PKR Lab-10 Solution

Algorithms

13 return G

```
Algorithm 1: Multivariate Polynomial Division Algorithm
```

```
Input: f, F = (f_1, \ldots, f_s), \geq \text{(monomial ordering)}
    Output: (q_1, \ldots, q_s), r such that f = \sum_{i=1}^s q_i f_i + r, LT_{\geq}(r) is not divisible by any of LT_{\geq}(f_i) or r = 0
 1 q_1 \leftarrow \cdots \leftarrow q_s \leftarrow r \leftarrow 0
 \mathbf{2} \ p \leftarrow f
 з while p \neq 0 do
         i \leftarrow 1
 4
          divisionoccured \leftarrow False
 5
          while i \leq s and not divisionoccured do
 6
               if LT_{\geq}(f_i) divides LT_{>}(p) then
 7
                    q_i \leftarrow q_i + \frac{\operatorname{LT}_{\geq}(p)}{\operatorname{LT}_{\geq}(f_i)}
 8
 9
                    division occurred \leftarrow \mathbf{True}
10
                 i \leftarrow i + 1
12
13
          if not divisionoccured then
               r \leftarrow r + LT_{>}(p)
14
               p \leftarrow p - LT_{>}(p)
16 return (q_1, ..., q_s), r
```

Algorithm 2: Improved Buchberger's Algorithm

```
Input: F = (f_1, \ldots, f_s), \geq \text{(monomial ordering)}
    Output: Gröbner basis G of F w.r.t. \geq monomial ordering
 1 \ t \leftarrow s
 2 G \leftarrow F
 3 B \leftarrow \{(i,j) \mid 1 \le i < j \le s\}
 4 while B \neq \emptyset do
         Select (i, j) \in B
          B \leftarrow B \setminus \{(i,j)\}
 6
         r \leftarrow \overline{S_{\geq}(f_i, f_j)}^{(G, \geq)}
 7
          if r \neq 0 then
 8
               t \leftarrow t + 1
 9
               f_t \leftarrow r
10
               G \leftarrow (f_1, \ldots, f_t)
11
               B \leftarrow B \cup \{(i, t) \mid 1 \le i \le t - 1\}
```

Remark. In the implementation of Buchberger's algorithm the notation $\overline{S_{\geq}(f_i, f_j)}^{(G, \geq)}$ for the monomial ordering \geq is used. It simply denotes the remainder of the division of the S-polynomial of f_i and f_j w.r.t. \geq

$$S_{\geq}(f_i, f_j) = \frac{\operatorname{LCM}\left(\operatorname{LM}_{\geq}(f_i), \operatorname{LM}_{\geq}(f_j)\right)}{\operatorname{LT}_{>}(f_i)} \cdot f_i - \frac{\operatorname{LCM}\left(\operatorname{LM}_{\geq}(f_i), \operatorname{LM}_{\geq}(f_j)\right)}{\operatorname{LT}_{>}(f_j)} \cdot f_j$$

by the ordered tuple of polynomials G w.r.t. \geq . In the expression for the S-polynomial, LCM denotes the "least common multiple".

Gröbner Basis Computation

Task 1. Consider the polynomial system $F = (f_1, f_2) = (x^2 + y^2 - 1, y + x)$. Compute a lexicographic Gröbner basis G of F w.r.t. the variable ordering x > y.

Solution: We apply Algorithm 2 which is a modified version of the improvement [1, Chapter 2, §10, Theorem 9] of the classical Buchberger's algorithm [1, Chapter 2, §7, Theorem 2]. First, we assign

$$t \leftarrow 2$$
, $G \leftarrow (x^2 + y^2 - 1, y + x)$, $B \leftarrow \{(1, 2)\}$.

We describe what happens to G and B during every iteration of the **while** block.

