PKR Lab-07 Solution

Task 1. Consider the rotation matrix with rotation axis generated by vector $\mathbf{r} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^{\top}$ that maps vector $\mathbf{x} = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}^{\top}$ to $\mathbf{y} = \mathbf{R}\mathbf{x} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^{\top}$.

- (a) Find its rotation angle $-\pi < \theta \le \pi$,
- (b) Find its rotation matrix \mathbf{R} .

Solution: We use the angle-axis parametrization of the rotation [1, Equation (7.22)]:

$$\mathbf{R} = \cos \theta \mathbf{I} + (1 - \cos \theta) \mathbf{v} \mathbf{v}^{\top} + \sin \theta [\mathbf{v}]_{\times}$$
 (1)

where $\mathbf{v} = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$ is the normalized axis of rotation (the sign of \mathbf{v} is fixed by our choice). By the task, $\mathbf{R} \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}^{\top} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^{\top}$. Hence, multiplying both sides of Equation (1) by $\begin{bmatrix} 0 & 0 & 1 \end{bmatrix}^{\top}$ we get

$$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \mathbf{R} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \left(\cos \theta \mathbf{I} + (1 - \cos \theta) \mathbf{v} \mathbf{v}^{\top} + \sin \theta [\mathbf{v}]_{\times} \right) \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$
$$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \cos \theta \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} + \frac{1 - \cos \theta}{3} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + \frac{\sin \theta}{\sqrt{3}} \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$$
(2)

From the last equation of Equation (2)

$$0 = \cos \theta + \frac{1 - \cos \theta}{3}$$

we can express

$$\cos\theta = -\frac{1}{2}.$$

Substituting it to the second equation in (2) we get

$$0 = \frac{1}{2} - \frac{\sin \theta}{\sqrt{3}}$$

from which we get

$$\sin \theta = \frac{\sqrt{3}}{2}$$

The rotation angle then equals

$$\theta = \operatorname{atan2}(\sin \theta, \cos \theta) = \operatorname{atan2}\left(\frac{\sqrt{3}}{2}, -\frac{1}{2}\right) = \frac{2\pi}{3}.$$

We get the rotation matrix by substituting \mathbf{v} and θ to Equation (1):

$$\mathbf{R} = -\frac{1}{2} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} + \frac{1}{2} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} + \frac{1}{2} \begin{bmatrix} 0 & -1 & 1 \\ 1 & 0 & -1 \\ -1 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

Another pair of rotation angle and axis which generates the same **R** is $(-\theta, -\mathbf{v})$.

Task 2. Consider unit quaternion

$$\mathbf{q} = \frac{1}{3} \begin{bmatrix} 0 & -1 & -2 & -2 \end{bmatrix}$$

- (a) For the rotation given by \mathbf{q} , find all pairs of (θ, \mathbf{v}) corresponding to its rotation angle $-\pi < \theta \leq \pi$ and its rotation axis generated by unit vector \mathbf{v} ,
- (b) Find the rotation matrix corresponding to q.

Solution:

(a) The quaternion is defined by

$$\mathbf{q} = \begin{bmatrix} \cos\frac{\theta}{2} \\ \sin\frac{\theta}{2} \mathbf{v} \end{bmatrix}$$

where (θ, \mathbf{v}) is the pair of a rotation angle and a normalized axis of rotation. We have

$$\cos\frac{\theta}{2} = 0 \Rightarrow \sin\frac{\theta}{2} = \pm 1$$

We, e.g., take the pair $(\cos \frac{\theta}{2}, \sin \frac{\theta}{2}) = (0, 1)$ which gives

$$\frac{\theta}{2} = \frac{\pi}{2} + 2\pi k, k \in \mathbb{Z} \iff \theta = \pi + 4\pi k, k \in \mathbb{Z}$$

By the task we want $-\pi < \theta \le \pi$, so $\theta = \pi$. We compute the normalized axis of rotation \mathbf{v} by dividing the last 3 coordinates of \mathbf{q} by $\sin \frac{\theta}{2}$:

$$\mathbf{v} = \frac{1}{3} \begin{bmatrix} -1 & -2 & -2 \end{bmatrix}^{\mathsf{T}}.$$

