

g: 0o g: 0o g: 0o g: 0o g: oo \Free node HObstacIe node ! g: 00 g: oo g: 00 g 00 g oo \Ffee node HObStaCIe node ]

rhs: oo ||| rhs: oo ||| rhs: oo ||| rhs: co ||| rhs: oo On open list Active node rhs: oo ||| rhs: oo ||| rhs: oo ||| rhs: co ||| rhs: oo On open list Active node

20 21 22 >3 24 start ComputeShortestPath 20 21 22 >3 24 start ComputeShortestPath

& €9 g o0 g o0 &p €9 g oo = Pop the minimum element from the S Eee g o0 &p €9 g oo = Expand the popped node
rhs: oo rhs: oo rhs: oo rhs: oo rhs: oo,?, open list (1,0). rhs: 2 rhs: 2.4 ||| rhs: oo rhs: oo rhs: oo$ (UpdateVertex() on all  prede-
o 11 " 3 7 R = |t is over-consistent (g > rhs) set g = o ll s " 3 1z A cessors in the graph).

—— rhs. = Compute rhs values of the predecessors
g1 g: oo g: 0o g: 00 g: oo g 1 & €9 & co g: o g o0 accordingly.

rhs;ll rhs: oo ||| rhs: oo ||| rhs: co ||| rhs: oo rhs;ll rhs: oo ||| rhs: oo ||| rhs: co ||| rhs: oo = Put them to the open list if they be-
00 foal [01 0,2 0,3 0,4 00 goal |01 0,2 0,3 0.4 come inconsistent.

g 0 g: 00 g: o0 g o0 g: o0 g 0 g: 00 g: o0 g o0 g: oo

rhs: 0 rhs: 1 rhs: co rhs: oo rhs: oo rhs: 0 rhs: 1 rhs: co rhs: oo rhs: oo

® The rhs value of (0,0), (1,1) does not change.
®= They do not become inconsistent and thus they are not put on the open list.
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D* Lite D* Lite

D* Lite — Example Planning (7) D* Lite — Example Planning (8)

30 31 32 33 34 Legend 30 31 32 33 34 Legend
g oo g: 0o g: oo g oo g: 0o lFree node HObStacle node ] g: 0o g: 0o g: oo g oo g: 0o lFree node HObstacle node ]
rhs: oo rhs: oo rhs: oo rhs: oo rhs: oo [On open list “Active node ] rhs: oo rhs: oo rhs: oo rhs: oo rhs: oo [On open list “Active node ]
0 21 >2 >3 24 start ComputeShortestPath 20 21 >2 >3 24 start ComputeShortestPath
g g g o0 g g o = Pop the minimum element from the g 2 g g o0 g g o = Pop the minimum element from the
rhs: 2 rhs: 2.4 ||| rhs: oo rhs: oo rhs: oo.?, open list (0,1). rhs: 2 rhs: 2.4 ||| rhs: oo rhs: oo rhs: oo.?, open list (2,0).
0 ll '{,1 %) i3 14 L = |t is over-consistent (g > rhs) and thus 0 i r{l 12 3 12 R = |t is over-consistent (g > rhs) and thus
set g = rhs. set g = rhs.
g1 g: 00 g oo g oo g oo g1 g: 00 g: oo g: 0o g oo
m Expand the popped element, e.g., call
rhs;ll rhs: oo rhs: co rhs: oo rhs: oo UpdateVertex (). rhs;ll rhs: co rhs: co rhs: oo rhs: oo
0,0 goal |01 0,2 0,3 0.4 00 &oal [01 0,2 0,3 0,4
g 0 g1 g o© g oo g o g0 g 1 g: oo g oo g oo
i &
rhs: 0 rhs: 1 rhs: oo rhs: oo rhs: oo rhs: 0 rhs: 1 rhs: oo rhs: oo rhs: oo
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D* Lite

D* Lite — Example Planning (9)

D* Lite

D* Lite — Example Planning (10-init)