1. $G = (x^2 + y^2 - 1, y + x)$, $B = \{(1, 2)\}$. For the only element $(i, j) = (1, 2) \in B$ we compute the S-polynomial

$$S_{\geq_{\text{lex}}}(f_{i}, f_{j}) = S_{\geq_{\text{lex}}}(f_{1}, f_{2}) = S_{\geq_{\text{lex}}}(x^{2} + y^{2} - 1, y + x) =$$

$$= \frac{\text{LCM}\left(\text{LM}_{\geq_{\text{lex}}}(x^{2} + y^{2} - 1), \text{LM}_{\geq_{\text{lex}}}(y + x)\right)}{\text{LT}_{\geq_{\text{lex}}}(x^{2} + y^{2} - 1)} \cdot (x^{2} + y^{2} - 1) - \frac{\text{LCM}\left(\text{LM}_{\geq_{\text{lex}}}(x^{2} + y^{2} - 1), \text{LM}_{\geq_{\text{lex}}}(y + x)\right)}{\text{LT}_{\geq_{\text{lex}}}(y + x)} \cdot (y + x) =$$

$$= \frac{\text{LCM}\left(x^{2}, x\right)}{x^{2}} \cdot (x^{2} + y^{2} - 1) - \frac{\text{LCM}\left(x^{2}, x\right)}{x} \cdot (y + x) = \frac{x^{2}}{x^{2}} \cdot (x^{2} + y^{2} - 1) - \frac{x^{2}}{x} \cdot (y + x) =$$

$$= (x^{2} + y^{2} - 1) - x \cdot (y + x) = x^{2} + y^{2} - 1 - xy - x^{2} = -xy + y^{2} - 1$$

Now we compute the remainder of the division of $-xy+y^2-1$ by G w.r.t. \geq_{lex} monomial ordering (using Algorithm 1):

$$\begin{aligned} -xy + y^2 - 1 &= \underbrace{-xy + y^2 - 1}_{p} + \underbrace{0}_{q_1} \cdot (x^2 + y^2 - 1) + \underbrace{0}_{q_2} \cdot (x + y) + \underbrace{0}_{r} \\ &= \underbrace{2y^2 - 1}_{p} + \underbrace{0}_{q_1} \cdot (x^2 + y^2 - 1) + \underbrace{(-y)}_{q_2} \cdot (x + y) + \underbrace{0}_{r} \\ &= \underbrace{-1}_{p} + \underbrace{0}_{q_1} \cdot (x^2 + y^2 - 1) + \underbrace{(-y)}_{q_2} \cdot (x + y) + \underbrace{2y^2}_{r} \\ &= \underbrace{0}_{p} + \underbrace{0}_{q_1} \cdot (x^2 + y^2 - 1) + \underbrace{(-y)}_{q_2} \cdot (x + y) + \underbrace{2y^2 - 1}_{r} \end{aligned}$$

Since $r = \overline{S_{\geq_{\text{lex}}}(f_1, f_2)}^{(G, \geq_{\text{lex}})} = 2y^2 - 1 \neq 0$, then we set $t \leftarrow 3$, $f_3 \leftarrow r$ and add $f_3 = 2y^2 - 1$ to the sequence G so it becomes $G = (x^2 + y^2 - 1, x + y, 2y^2 - 1)$. The set of tuples B at the end of the **while** block becomes $B = \{(1,3), (2,3)\}$. Since $B \neq \emptyset$, we repeat again the **while** block. We will further omit the symbol \geq_{lex} everywhere for the sake of simplicity, since it is now clear what monomial ordering we are using.

