PKR Lab-06 Solution

Task 1. Consider motion given by a mapping of a general point X to point Y by

$$\vec{y}_{\beta} = \mathbf{R} \, \vec{x}_{\beta} + \vec{o}_{\beta}' \,, \tag{1}$$

where \vec{x}_{β} , resp. \vec{y}_{β} , are coordinate vectors representing point X, resp. point Y, in a coordinate system with an orthonormal basis β . Matrix **R** and vector $\vec{o}' = \overrightarrow{OO'}$ are given as follows

$$\mathbf{R} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} \quad \vec{o}'_{\beta} = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$$

- (a) Write down the matricidal equation determining the coordinates of points on the axis of motion.
- (b) Find all the points on the axis of motion.
- (c) Compare the axis of motion to the line obtained by translating the rotation axis by \vec{o}'_{β} .

Solution: (a) The axis of motion is the line in \mathbb{R}^3 that is left invariant after applying Equation (1). The matrix equation that determines the points on the axis of motion is [1, Equation (9.2)]:

$$(\mathbf{R} - \mathbf{I})^2 \vec{x}_{\beta} = -(\mathbf{R} - \mathbf{I}) \vec{o}_{\beta}'$$

(b) Substituting **R** and \vec{o}'_{β} to it we obtain

$$\begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \\ 1 & 0 & -1 \end{bmatrix}^{2} \vec{x}_{\beta} = -\begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \\ 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$$
$$\begin{bmatrix} 1 & -2 & 1 \\ 1 & 1 & -2 \\ -2 & 1 & 1 \end{bmatrix} \vec{x}_{\beta} = \begin{bmatrix} 1 \\ 1 \\ -2 \end{bmatrix}$$
 (2)

We can solve this system of linear equations by Gaussian elimination:

$$\begin{bmatrix} 1 & -2 & 1 & 1 \\ 1 & 1 & -2 & 1 \\ -2 & 1 & 1 & -2 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 1 & 1 \\ 0 & 3 & -3 & 0 \\ 0 & -3 & 3 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 1 & 1 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Denote $\vec{x}_{\beta} = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix}^{\top}$. From the second row $x_2 - x_3 = 0$ we conclude that $x_2 = x_3$ and we let x_3 to be any real number t. From the first row $x_1 - 2x_2 + x_3 = 1$ we conclude that $x_1 = 2x_2 - x_3 + 1 = t + 1$. Thus, the solutions to (2) are

$$L = \left\{ \begin{bmatrix} t+1 \\ t \\ t \end{bmatrix} \mid t \in \mathbb{R} \right\} = \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \mid t \in \mathbb{R} \right\}$$

We may verify that the line L is invariant under the motion given by (1). For this we pick a general point from L and substitute it into (1):

$$\mathbf{R}\left(\begin{bmatrix}1\\0\\0\end{bmatrix}+t\begin{bmatrix}1\\1\\1\end{bmatrix}\right)+\vec{o}_{\beta}'=\begin{bmatrix}0&1&0\\0&0&1\\1&0&0\end{bmatrix}\left(\begin{bmatrix}1\\0\\0\end{bmatrix}+t\begin{bmatrix}1\\1\\1\end{bmatrix}\right)+\begin{bmatrix}1\\0\\-1\end{bmatrix}=\begin{bmatrix}0\\0\\1\end{bmatrix}+t\begin{bmatrix}1\\1\\1\end{bmatrix}+\begin{bmatrix}1\\0\\-1\end{bmatrix}=\begin{bmatrix}1\\0\\0\end{bmatrix}+t\begin{bmatrix}1\\1\\1\end{bmatrix}$$

We see that L is invariant (in this case even point-wise, since \vec{o}'_{β} is perpendicular to the rotation axis of \mathbf{R}).

(c) The rotation axis translated by \vec{o}_{β}' has the form

$$L' = \left\{ \begin{bmatrix} 1\\0\\-1 \end{bmatrix} + t \begin{bmatrix} 1\\1\\1 \end{bmatrix} \middle| t \in \mathbb{R} \right\},\,$$

which is different from L, because

$$\begin{bmatrix} 1\\0\\-1 \end{bmatrix} \in L', \quad \begin{bmatrix} 1\\0\\-1 \end{bmatrix} \not\in L.$$

References

[1] Tomas Pajdla, *Elements of geometry for robotics*, https://cw.fel.cvut.cz/b221/_media/courses/pkr/pro-lecture-2021.pdf.