30 31 32 33 34 Legend 30 31 32 33 34 Legend
g 0o g: oo g oo g 00 g: oo \Free node HObstacIe node ] g 0o g oo g 00 g 00 g oo \Free node HObstacIe node ]
rhs: 3 rhs: 3.4 ||| rhs: oo ||| rhs: co ||| rhs: oo On open list Active node rhs: 3 rhs: 3.4 ||| rhs: oo ||| rhs: co ||| rhs: oo On open list Active node
I / I /
Y- V-
20 ] 21 >2 >3 >4 start ComputeShortestPath 20 ] 21 >2 >3 >4 start ComputeShortestPath
g 2 g g o g g = Expand the popped element and put the g 2 g g o g g = Pop the minimum element from the
rhs: 2 rhs: 2.4 (|| rhs: oo ||| rhs: oo ||| rhs: oo$ predecessors that become inconsistent rhs: 2 rhs: 2.4 (|| rhs: oo ||| rhs: oo ||| rhs: oo$ open list (2,1).
1.0 /{,1 12 13 14 ~ onto the open list. 10 ll rf’l ) i3 14 A = |t is over-consistent (g > rhs).
g1 g: o0 g: o0 g o0 g: o0 g1 g: o0 g: o0 g o0 g: o0
rhs: 1 rhs: oo rhs: oo rhs: oo rhs: oo rhs: 1 rhs: oo rhs: oo rhs: oo rhs: oo
T T
0,0 koa| 0,1 0,2 03 0,4 0,0 koa| 0,1 0,2 03 0,4
g: 0 g1 g 0 g oo g oo g: 0 g1 g oo g: oo g oo
& &
rhs: 0 rhs: 1 rhs: oo rhs: oo rhs: oo rhs: 0 rhs: 1 rhs: oo rhs: oo rhs: oo
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D* Lite D* Lite
D* Lite — Example Planning (10) D* Lite — Example Planning (11)
30 31 32 33 34 Legend 30 31 32 33 34 Legend
g oo g: 0o g: oo g oo g: 0o lFree node HObStacle node ] g: oo g: 0o g: oo g oo g: 0o lFree node HObstacle node ]
rhs: 3 rhs: 3.4 ||| rhs: oo rhs: oo rhs: oo [On open list “Active node ] rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: oo rhs: oo [On open list “Active node ]
/ I yd /
Y- V- V-
20 21 >2 >3 24 start ComputeShortestPath 20 21 K] *? >3 24 start ComputeShortestPath
g 2 g 24 g oo g o0 g = Pop the minimum element from the g: 2 g 24 . g o0 g: 00 g: oo = Expand the popped element and put the
rhs: 2 rhs: 2.4 ||| rhs: oo rhs: oo rhs: oo.?, open list (2,1). rhs: 2 rhs: 2.4 ||| rhs: 3.4 ||| rhs: 0o rhs: oo.?, predecessors that become inconsistent
T 7 74 : . T 7 A onto the open list.
o - 2 3 2 = |t is over-consistent (g > rhs) 1.0 1.1 1,2 1,3 1,4
I Y and thus set g = rhs. Y
g1 g oo g: oo g: 0o g oo g1 g oo g: oo g oo g oo
rhs: 1 rhs: oo rhs: oo rhs: oo rhs: oo rhs: 1 rhs: oo rhs: oo rhs: oo rhs: oo
T T
00 $oal o1 0,2 0,3 0.4 0,0 $oal o1 0,2 0,3 0.4
g 0 g1 g o© g oo g o g0 g 1 g: oo g oo g oo
rhs: 0 rhs: 1 rhs: oo rhs: oo rhs: oo rhs: 0 rhs: 1 rhs: oo rhs: oo rhs: oo
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D* Lite

D* Lite — Example Planning (12)

D* Lite

D* Lite — Example Planning (13)

30 31 32 33 34 Legend 30 31 32 33 34 Legend
g 3 g oo g: oo g oo g: 0o \Free node HObstacIe node ] g 3 g 3.4 g: 00 g oo g o \Free node HObstacIe node ]
rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: co ||| rhs: oo On open list Active node rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: oo ||| rhs: o0 On open list Active node

T / / T 7 /

Y- Y- Y- Y-
20 21 ]2 >3 >4 start ComputeShortestPath 20 ] 21 [ *? >3 >4 start ComputeShortestPath
g 2 g 2.4 )| & g g = Pop the minimum element from the g 2 g 2.4 )| & g g = Pop the minimum element from the
rhs: 2 rhs: 2.4 ||| rhs: 3.4 ||| rhs: co rhs: 009 open list (3,0). rhs: 2 rhs: 2.4 ||| rhs: 3.4 ||| rhs: co rhs: oo,?, open list (3,0).
o ll r;l 1 1 3 T2 R ® |t is over-consistent (g > rhs) and thus o ll 1 i 3 T2 R = |t is over-consistent (g > rhs) and thus
set g = rhs. set g = rhs.
g1 g: o0 g: o0 g o0 g: o0 g1 g: o0 g: o0 g o0 g: o0
' . ) ] = Expand the popped element and put the _ . ) ] = Expand the popped element and put the
rhs:ll rhs: oo rhs: oo rhs: oo rhs: oo predecessors that become inconsistent rhs:ll rhs: oo rhs: oo rhs: oo rhs: oo predecessors that become inconsistent
0.0 toa| 01 02 03 04 onto the open list. 0.0 toa| 01 02 03 04 onto the open list.
g 0 g1l g: o0 g: o0 g: 00 ® In this cases, none of the predecessors g 0 g1 g o0 g: 0o g oo = In this cases, none of the predecessors
f1 become inconsistent. f1 become inconsistent.
rhs: 0 rhs: 1 rhs: oo rhs: oo rhs: oo rhs: 0 rhs: 1 rhs: oo rhs: oo rhs: oo
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D* Lite D* Lite
D* Lite — Example Planning (14) D* Lite — Example Planning (15)

30 31 32 33 34 Legend 30 31 32 33 34 Legend
g 3 g 3.4 g: 00 g oo g oo lFree node HObstacIe node ] g 3 g 3.4 g: oo g oo g oo lFree node HObstacIe node ]
rhs: 3 rhs: 3.4 rhs: 3.8 rhs: oo rhs: oo lOn open list HActive node ] rhs: 3 rhs: 3.4 rhs: 3.8 rhs: 4.8 rhs: oo lOn open list HActive node ]
2,0 (2,1 ’52 2,3 2,4 2,0 2,1 ’gz ’;3 2,4
ol 2 K> ' “ start ComputeShortestPath ol 2 K> Kl * start ComputeShortestPath
g2 g 24 ||g 34 Lp &9 L5 €= ® Pop the minimum element from the g2 g 24 ||g 34 || & L5 €= ® Expand the popped element and put
rhs: 2 rhs: 2.4 ||| rhs: 3.4 ||| rhs: oo rhs: oo.?, open list (2,2). rhs: 2 rhs: 2.4 ||| rhs: 3.4 |[| rhs: 4.4 ||| rhs: oo.?, the predecessors that become inconsis-