2. $G = (x^2 + y^2 - 1, x + y, 2y^2 - 1), B = \{(1, 3), (2, 3)\}.$ We select $(1, 3) \in B$ and apply the same steps as in 1. :

$$S(f_{1}, f_{3}) = S(x^{2} + y^{2} - 1, 2y^{2} - 1) = \frac{\operatorname{LCM}(x^{2}, y^{2})}{x^{2}} \cdot (x^{2} + y^{2} - 1) - \frac{\operatorname{LCM}(x^{2}, y^{2})}{2y^{2}} \cdot (2y^{2} - 1) =$$

$$= \frac{x^{2}y^{2}}{x^{2}} \cdot (x^{2} + y^{2} - 1) - \frac{x^{2}y^{2}}{2y^{2}} \cdot (2y^{2} - 1) = \frac{1}{2}x^{2} + y^{4} - y^{2}$$

$$= \underbrace{\frac{1}{2}x^{2} + y^{4} - y^{2}}_{p} = \underbrace{\frac{1}{2}x^{2} + y^{4} - y^{2}}_{p} + \underbrace{\underbrace{0}_{q_{1}} \cdot (x^{2} + y^{2} - 1)}_{q_{1}} + \underbrace{0}_{q_{2}} \cdot (x + y) + \underbrace{0}_{q_{3}} \cdot (2y^{2} - 1) + \underbrace{0}_{r}$$

$$= \underbrace{y^{4} - \frac{3}{2}y^{2} + \frac{1}{2}}_{p} + \underbrace{\frac{1}{2}}_{q_{1}} \cdot (x^{2} + y^{2} - 1) + \underbrace{0}_{q_{2}} \cdot (x + y) + \underbrace{\left(\frac{1}{2}y^{2}\right)}_{q_{3}} \cdot (2y^{2} - 1) + \underbrace{0}_{r}$$

$$= \underbrace{-y^{2} + \frac{1}{2}}_{p} + \underbrace{\frac{1}{2}}_{q_{1}} \cdot (x^{2} + y^{2} - 1) + \underbrace{0}_{q_{2}} \cdot (x + y) + \underbrace{\left(\frac{1}{2}y^{2} - \frac{1}{2}\right)}_{q_{3}} \cdot (2y^{2} - 1) + \underbrace{0}_{r}$$

$$= \underbrace{0}_{p} + \underbrace{\frac{1}{2}}_{q_{1}} \cdot (x^{2} + y^{2} - 1) + \underbrace{0}_{q_{2}} \cdot (x + y) + \underbrace{\left(\frac{1}{2}y^{2} - \frac{1}{2}\right)}_{q_{3}} \cdot (2y^{2} - 1) + \underbrace{0}_{r}$$

Since r = 0, then we update only B and it becomes $B = \{(2,3)\}$. Since $B \neq \emptyset$, we repeat the **while** block.

3. $G = (x^2 + y^2 - 1, x + y, 2y^2 - 1), B = \{(2,3)\}.$ For $(2,3) \in B$ we obtain:

$$S(f_2, f_3) = S(x+y, 2y^2 - 1) = \frac{xy^2}{x} \cdot (x+y) - \frac{xy^2}{2y^2} \cdot (2y^2 - 1) = \frac{1}{2}x + y^3$$

$$\frac{1}{2}x + y^{3} = \underbrace{\frac{1}{2}x + y^{3}}_{p} + \underbrace{0}_{q_{1}} \cdot (x^{2} + y^{2} - 1) + \underbrace{0}_{q_{2}} \cdot (x + y) + \underbrace{0}_{q_{3}} \cdot (2y^{2} - 1) + \underbrace{0}_{r}$$

$$= \underbrace{y^{3} - \frac{1}{2}y}_{p} + \underbrace{0}_{q_{1}} \cdot (x^{2} + y^{2} - 1) + \underbrace{\frac{1}{2}}_{q_{2}} \cdot (x + y) + \underbrace{0}_{q_{3}} \cdot (2y^{2} - 1) + \underbrace{0}_{r}$$

$$= \underbrace{0}_{p} + \underbrace{0}_{q_{1}} \cdot (x^{2} + y^{2} - 1) + \underbrace{\frac{1}{2}}_{q_{2}} \cdot (x + y) + \underbrace{\frac{1}{2}y}_{q_{2}} \cdot (2y^{2} - 1) + \underbrace{0}_{r}$$

Since r = 0, then we update only B and it becomes $B = \emptyset$. Since $B = \emptyset$, we finish here and return a Gröbner basis $G = (x^2 + y^2 - 1, x + y, 2y^2 - 1)$ of F.