If (θ, \mathbf{v}) defines \mathbf{q} for $-\pi < \theta \le \pi$, then all pairs (θ, \mathbf{v}) with $-\pi < \theta \le \pi$ that define the rotation given by \mathbf{q} are determined by $\{(\theta, \mathbf{v}), (-\theta, -\mathbf{v})\}$. Since for $\theta = \pi$ the value $-\theta = -\pi$ jumps out of the interval $(-\pi, \pi]$, then we simply add 2π to it, since it doesn't change the rotation matrix (according to the Rodriguez formula [1, Equation 7.22]). Hence, the answer is

$$\left\{ \begin{pmatrix} \pi, -\begin{bmatrix} \frac{1}{3} & \frac{2}{3} & \frac{2}{3} \end{bmatrix}^{\top} \end{pmatrix}, \begin{pmatrix} \pi, \begin{bmatrix} \frac{1}{3} & \frac{2}{3} & \frac{2}{3} \end{bmatrix}^{\top} \end{pmatrix} \right\}.$$

(b) The rotation matrix is given by the Rodriguez formula [1, Equation 7.22]:

$$\mathbf{R} = \cos \theta \mathbf{I} + (1 - \cos \theta) \mathbf{v} \mathbf{v}^{\top} + \sin \theta \left[\mathbf{v} \right]_{\times}$$

$$\mathbf{R} = -\mathbf{I} + 2 \cdot \frac{1}{9} \cdot \begin{bmatrix} 1\\2\\2 \end{bmatrix} \begin{bmatrix} 1 & 2 & 2 \end{bmatrix} = \begin{bmatrix} -1 & & & \\ & -1 & \\ & & -1 \end{bmatrix} + \frac{2}{9} \begin{bmatrix} 1 & 2 & 2\\2 & 4 & 4\\2 & 4 & 4 \end{bmatrix} = \frac{1}{9} \begin{bmatrix} -7 & 4 & 4\\4 & -1 & 8\\4 & 8 & -1 \end{bmatrix}$$

Another way to obtain \mathbf{R} is to use the formula in terms of quaternions [1, Equation 7.67]:

$$\mathbf{R} = \begin{bmatrix} q_1^2 + q_2^2 - q_3^2 - q_4^2 & 2(q_2q_3 - q_1q_4) & 2(q_2q_4 + q_1q_3) \\ 2(q_2q_3 + q_1q_4) & q_1^2 - q_2^2 + q_3^2 - q_4^2 & 2(q_3q_4 - q_1q_1) \\ 2(q_2q_4 - q_1q_3) & 2(q_3q_4 + q_1q_2) & q_1^2 - q_2^2 - q_3^2 + q_4^2 \end{bmatrix} = \frac{1}{9} \begin{bmatrix} -7 & 4 & 4 \\ 4 & -1 & 8 \\ 4 & 8 & -1 \end{bmatrix}$$

Task 3. Consider rotation matrix

$$\mathbf{R} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

- (a) Find its (unit) rotation axis and angle $-\pi < \theta \le \pi$.
- (b) Find all unit quaternions corresponding to **R**.

Solution:

(a) The rotation axis is given by the eigenvector corresponding to the eigenvalue $\lambda = 1$:

$$\mathbf{R}\mathbf{v} = \mathbf{v} \iff (\mathbf{R} - \mathbf{I})\mathbf{v} = \mathbf{0}$$

We solve the linear homogeneous system of equations:

$$\begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \\ 1 & 0 & -1 \end{bmatrix} \sim \begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \\ 0 & 1 & -1 \end{bmatrix} \sim \begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