1 s 73 . . T z K N tent onto the open list, i.e., (3,2), (3,3),
10 11 12 13 1a = |t is over-consistent (g > rhs) and thus 10 11 12 N3 14
gl;l( set g = rhs. gl;l( N (2,3).
g1 g: 00 g o0 g: oo g oo g1 g: 00 g o0 g 0o g oo
rhs: 1 rhs: oo rhs: co rhs: oo rhs: oo rhs: 1 rhs: co rhs: co rhs: 4.8 ||| rhs: oo

T T
00 goal |01 0,2 0,3 0.4 00 &oal [01 0,2 0,3 0,4
g 0 g1 g o© g oo g o g0 g 1 g: oo g oo g oo
rhs: 0 rhs: 1 rhs: oo rhs: oo rhs: oo rhs: 0 rhs: 1 rhs: oo rhs: oo rhs: oo
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D* Lite D* Lite

D* Lite — Example Planning (16) D* Lite — Example Planning (17)

30 31 32 33 34 Legend 30 31 32 33 34 Legend
g 3 g 3.4 g 3.8 g oo g o \Free node HObstacIe node ] g 3 g 3.4 g 3.8 g o© g oo \Free node HObstacIe node ]
rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: oo On open list Active node rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: oo On open list Active node
T b4 7 7 T b4 b4 7
Y- Y- V- Y- Y- V-
20 21 Vg >4 start ComputeShortestPath 20 ] 21 V(e >4 start ComputeShortestPath
g 2 g 2.4 1 g 3.4 )| 8 g = Pop the minimum element from the g 2 g 2.4 1 g 3.4 o & 4.4 5 €S = Pop the minimum element from the
rhs: 2 rhs: 2.4 ||| rhs: 3.4 ||| rhs: 4.4 ||| rhs: OOXO open list (3,2). rhs: 2 rhs: 2.4 ||| rhs: 3.4 ||| rhs: 4.4 ||| rhs: OOXO open list (2,3).
o Il A " Nis 1z = |t is over-consistent (g > rhs) and thus o Il A - N 1z = |t is over-consistent (g > rhs) and thus
N set g = rhs. N set g = rhs.
g1 g: o0 g: o0 g o0 g: o0 g1 g: o0 g: o0 g o0 g: o0
. . ) ) = Expand the popped element and put the _ . _ )
rhs:ll rhs: oo rhs: oo rhs: 4.8 ||| rhs: co predecessors that become inconsistent rhs:ll rhs: oo rhs: oo rhs: 4.8 ||| rhs: co
0.0 $oal 01 0,2 0,3 0,4 onto the open list. 0.0 $oal |01 0,2 0,3 0,4
g 0 g1 g: 0o g oo g oo = In this cases, none of the predecessors g 0 g 1 g oo g 0o g oo
i i istent. i
rhs: 0 rhs: 1 rhs: oo rhs: oo rhs: oo become inconsisten rhs: 0 rhs: 1 rhs: oo rhs: oo rhs: oo
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D* Lite D* Lite

D* Lite — Example Planning (18) D* Lite — Example Planning (19)

30 31 32 33 34 Legend 30 31 32 33 34 Legend
g3 g 3.4 g 3.8 g: 00 g oo lFree node HObstacle node ] g 3 g 3.4 g 3.8 g 4.8 g oo lFree node HObstacIe node ]
rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8 [On open list “Active node ] rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8 [On open list HActive node ]
! V/ ,/ Y- Y- ! V/ ,/ // Y-
20 21 i K24 start ComputeShortestPath 20 21 K22 23 K| >* start ComputeShortestPath
g 2 g 2.4 ) g: 3.4 ) g 4.4 i g: = Expand the popped element and put g2 g 2.4 ) g: 3.4 ) g 4.4 i g: oo = Pop the minimum element from the
ths: 2 ||| rhs: 2.4 |[| rhs: 3.4 ||| rhs: 4.4 ||| rhs: 5.8 the predecessors that become inconsis- ths: 2 ||| rhs: 2.4 |[| rhs: 3.4 ||| rhs: 4.4 ||| rhs: 5.8 open list (3,2).
T 7 .4 K N tent onto the open list, i.e., (3,4), (2,4), T 7 .4 1.4 N m It :
1.0 11 12 N3 NGz 1.0 11 12 ANE NG t is over-consistent (g > rhs) and thus
ﬁLl( N N (1.4). ﬁLl( N N set g = rhs.
: g: oo g: oo g: 00 g oo . . : g oo g: oo g: 0o g oo
& . . ® The start node is on the open list. g . . = Expand the popped element and put the
rhS:ll rhs: o0 ||| rhs: o0 ||| rhs: 4.8 J|| rhs: 5.8 = However, the search does not finish at rhS:ll rhs: o0 ||| rhs: o0 ||| rhs: 4.8 J|| rhs: 5.8 predecessors that become inconsistent
00 &oal |01 0,2 0,3 0,4 this stage. 00 $oal |01 0.2 0.3 0.4 onto the open list.
g 0 g1 g: oo g oo g: 0o ® There are still inconsistent nodes (on g 0 g 1 g: oo g oo g: 0o = |n this cases, none of the predecessors
if1 the open list) with a lower value of rhs. if1 become inconsistent.
rhs: 0 rhs: 1 rhs: oo rhs: oo rhs: oo rhs: 0 rhs: 1 rhs: oo rhs: oo rhs: oo
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D* Lite D* Lite