Solving lexicographic GB by back-substitution

Definition 1. A polynomial system $G = (g_1(x_1, \ldots, x_n), \ldots, g_k(x_1, \ldots, x_n))$ is said to be **triangular** w.r.t. a variable ordering $x_1 > \cdots > x_n$ if there exist a partition of G into non-empty blocks $\{B_1, \ldots, B_n\}$ such that

$$variables(B_j) = \{x_j, x_{j+1}, \dots, x_n\}$$

Example 1. Consider G given by

$$G = (x_1^2x_2 + x_3, x_3^2 + x_1, x_2x_3 + 1, x_2 + x_3, x_3^2 + 1).$$

We can partition G as

$$B_1 = \{x_1^2x_2 + x_3, x_3^2 + x_1\}, \quad B_2 = \{x_2x_3 + 1, x_2 + x_3\}, \quad B_3 = \{x_3^2 + 1\}$$

with

variables
$$(B_1) = \{x_1, x_2, x_3\}, \text{ variables}(B_2) = \{x_2, x_3\}, \text{ variables}(B_3) = \{x_3\}.$$

Such triangular systems can be solved by back-substitution. For the back-substitution we proceed by solving consequtively the blocks B_i starting from B_n according to the following sequence of steps:

- 1. Find the set of solutions S_n to $B_n = \mathbf{0}$.
- 2. Set j to n.
- 3. For every $s = (s_j, \ldots, s_n) \in S_j$ construct a solution set $T_{s,j-1}$ of $C_{j-1} = \{f(x_{j-1}, s) \mid f \in B_{j-1}\}$.
- 4. Extend $\{T_{s,j-1} \mid s \in S_j\}$ to the solution set of $\bigcup_{k=j-1}^n B_k$:

$$S_{i-1} = \{(s_{i-1}, s) \mid s \in S_i, s_{i-1} \in T_{s, i-1}\}.$$

5. If $j-1 \ge 2$, go to step 3. for S_{j-1} . Otherwise return the solution set S_{j-1} of G.

Task 2. Compute the solutions to the lexicographic Gröbner basis $G = (x^2 + y^2 - 1, x + y, 2y^2 - 1)$ from the previous task using back-substitution.

Solution: We can see that G is triangular w.r.t. a variable ordering x > y, since G can be partitioned into blocks as

$$B_1 = \{x^2 + y^2 - 1, x + y\}, \quad B_2 = \{2y^2 - 1\}$$

so that

$$variables(B_1) = \{x, y\}, variables(B_2) = \{y\}.$$

Applying the back-substitution we obtain:

- 1. First, compute the solutions to $2y^2 1 = 0$: these are $\pm \frac{1}{\sqrt{2}}$.
- 2. Substitute every solution of $2y^2 1 = 0$ to the system $\{x^2 + y^2 1, x + y\}$ and compute the solutions in x.
 - (a) $y = \frac{1}{\sqrt{2}}$, then we solve

$$\begin{cases} x^2 - \frac{1}{2} = 0 \\ x + \frac{1}{\sqrt{2}} = 0 \end{cases} \iff x = -\frac{1}{\sqrt{2}}.$$

Hence, we get the solution $(x,y) = (-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$.

(b) $y = -\frac{1}{\sqrt{2}}$, then we solve

$$\begin{cases} x^2 - \frac{1}{2} = 0 \\ x - \frac{1}{\sqrt{2}} = 0 \end{cases} \iff x = \frac{1}{\sqrt{2}}.$$

Hence, we get the solution $(x,y) = (\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}).$

The set of solutions to G is

$$\left\{ \left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right), \left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right) \right\}.$$

References

[1] David A. Cox, John B. Little, and Donal O'Shea, *Ideals, varieties, and algorithms*, Springer, 2015, Fourth Edition.