Inverse Kinematics of 6R Manipulator by Gröbner Basis Computation

Viktor Korotynskiy

December 2024

I. Symbolic Formulation of Inverse Kinematics

Mathematical formulation of inverse kinematics

Let $\left\{\mathbf{M}_i^{i-1} \mid i \in [6]\right\}$ be the 4×4 transformation matrices between the coordinate frames assigned to the adjacent links (according to the DH notation) and \mathbf{M}_e be the transformation from the end-effector frame to the base frame (we use the notation $[n] \stackrel{\mathrm{def}}{=} \{1,\ldots,n\}$). Then

$$\underbrace{\prod_{i=1}^{6} \mathbf{M}_{i}^{i-1} (\boldsymbol{\theta_{i}} + \underline{\boldsymbol{\theta}_{i_{\text{offset}}}, d_{i}, a_{i}, \alpha_{i}})}_{\text{DH parameters}} = \underbrace{\begin{bmatrix} \mathbf{R}_{e} & \mathbf{t}_{e} \\ \mathbf{0}^{\top} & 1 \end{bmatrix}}_{\mathbf{M}_{e}},$$

where $\theta = (\theta_1, \dots, \theta_6)$. If we focus on the non-constant elements of $\mathbf{M}(\theta)$, then we get a set of 12 functions

$$\left\{\mathbf{M}^{(i,j)}(\boldsymbol{\theta}) - \mathbf{M}_e^{(i,j)} \mid i \in [3], j \in [4]\right\},\,$$

whose zero set defines the solutions to IKT.

Symbolic formulation of inverse kinematics

Every matrix $\mathbf{M}_i^{i-1}(\boldsymbol{\theta_i})$ can be decomposed as

$$\begin{bmatrix} \cos(\theta_{i} + \theta_{i_{\text{offset}}}) & -\sin(\theta_{i} + \theta_{i_{\text{offset}}}) & 0 & 0\\ \sin(\theta_{i} + \theta_{i_{\text{offset}}}) & \cos(\theta_{i} + \theta_{i_{\text{offset}}}) & 0 & 0\\ 0 & 0 & 1 & d_{i}\\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & a_{i}\\ 0 & \cos\alpha_{i} & -\sin\alpha_{i} & 0\\ 0 & \sin\alpha_{i} & \cos\alpha_{i} & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

New variables:

$$c_i = \cos(\theta_i + \theta_{i_{\text{offset}}}), \quad s_i = \sin(\theta_i + \theta_{i_{\text{offset}}})$$

Symbolic formulation:

$$\begin{cases} \prod_{i=1}^{6} \mathbf{M}_{i}^{i-1}(\boldsymbol{c_{i}}, \boldsymbol{s_{i}}) - \mathbf{M}_{e} = \mathbf{O} \\ \boldsymbol{c_{i}}^{2} + \boldsymbol{s_{i}}^{2} - 1 = 0, \quad i = 1, \dots, 6 \end{cases}$$

Computing θ_i from c_i and s_i :

$$\theta_i = \operatorname{atan2}(s_i, c_i) - \theta_{i_{\text{offset}}}$$

Reducing degree of polynomials

The inverse matrix $\left(\mathbf{M}_i^{i-1}\right)^{-1}$ has the form:

$$\begin{bmatrix} 1 & 0 & 0 & -a_i \\ 0 & \cos \alpha_i & \sin \alpha_i & 0 \\ 0 & -\sin \alpha_i & \cos \alpha_i & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{c_i} & \mathbf{s_i} & 0 & 0 \\ -\mathbf{s_i} & \mathbf{c_i} & 0 & 0 \\ 0 & 0 & 1 & -d_i \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Since it is linear in c_i and s_i , the former polynomial equations of IKT of degree at most 6 can be simplified to the following ones of degree at most 3:

$$\prod_{i=4}^{6} \mathbf{M}_{i}^{i-1}(\boldsymbol{c_{i}}, \boldsymbol{s_{i}}) - \left(\prod_{i=1}^{3} \mathbf{M}_{i}^{i-1}(\boldsymbol{c_{i}}, \boldsymbol{s_{i}})\right)^{-1} \mathbf{M}_{e} = \mathbf{O},$$

$$\boldsymbol{c_{i}}^{2} + \boldsymbol{s_{i}}^{2} - 1 = 0, \quad i = 1, \dots, 6$$

Notice that this is not the only way to reduce the degree: we can multiply \mathbf{M}_e by the inverses of \mathbf{M}_i^{i-1} either from left or right, which gives in total $2^3=8$ various reduced formulations.