D* Lite — Example Planning (20) D* Lite — Example Planning (21)

30 31 32 33 34 Legend 30 31 32 33 34 Legend
g 3 g 3.4 g 3.8 g 438 g oo \Free node HObstacIe node ] g 3 g 3.4 g 3.8 g 4.8 g o© \Free node HObstacIe node ]
rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8 On open list Active node rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8 On open list Active node

T L7 ba Lz 7 T L7 ba Lz v
20 21 Ve | start ComputeShortestPath 20 ] 21 Ve | start ComputeShortestPath
g 2 g 2.4 1 g 3.4 NS 4.4 )| & = Pop the minimum element from the g 2 g 2.4 1 g 3.4 NS 4.4 ) g ee = Expand the popped element and put the
rhs: 2 rhs: 2.4 ||| rhs: 3.4 ||| rhs: 4.4 ||| rhs: 5-% open list (1,3). rhs: 2 rhs: 2.4 ||| rhs: 3.4 ||| rhs: 4.4 ||| rhs: 5.% predecessors that become inconsistent

T 7 K K : . T 7 K .4 onto the open list, i.e., (0,3) and (0,4).
10 | 1 ) A\ E N ¢ = |t is over-consistent (g > rhs) and thus 1o | A1 iz NG NG

set g = rhs. BN

g1 g: oo g: 0o g 4.8 g: 0o g1 g: oo g: 0o g 4.8 g: 0o
rhs: 1 rhs: co rhs: co rhs: 4.8 ||| rhs: 5.8 rhs: 1 rhs: co rhs: co rhs: 4.8 ||| rhs: 5.8

T T — —_
0,0 koa| 0,1 0,2 03 0,4 0,0 koa| 0,1 0,2 0,3 l \QA
g 0 g1 g: 0o g: 00 g: oo g 0 g1 g: 0o g: 00 g: oo

& &
rhs: 0 rhs: 1 rhs: co rhs: oo rhs: oo rhs: 0 rhs: 1 rhs: co rhs: 5.8 ||| rhs: 6.2
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D* Lite D* Lite

D* Lite — Example Planning (22) D* Lite — Example Planning (23)

30 31 32 33 34 Legend 30 Legend
g 3 g: 3.4 g: 3.8 g 4.8 g: oo lFree node HObstacIe node ] g 3 lFree node HObstacIe node ]
rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8 [On open list “Active node ] rhs: 3 [On open list “Active node ]
2.0 i {'g'l {éz \Zé3 /24 start C Sh Path 2,0 i /2
- - ) - - omputeShortestPat - = Follow the gradient of g values from the
g 2 g 2.4 g 3.4 g 44 g 5.4 = Pop the minimum element from the g 2 start node
k o s ! .

rhs: 2 rhs: 2.4 ||| rhs: 3.4 ||| rhs: 4.4 ||| rhs: 5.§ open list (2,4). rhs: 2

T Z K K . . T
1.0 11 12 N3 NGz = |t is over-consistent (g > rhs) and thus 0 -
0l 4 N3Nt set g — rhe. 0l 4
g1 g oo g © g: 4.8 g © g1

_ _ ® Expand the popped element and put the

rhs: 1 rhs: o0 ||[rhst o0 ||| rhs: 4.8 J||[ rhs: 5.8 predecessors that become inconsistent rhs: 1
00 i oal o1 02 03 T K\Q" (none in this case) onto the open list. 0.0 loa| ;
g 0 ‘g:l g: 00 g: 0o g: 0o g: 0 I
rhs: 0 rhs: 1 rhs: co rhs: 5.8 ||| rhs: 6.2 rhs: 0 rhs: 1 rhs: co rhs: 5.8 ||| rhs: 6.2

® The start node becomes consistent and the top key on the open list is not less than the key of the start node. f

= An optimal path is found and the loop of the ComputeShortestPath is breaked.
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D* Lite

D* Lite — Example Planning (24)

D* Lite

D* Lite — Example Planning (25)