We obtain 1 zero row in the row echelon form of $\mathbf{R} - \mathbf{I}$ indicating that $\dim \ker(\mathbf{R} - \mathbf{I}) = 1$. Let's denote $\mathbf{v} = \begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix}$. Then we let v_3 to be any real number t. From the second equation $-v_2 + v_3 = 0$ we obtain $v_2 = v_3 = t$. From the first $-v_1 + v_2 = 0$ we obtain $v_1 = v_2 = t$. Thus, all the solutions to this linear system may be described by

$$\left\{ \begin{bmatrix} t \\ t \\ t \end{bmatrix} \mid t \in \mathbb{R} \right\}$$

Out of this set we take one of unit norm, e.g.,

$$\mathbf{v} = -\frac{1}{\sqrt{3}} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

The rotation angle can be determined from the Rodriguez formula:

$$\mathbf{R} = \cos \theta \mathbf{I} + (1 - \cos \theta) \mathbf{v} \mathbf{v}^{\top} + \sin \theta \left[\mathbf{v} \right]_{\times}$$

$$\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} = \cos \theta \begin{bmatrix} 1 & & \\ & 1 & \\ & & 1 \end{bmatrix} + \frac{1}{3} (1 - \cos \theta) \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} + \frac{1}{\sqrt{3}} \sin \theta \begin{bmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{bmatrix}$$

Out of these 9 equations we pick 2 given by the elements (1,1) and (1,2):

$$(1,1): \quad 0 = \cos\theta + \frac{1}{3}(1 - \cos\theta) \iff \cos\theta = -\frac{1}{2}$$

$$(1,2): 1 = \frac{1}{3}(1-\cos\theta) + \frac{1}{\sqrt{3}}\sin\theta \iff \sin\theta = \frac{\sqrt{3}}{2}$$

from which we deduce that $\theta = \frac{2\pi}{3}$. Another way to compute the rotation axis and angle is to apply the formula [1, Equations 7.40, 7.41] for non-symmetric rotations:

$$\theta = \arccos\left(\frac{1}{2}\operatorname{trace}\mathbf{R} - 1\right) = \frac{2\pi}{3}, \quad \mathbf{v} = \frac{1}{2\sin\theta} \begin{bmatrix} r_{32} - r_{23} \\ r_{13} - r_{31} \\ r_{21} - r_{12} \end{bmatrix} = -\frac{1}{\sqrt{3}} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

Notice that for a symmetric rotation (i.e., a rotation by π) \mathbf{v} is undefined, so this formula is not applicable. As was noted before, all the angle-axis (for $-\pi < \theta \le \pi$) solutions to \mathbf{R} are given by $\{(\theta, \mathbf{v}), (-\theta, -\mathbf{v})\}$.

(b) One way is to apply the formula

$$\mathbf{q}_{1,2} = \pm \begin{bmatrix} \cos\frac{\theta}{2} \\ \sin\frac{\theta}{2} \mathbf{v} \end{bmatrix} = \pm \begin{bmatrix} \cos\frac{\pi}{3} \\ \sin\frac{\pi}{3} \mathbf{v} \end{bmatrix} = \pm \begin{bmatrix} \frac{1}{2} \\ -\frac{\sqrt{3}}{2} \frac{1}{\sqrt{3}} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \end{bmatrix} = \pm \frac{1}{2} \begin{bmatrix} 1 \\ -1 \\ -1 \\ -1 \end{bmatrix}$$

The other way is to use [1, Equation 7.74]:

$$\mathbf{q}_{1,2} = \pm \frac{1}{2\sqrt{\operatorname{trace} \mathbf{R} + 1}} \begin{bmatrix} \operatorname{trace} \mathbf{R} + 1 \\ r_{32} - r_{23} \\ r_{13} - r_{31} \\ r_{21} - r_{12} \end{bmatrix} = \pm \frac{1}{2} \begin{bmatrix} 1 \\ -1 \\ -1 \\ -1 \end{bmatrix}$$

Again, the last formula works only for non-symmetric rotations.

References

[1] Tomas Pajdla, *Elements of geometry for robotics*, https://cw.fel.cvut.cz/b221/_media/courses/pkr/pro-lecture-2021.pdf.

3