Solvability of equations by Gröbner basis method

- Gröbner Basis computation is done in exact arithmetics over the rational numbers and therefore the rational input must be provided.
- ② At the same time, the input must satisfy all identities on sines, cosines and rotations, otherwise the equations would have no solution.

That's why,

- lacktriangledown the parameters d_i , a_i , \mathbf{t}_e must be given as rational numbers;
- $\cos \alpha_i$ and $\sin \alpha_i$ must be given as a tuple of rational numbers such that the sum of their squares is exactly 1
- **3** the rotation matrix \mathbf{R}_e must be given as a rational matrix such that $\mathbf{R}_e^{\top}\mathbf{R}_e = \mathbf{I}$ and $\det \mathbf{R}_e = 1$ hold exactly.

In Python 3, rational numbers can be represented by Fraction type from fractions module.

6/17

II. Naive Approach to Rationalization of Inverse Kinematics

Rational approximation of a floating point number

Algorithm 1: Rational approximation of a floating point number

Input: float number n, positive tolerance ε

Output: rational number $(a, b) \in \mathbb{Z}^2$ such that

$$\left|\frac{a}{b} - n\right| < \varepsilon$$

- 1 if $\varepsilon \geq 1$ then
- 2 $\lfloor \operatorname{return} (\lfloor n \rfloor, 1) \rfloor$
- **3** represent $\varepsilon = m \cdot 10^e$ for $m \in [1, 10), e \in \mathbb{Z}_{\leq 0}$
- 4 return $(\lfloor n \cdot 10^{-e} \rfloor, 10^{-e})$

Rational approximation of a floating point number

Example

Let the floating point number be

$$n = 10.123456789$$

and the tolerance of the rational approximation be given by another floating point number

$$\varepsilon = 0.000025932 = 2.5932 \times 10^{-5} \Rightarrow e = -5$$

A rational number which approximates n is

$$(a,b) = (\lfloor 10.123456789 \cdot 10^5 \rfloor, 10^5) = (1012345, 10^5)$$

$$\left| \frac{a}{b} - n \right| = |10.12345 - 10.123456789| = 0.000006789 < \varepsilon$$

Parametrization of rational cosines and sines

Rational parametrization of the unit circle:

$$\cos\theta = \frac{1-t^2}{1+t^2}, \ \sin\theta = \frac{2t}{1+t^2}, \ t \in \mathbb{Q}$$

Trigonometric meaning of t:

$$\tan\frac{\theta}{2} = \frac{1 - \cos\theta}{\sin\theta} = \frac{1 - \frac{1 - t^2}{1 + t^2}}{\frac{2t}{1 + t^2}} = \frac{2t^2}{2t} = t$$

Rational cosine and sine

Algorithm 1: Rational cosine and sine

Input: $\theta \in (-\pi, \pi]$, positive tolerance ε **Output:** Rational numbers c, s such that

$$c^2 + s^2 = 1$$
 (exactly) & $|c - \cos \theta| < \varepsilon$, $|s - \sin \theta| < \varepsilon$

- 1 if $1 + \cos \theta < \varepsilon$ and $|\sin \theta| < \varepsilon$ then $\mathbf{return} -1, 0$
- 3 $\varepsilon_t \leftarrow \varepsilon$
- 4 while True do

10

Rational cosine and sine

Example

Let the angle and the tolerance be given by

$$\theta = 1.2345, \quad \varepsilon = 0.0023$$

The output of the above algorithm is

$$c = \frac{1 - t^2}{1 + t^2} = \frac{497319}{1502681} \approx \cos \theta, \ \ s = \frac{2t}{1 + t^2} = \frac{1418000}{1502681} \approx \sin \theta$$

which is obtained from the rational approximation of $\tan \frac{ heta}{2}$

$$t = \frac{709}{1000} \approx \tan \frac{\theta}{2}$$

Parametrization of rational 3×3 rotation matrices

For $q_1, q_2, q_3, q_4 \in \mathbb{Q}$ we have a rational rotation matrix

$$\mathbf{R} = \frac{1}{\sum_{i=1}^{4} q_i^2} \begin{bmatrix} q_1^2 + q_2^2 - q_3^2 - q_4^2 & 2(q_2q_3 - q_1q_4) & 2(q_2q_4 + q_1q_3) \\ 2(q_2q_3 + q_1q_4) & q_1^2 - q_2^2 + q_3^2 - q_4^2 & 2(q_3q_4 - q_1q_2) \\ 2(q_2q_4 - q_1q_3) & 2(q_3q_4 + q_1q_2) & q_1^2 - q_2^2 - q_3^2 + q_4^2 \end{bmatrix}$$

In the next slide we are using the function q2r which is defined by the above formula.