30 31 32 33 34 Legend 30 31 32 33 34 Legend
rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8 On open list Active node rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8 On open list Active node
T 7 7 7 7 T 7 7 7
20 (21 722 723 2.4 start 2,0 2,1 2,2 2.3 (24 start
4_;1'—{ o4 ¢ 3 ‘/H 2 IZH 5.4 u Follow the gradient of g values from the 4;1'—{ o4 2 W ® A new obstacle is detected during the
g g < H & g g g g start node. g g g g movement from (2,3) to (2,2).
rhs:l2 /rhs: 2.4 ||| rhs: .4,(‘ ‘ rhs: %‘ rhs: 5.4 rhs: 2 rhs: 2.4 rhs: 4. rhs: 5.4 = Replanning is needed!
1,0 | _/1,1 1,2 ‘\%.3 N4 1,0 | _/1,1 1,2 ‘\%.3 N4
g1 g: 4.8 g: oo g1 g: 4.8 g oo
rhs: 1 rhs: 4.8 ||| rhs: 5.8 rhs: 1 rhs: 4.8 ||| rhs: 5.8
— S—_
00 goal {01 0,2 03 | W4 00 doal|o1 0.2 o3 | Y4
g 0 I 01 g: 00 g 0o g 0 I 1 g: 00 g: 0o
rhs: 0 rhs: 1 rhs: 5.8 ||| rhs: 6.2 rhs: 0 rhs: 1 rhs: 5.8 ||| rhs: 6.2
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D* Lite D* Lite
D* Lite — Example Planning (25 update) D* Lite — Example Planning (26 update 1/2)
3,2 3.3 34 Legend 3,0 31 3,2 3,3 3.4 Legend
538 |[g48 |[E [Free node __|[Obstacle node | g3 |[e34 |[e38 |[e48 |[& [Free node _|(Obstacle node |
rhs:|3.8 4.8 ||| rhs: 5.8 lon open list “Active node ] rhs: 3 rhs:\3\4 rhs:|3.8 j}g4.8 rhs: 5.8 [On open list “Active node ]
7 / V4 7 7 /
2 (2,3 f2.4 start 2.3 (2.4 start
¢ ﬁ e = All directed edges with changed edge, ﬁz? Update.Vertex
g g we need to call the UpdateVertex(). Lilieg Ny &> = Outgoing edges from (2,2).
MM = All edges into and out of (2,2) have to rhs: 4'% rhs: 5.4 = Call UpdateVertex() on (2,2).
12 N3 N4 be considered. 3 N4 = The transition costs are now oo because
g o gi. 4.8 g oo of obstacle.
rhs: 5.8 ths: 4.8 ||| rhs: 5.8 L] Therefc.)re the. rhs = oo a_nd (2,2) be-
K K comes inconsistent and it is put on the
02 \Q“ 0,3 | \Q4 open list.
g: o0 g: oo g: oo
rhs: 6.2 rhs: 5.8 ||| rhs: 6.2
?%‘J
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D* Lite — Example Planning (26 update 2/2)

D* Lite

D* Lite

D* Lite — Example Planning (27)

3,0 31 32 33 34 Legend 30 31 32 33 34 Legend
g 3 g 3.4 g 3.8 g 438 g oo \Free node HObstacIe node ] g 3 g 3.4 g 3.8 g 4.8 g o© \Free node HObstacIe node ]
rhs: 3 rhs:\3x<1 rhs:| 3.8 r/bs/:4.8 /l'hSI 5.8 On open list Active node rhs: 3 rhs: 3.4 ||| rhs: 3.8 r/bs/:4.8 /I’hSI 5.8 On open list Active node
T b 7 T b b
Y- Y- Y- Y- Y- Y-
200 21y 23 24 start Update Vertex 20 g2 22 23 |2 start Update Vertex
g 2 g 2.4 g 4.4 ) g 5.4 ® Incomming edges to (2,2). g 2 g 24 g OV NS 4.4 | & 5.4 = The neighbor of (2,2) is (3,3).
rhs: 2 rhs: 2.4 rhs: 4-% rhs: 5.4 = Call UpdateVertex() on the neighbors rhs: 2 rhs: 2.4 ||| rhs: oo ||| rhs: 4-% rhs: 5.4 = The minimum possible rhs value of
— — S— — —— K — - o
1.0 A1 ) 3 N4 (2,2). 1o | 1 ) A\ E T (3,3) is 4.8 but it is based on t.he g
. 7 : 5 = The transition cost is 0o, and therefore, . B . . . value of (3,2) and not (2,2), which is
g1 g oo g gn4.8 g > . g1 9 g g 48 g o the detected obstacl
; the rhs value previously computed using ; € detected obstacle.
rhs:ll rhs: oo ||| rhs: oo ||| rhs: 4.8 ||| rhs: 5.8 (2,2) is changed. rhs:ll rhs: oo |||thst o0 ||| rhs: 4.8 || rhs: 5.8 = The node (3,3) is still consistent and
00 foal [01 0,2 03 | W4 00 foal 01 0,2 03 | e thus it is not put on the open list.
g 0 g1 g: © g: g: oo g 0 g1 g: g: g: oo
K K
rhs: 0 rhs: 1 rhs: co rhs: 5.8 ||| rhs: 6.2 rhs: 0 rhs: 1 rhs: co rhs: 5.8 ||| rhs: 6.2
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D* Lite D* Lite
D* Lite — Example Planning (28) D* Lite — Example Planning (29)
30 31 32 33 34 Legend 30 31 32 33 34 Legend
g3 g 3.4 g 3.8 g 4.8 g oo lFree node HObstacIe node ] g 3 g 3.4 g 3.8 g 4.8 g oo lFree node HObstacIe node ]
¢ e
rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8 [On open list HActiVe node ] rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8 [On open list HActive node ]
20 | A1 /22 3 /(24 start 20 | A1 /22 3 /(24 start
: : ' ; : Update Vertex : : ' ; : Update Vertex
g 2 g 2.4 g oo g 4.4 | & 5.4 = (2,3) is also a neighbor of (2,2). g 2 g 2.4 g g 4.4 | & 5.4 = Another neighbor of (2,2) is (1,3).
rhs: 2 rhs: 2.4 ||| rhs: ooK rhs: 5~%\ rhs: 5.4 = The minimum possible rhs value of rhs: 2 rhs: 2.4 rhs:r\og rhs: 5~%\ rhs: 5.4 = The minimum possible rhs value of
T 7 : . T 7 7. S :
0 71 12 NG 2 (2,3) is 5.2 because (2,2) is an obstacle 0 71 12 3 2 (1,3) is 5.4 computed based on g of
Y N NG (using (3,2) with 3.8 + 1.4). Y NG (2,3) with 4.4 + 1 =54,
g1 g: 0o g: o0 g 4.8 g o0 g1 g: 0o g: 00 gn4.8 g: 00
_ _ ® The rhs value of (2,3) is different from _ . = The rhs value is always computed using
rhS:l 1 rhs: oo || rhs: oo rh5;4-8 rhs: 5.8 g; thus, (2,3) is put on the open list. rhS:l 1 rhs: oo || rhs: oo rh5;5'4K rhs: 5.8 the g values of its successors.
00 goal [0.1 02 03 [ s 00 &oal |01 02 o3 [ NR*
g 0 g1 g o© g oo g o0 g0 g 1 g: oo g oo g oo
rhs: 0 rhs: 1 rhs: co rhs: 5.8 ||| rhs: 6.2 rhs: 0 rhs: 1 rhs: co rhs: 5.8 ||| rhs: 6.2
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D* Lite

D* Lite
D* Lite — Example Planning (29 update) D* Lite — Example Planning (30)
3,0 31 32 33 34 Legend 30 31 32 33 34 Legend
g 3 g 3.4 g 3.8 g 438 g oo \Free node HObstacIe node ] g 3 g 3.4 g 3.8 g 4.8 g o© \Free node HObstacIe node ]
< e
rhs: 3 rhs:\3x<1 rhs:| 3.8 ||| rhs: 4.8 ||| rhs: 5.8 On open list Active node rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8 On open list Active node
I / V4 K / T 7 7 K. 7
7 N 7 Y- Y- N Y-
20 2 22 R3 /24 start Update Vertex 20 g2 22 R3 24 start ComputeShortestPath
g 2 g 24 8190 g 4.4 | & 5.4 = None of the other neighbor of (2,2) end g 2 g 24 g o g 4.4 | & 5.4 = Pop the minimum element from the
rhs: 2 rhs: 2.4 ||| rhs:| oo rhs: 5. rhs: 5.4 up being inconsistent. rhs: 2 rhs: 2.4 ||| rhs: oo rhs: 5. rhs: 5.4 open list (2,2), which is obstacle.
1.0 <R 12 13 2 = We go back to calling To 1 ) i3 2 ® |t is under-consistent (g < rhs), there-
ﬁlg{ T = +8 \g% ComputeShortestPath()  until an %‘Z T o +8 \g% fore set g = oo.
& . . - . & . . optimal path is determined. & : _ : : & . . = Expand the popped element and put the
LR fhsTe0 | LhsTeo ﬁ\_xrhs: 5.4 ]| rhs: 5.8 rhs: 1 ERSTICON | [ASOON] || rhs: 5.4 ||| rhs: 5.8 predecessors that become inconsistent
0,0 é oal |01 0,2 0,3 l \QA 0,0 é oal |01 0,2 0.3 l \Q“ (none in this case) onto the open list.
g 0 g1 g: oo g o0 g: 0o g0 ‘g:l g 0o g oo g: 0o
rhs: 0 rhs: 1 rhs: co rhs: 5.8 ||| rhs: 6.2 rhs: 0 rhs: 1 rhs: co rhs: 5.8 ||| rhs: 6.2

® The node corresponding to the robot’s current position is inconsistent and its key is greater than ® Because (2,2) was under-consistent (when popped), UpdateVertex() has to be called on it.

the minimum key on the open list.
® Thus, the optimal path is not found yet.
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= However, it has no effect as its rhs value is up to date and consistent.
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D* Lite D* Lite

D* Lite — Example Planning (31-init) D* Lite — Example Planning (31)

30 31 32 33 34 Legend 30 31 32 33 34 Legend
g 3 g 3.4 g 3.8 g 4.8 g oo lFree node HObstacIe node ] g 3 g 3.4 g: 3.8 g 4.8 g oo lFree node HObstacIe node ]
¢ e

rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8 [On open list HActiVe node ] rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8 [On open list HActive node ]
20 | (2,1 (2,2 .3 (2,4 20 | 2,1 (2,2 .3 (2,4
204 g2t 2 R3___]>* start ComputeShortestPath 204 g2t > S > start ComputeShortestPath
g 2 g 2.4 & ©9 g 44 N g 5.4 = Pop the minimum element from the g 2 g 2.4 & c9 g N g 5.4 = Pop the minimum element from the
rhs: 2 rhs: 2.4 ||| rhs: 00 ||| rhs: 5.%\ rhs: 5.4 open list (2,3). rhs: 2 rhs: 2.4 ||| rhsi o0 ||| rhs: 5.§ rhs: 5.4 open list (2,3).