Rational 3×3 rotation matrix

Algorithm 1: Rational 3×3 rotation matrix

Input: 4 float numbers $\mathbf{q} = \begin{bmatrix} q_1 & q_2 & q_3 & q_4 \end{bmatrix}^\top$ with $\|\mathbf{q}\| \approx 1$, positive tolerance ε

Output: 3×3 rational matrix **R** such that

$$\mathbf{R}^{\top}\mathbf{R} = \mathbf{I}, \; \det \mathbf{R} = 1 \; \left(\text{exactly} \right) \; \; \& \quad \left\| \mathbf{R} - \mathtt{q2r}(\mathbf{q}) \right\|_{\mathrm{F}} < \varepsilon$$

```
1 \ \varepsilon_a \leftarrow \varepsilon
  2 while True do
              \mathbf{q}_r \leftarrow \begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix}
  3
              for (k \leftarrow 1; k \le 4; k \leftarrow k + 1)
  4
               \mathbf{q}_r[k] \leftarrow \mathtt{rational\_approx}(q_k, arepsilon_q)
  5
              \mathbf{R} \leftarrow \mathsf{q2r}(\mathbf{q}_r)
  6
              if \|\mathbf{R} - \mathsf{q2r}(\mathbf{q})\|_{\mathrm{F}} < \varepsilon then
  7
              return R
  8
              else
  9
                \varepsilon_q \leftarrow \frac{\varepsilon_q}{10}
10
```

Rational 3×3 rotation matrix

Example

Let the quaternion and the tolerance be given by

$$\mathbf{q} = \begin{bmatrix} 0.748 & 0.654 & 0.108 & 0.012 \end{bmatrix}, \quad \varepsilon = 0.0011$$

The output of the above algorithm gives the rational rotation matrix

$$\mathbf{R} = \begin{bmatrix} \frac{243853}{249757} & \frac{30828}{249757} & \frac{44316}{249757} \\ \frac{39804}{249757} & \frac{35827}{249757} & -\frac{243948}{249757} \\ -\frac{36468}{249757} & \frac{245244}{249757} & \frac{30067}{249757} \end{bmatrix}$$

which comes from the (non-unit) rational quaternion

$$\mathbf{q}_r = \begin{bmatrix} \frac{187}{250} & \frac{327}{500} & \frac{27}{250} & \frac{3}{250} \end{bmatrix} \approx \mathbf{q}$$

III. Solving Inverse Kinematics by Gröbner Basis Computation

Reduced lexicographic Gröbner basis of IKT equations

IKT equations:

$$\begin{split} \prod_{i=4}^{6} \mathbf{M}_{i}^{i-1}(\boldsymbol{c_{i}}, \boldsymbol{s_{i}}) - \left(\prod_{i=1}^{3} \mathbf{M}_{i}^{i-1}(\boldsymbol{c_{i}}, \boldsymbol{s_{i}})\right)^{-1} \mathbf{M}_{e} &= \mathbf{O}, \\ \boldsymbol{c_{i}}^{2} + \boldsymbol{s_{i}}^{2} - 1 &= 0, \quad i = 1, \dots, 6 \end{split}$$

For the variable ordering

$$c_1 > s_1 > \cdots > c_6 > s_6$$

the reduced lexicographic Gröbner basis of IKT equations has the form:

$$s_{6}^{16} + a_{1,15} \cdot s_{6}^{15} + a_{1,14} \cdot s_{6}^{14} + \dots + a_{1,1} \cdot s_{6} + a_{1,0}$$

$$c_{6} + a_{2,15} \cdot s_{6}^{15} + a_{2,14} \cdot s_{6}^{14} + \dots + a_{2,1} \cdot s_{6} + a_{2,0}$$

$$\vdots$$

$$c_{1} + a_{12,15} \cdot s_{6}^{15} + a_{12,14} \cdot s_{6}^{14} + \dots + a_{12,1} \cdot s_{6} + a_{12,0}$$

where $a_{i,j} \in \mathbb{Q}$.

17 / 17