T Z Z.y ; . T z — . .
1.0 11 12 13 2 ® |t is under-consistent g < rhs. 1.0 11 12 13 N4 ® |t is under-consistent g < rhs
Y EEEH D O Y EEH D O therefore set g = co.
g1 g: 0o g: 00 g 4.8 g: o0 g1 g: 0o g: 00 g 4.8 g: 00
rhs: 1 rhs: oo rhs: co rhs: 5.4 ||| rhs: 5.8 rhs: 1 rhs: co rhs: co rhs: 5.4 ||| rhs: 5.8

T R T 7 S
00 goal [0.1 02 03 [ s 00 $oal |01 02 o3 | NR*
g 0 g1 g o© g oo g o0 g0 g 1 g: oo g oo g oo

& &
rhs: 0 rhs: 1 rhs: co rhs: 5.8 ||| rhs: 6.2 rhs: 0 rhs: 1 rhs: co rhs: 5.8 ||| rhs: 6.2
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D* Lite D* Lite

D* Lite — Example Planning (32) D* Lite — Example Planning (33)

34 Legend

& [Free node | [Obstacieinoder]
rhs: 5.8 |On open list |[Active node |

30 31 32 33 34 Legend

g8 |[8> [Free node | [Gbstacieineder]
ths: 4.8 | rhs: 5.8 |On open list |[Active node |

.4
4
3 R#_start ComputeShortestPath R#_start ComputeShortestPath
& G g 5.4 = Expand the popped element and update g 5.4 = Because (2,3) was under-consistent
rhs: 5_9 rhs: 6.2 the predecessors. rhs: 6.2 (wh.erf popped), a call UpdateVertex()
3 '\/11 n = (2,4) becomes inconsistent. i on it is needed.
= (1,3) get dated and still i o = As it is still inconsistent it is put back
.48 g oo ,3) gets updated and still inconsis g oo ¢
& kl tent. | onto the open list.
hs: 6.8 ||| rhs: 5.8 rhs: 5.8
! SA ® The rhs value (1,4) does not changed,
03 I \Q4 but it is now computed from the g value N4
g 0o g oo of (1,3). & o
rhs: 5.8 ||| rhs: 6.2 rhs: 6.2
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D* Lite D* Lite
D* Lite — Example Planning (34) D* Lite — Example Planning (35)
30 31 32 33 34 Legend 34 Legend
e [Fres rode ISR = [Free o) EBERNRRE
rhs: 4.8 ||| rhs: 5.8 [On open list “Active node ] rhs: 5.8 [On open list “Active node ]
—
N
3 %# start ComputeShortestPath &# start ComputeShortestPath
& C9 g 5.4 = Pop the minimum element from the g 5.4 = Expand the popped element and update
rhs: 5_8 rhs: 6.2 open list (1,3). rhs: 6.2 the predecessors.
13 A 72 = It is under-consistent (g < rhs), there- 72 T = (1,4) gets updated and still inconsis-
é' = 4 g = fore set g = oco. P tent.
. - . = (0,3) and (0,4) get updated and now
hs: 6.8 hs: 5.8 hs: 6.4
r S'+ = IS fS:R0; consistent (both g and rhs are o).
03 | \Q“ 0,4
g oo g oo g: oo
rhs: 5.8 ||| rhs: 6.2 rhs: oo
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D* Lite D* Lite

D* Lite — Example Planning (36) D* Lite — Example Planning (37)

34 Legend

& [Free node | [Obstacieinoder]
rhs: 5.8 |On open list |[Active node |

30 31 32 33 34 Legend

g8 |[8> [Free node | [Gbstacieineder]
ths: 4.8 | rhs: 5.8 |On open list |[Active node |

.4
3 .4 4
R R#_start ComputeShortestPath R#_start ComputeShortestPath
g g 5.4 = Because (1,3) was under-consistent g 5.4 = Pop the minimum element from the
rhs: 5_8 rhs: 6.2 (when popped), call UpdateVertex() rhs: 6.2 open list (2,3).
i3 911’4 T on '_t |-s ne.ed?d. _ o " T = |t is over-consistent (g > rhs), there-
- - = As it is still inconsistent it is put back - fore set g = rhs.
g g onto the open list. g
rhs: 6.8 ||| rhs: 6.4 rhs: 6.4
03 0,4 0,4
g 00 g oo g: oo
rhs: oo rhs: oo rhs: oo
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D* Lite D* Lite

D* Lite — Example Planning (38) D* Lite — Example Planning (39)

34 Legend 32 33 34 Legend
g o [Free node | [Obstacle node | 238 |48 |[g [Free node | [Obstacle node |
€
rhs: 5.8 [On open list HActive node ] rh6: rhs: 4.8 ||| rhs: 5.8 [On open list HActive node ]
R4 start
4 start 2.2 3 4 star
R - ComputeShortestPath R - = Follow the gradient of g values from the
g 54 = Expand the popped element and update N2 g 5.4 robot’s current position (node).
s G2 the predecessors. rhs: 5.@ rhs: 6.2
14 T ® (1,3) gets updated and still inconsis- 12 3 T = 1a T
tent.
g: o0 g: oo g: 00
® The node (2,3) corresponding to the -
rhs: 6.4 robot’s position is consistent. rhs: 6.2 ||| rhs: 6.4
0.4 = Besides, the top of the key on the open 0,2 03 0.4
g: 0o list is not less than the key of (2,3). g oo g: 00
rhs: oo = The optimal path has been found and rhs: oo rhs: oo
N we can break out of the loop. I R
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D* Lite RD-based Planning

D* Lite — Comments Reaction-Diffusion Processes Background

® Reaction-Diffusion (RD) models — dynamical systems capable to reproduce the au-
towaves.
® Autowaves - a class of nonlinear waves that propagate through an active media.

® D* Lite works with real valued costs, not only with binary costs (free/obstacle).
At the expense of the energy stored in the medium, e.g., grass combustion.

m The search can be focused with an admissible heuristic that would be added to g and
rhs.
® The final version of D* Lite includes further optimization (not shown in the example).

m Updating the rhs value without considering all successors every time.
m Re-focusing the search as the robot moves without reordering the entire open list.

® RD model describes spatio-temporal evolution of two state variables u = u(x, t) and
v = v(X, t) in space X and time t
u = f(u,v)+D,Au
v g(u,v)+D,Av’

where A is the Laplacian.

This RD-based path planning is informative, just for curiosity.

@)
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RD-based Planning RD-based Planning
Reaction-Diffusion Background Nullcline Configurations and Steady States
0.57
_ = Nullclines intersections represent:
L] F|tzHugh—Nagumo (FHN) model FitzHugh R, Biophysical Journal (1961) Voo m Stable States (555);
u = ¢ (u —ud—v+ (b) + DyAu ‘ m Unstable States.
v = (u—av+pB)+DAu ' 1 ® Bistable regime
where a, B¢, and ¢ are parameters of the model. -0.57 The system (concentration levels of (u, v) for each grid cell)
. . . . . . . . , , , , , , tends to be in SSs.
® Dynamics of RD system is determined by the associated nullcline configurations for 4=0 -15 -10 -05 00 05 10 15
and v=0 in the absence of diffusion, i.e., u ) .
»3( 3 n ¢) 0 ® We can modulate relative stability of both SS. -~
u—u —v =
’ “preference” of SST over SS—.
(u—av+p) = 0,

. . : ® System moves from SS™ to SST, if a small perturbation is intro-
which have associated geometrical shapes. duced

m The SSs are separated by a mobile frontier — a kind of traveling
frontwave (autowaves).
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Grid-based Planning DT for Path Planning

RD-based Path Planning — Computational Model

Graph Search Algorithms D* Lite RD-based Planning

® Finite difference method on a Cartesian grid with Dirichlet boundary
conditions (FTCS) discretization — grid based computation — grid map

m External forcing — introducing additional information
i.e., constraining concentration levels to some specific values.

= Two-phase evolution of the underlying RD model.

1. Propagation phase

® Freespace is set to SS™ and the start location SS+.
= Parallel propagation of the frontwave with non-annihilation property.

Vazquez-Otero and Mufiuzuri, CNNA (2010)

= Terminate when the frontwave reaches the goal.

2. Contraction phase
= Different nullclines configuration.

® Start and goal positions are forced towards SS+.
m S5~ shrinks until only the path linking the forced points remains.

Jan Faigl, 2025

B4M36UIR — Lecture 03: Path Planning
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Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning

Example of Found Paths

Selit

700 x 700 700 x 700 1200 x 1200

® The path clearance maybe adjusted by the wavelength and size of the computational grid. .
Control of the path distance from the obstacles (path safety). /’g\ﬁ%
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Grid-based Planning DT for Path Planning

Comparison with Standard Approaches

Voronoi Diagram Reaction-Diffusion

Distance Transform

ST

Jarvis R
Advanced Mobile Robots (1994)

m RD-based approach provides competitive paths regarding path length and clearance,

while they seem to be smooth.

Jan Faigl, 2025

Graph Search Algorithms D*

Beeson P, Jong N, Kuipers B
ICRA (2005)

B4M36UIR — Lecture 03: Path Planning

Lite RD-based Planning

Otero A, Faigl J, Mufiuzuri A
IROS (2012)

L

115 / 118

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning

Robustness to Noisy Data

Vazquez-Otero, A., Faigl, J., Duro, N. and Dormido, R. (2014): Reaction-Diffusion based Computational Model for Autonomous Mobile
Robot Exploration of Unknown Environments. International Journal of Unconventional Computing (1JUC).
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Topics Discussed

Topics Discussed

Motion and path planning problems
= Path planning methods — overview
= Notation of configuration space

m Path planning methods for geometrical map representation
® Shortest-Path Roadmaps
= Voronoi diagram based planning
= Cell decomposition method

m Distance transform can be utilized for kind of navigational function
= Front-Wave propagation and path simplification

m Artificial potential field method

® Graph search (planning) methods for grid-like representation
= Dijsktra’s, A*, JPS, Theta*
® Dedicated speed up techniques can be employed to decreasing computational burden, e.g., JPS
® Grid-path can be smoothed, e.g., using path simplification or Theta* like algorithms

= We can avoid demanding planning from scratch reusing the previous plan for the updated
environment map, e.g., using D* Lite
= Unconventional reaction-diffusion based planning (informative)

Summary of the Lecture

® Next: Robotic Information Gathering — Mobile Robot Exploration
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