
Parallel programming

OpenMP part 2

2 / 23

Try the example at first

Run example FalseSharing.cpp

3 / 23

What? False sharing

● Cache related problem: each of the two threads modifies own
variable that resides in the same cache line → modifications
from one thread are propagated to another thread by cache
line invalidation

source

https://mechanical-sympathy.blogspot.com/2011/07/false-sharing.html

4 / 23

False sharing detection

● Can be detected using Intel VTune, only Intel processors

– Microarchitecture Exploration → Summary → L3 Bound
→ Contested Accesses

– (driver for event based sampling must be installed and on
some platforms, HyperThreading has to be disabled)

5 / 23

Atomic

● OpenMP critical section is intended for general code to avoid
data races

● Atomic operations are more efficient if the critical section can
be transformed to atomic hardware instructions
int sum = 0;
int currentSum;

#pragma omp atomic read
currentSum = sum;

#pragma omp atomic write
sum = 0;

#pragma omp atomic update
sum += 10;

#pragma omp atomic capture
{
 currentSum = sum;
 sum += 10;
}

Updates the value of a variable
while capturing the original or
final value of the variable atomically

6 / 23

Example

● Write parallel vector normalization using parallel for and
atomic operation

– Implement method
normalizationParallelForAndAtomic in
VectorNormalization.cpp

To remind normalization:

7 / 23

Scheduling of work

● Distribution of work among threads in parallel for
– #pragma omp parallel for schedule(...)

● policy: static, dynamic, guided

● Why? Different scenarios require different policies for efficient
execution

8 / 23

Scheduling: static

#pragma omp parallel for schedule(static, chunkSize) num_threads(4)

● Divides the iterations into chunkSize and distributes
them in circular order among threads.

schedule(static, 4):
**** **** **** ****
 **** **** **** ****
 **** **** **** ****
 **** **** **** ****

schedule(static, 8):
******** ********
 ******** ********
 ******** ********
 ******** ********

9 / 23

Scheduling: dynamic

#pragma omp parallel for schedule(dynamic, chunkSize) num_threads(4)

● Divides the iterations into chunkSize. Threads
execute the chunks as they finish.
schedule(dynamic, 4):
 **** **** ****
**** **** **** **** ****
 **** **** **** **** ****
 **** **** ****

schedule(dynamic, 8):
 ******** ********
 ******** ********
******** ******** ********

10 / 23

Scheduling: guided

#pragma omp parallel for schedule(guided, minChunkSize) num_threads(4)

● The size of chunk is proportional to the number of
unassigned iterations divided by number of threads.
Specifies minimum size of chunk.

schedule(guided, 4):

 ************ **** ****

**************** ***** **** ***

schedule(guided, 8):
 ************ ******** ***

 ********* ********

Last thread can process smaller
chunk than minChunkSize

11 / 23

Vectorization

● Performs the Same Instruction on Multiple Data - SIMD

● Special vector instructions and registers

2.1 1.6 3.2 0.2a

++ + +

1.5 6.2 4.4 1.4b

== = =

3.6 7.8 7.6 1.6z

#include <immintrin.h>

__m256d a;
__m256d b;
__m256d z = _mm256_add_pd(a, b);

Vectorization using intrinsic
functions

● History

– MMX (1997): 64b registers (e.g., 2x32b ints), only integers

– SSE (1998): 128b registers, supports floats
● SSE2 (2000): supports doubles

– AVX (2011): 256b registers

12 / 23

Vectorization in OpenMP

● Use simd directive

#pragma omp simd
for (int i = 0; i < size; i++) {
 w[i] = u[i] * v[i];
}

#pragma omp parallel for simd
for (int i = 0; i < size; i++) {
 w[i] = u[i] * v[i];
}

Loop is split into chunks that fit into
SIMD register. No parallelization.

Distribute iterations across team of
threads. Iteration of one thread are
then split into chunks that fit into
SIMD register.

Preferably, use constants
instead of function calls for iteration
bounds in SIMD loops.

13 / 23

HELP! Code is not vectorized

>> g++ -fopenmp -fopt-info-vec -O3 VectorNormalization.cpp
VectorNormalization.cpp:125:26: note: loop vectorized
VectorNormalization.cpp:131:12: note: loop vectorized

● Sometimes, compilers need some guidance for successful vectorization

– Number of loop iterations known before loop execution

– No break

– if statement only as masked assignment

– No function calls (basic math are allowed)

– Avoid loop dependencies (e.g., Read-After-Write is not vectorizable)

– Unit strides are recommended (informally: iterate on the rightmost index for multidimensional
arrays)

– More information
● https://www.cac.cornell.edu/education/training/StampedeJan2017/Stampede2-VectorizationOnKNL.pdf

● https://easyperf.net/blog/2017/11/10/Tips_for_writing_vectorizable_code

● For g++

– Why vectorization did not occur? Use flag -fopt-info-vec-missed

– Check whether vectorization occured

https://www.cac.cornell.edu/education/training/StampedeJan2017/Stampede2-VectorizationOnKNL.pdf
https://easyperf.net/blog/2017/11/10/Tips_for_writing_vectorizable_code

14 / 23

Example

● Try vector normalization using OpenMP SIMD

– Implement method normalizationParallelSimd in
VectorNormalization.cpp

15 / 23

Tasks

● A task is block of code to be run in parallel

● When a thread encounters a task construct, it may either run
it immediately or defer its execution

● Deferred tasks are added to a task pool, which is processed
by all threads in the team

16 / 23

Task pool

Thread

Task pool

Generate
tasks

Thread

Thread

Thread

Thread

Execute
tasks

17 / 23

Task pool

#pragma omp parallel
{
 #pragma omp single
 {
 for (int i = 0; i < 10;i++) {
 #pragma omp task
 {
 cout << "Iteration " << i
 << " processed by thread " << omp_get_thread_num() << endl;
 }
 }
 }
}

One thread generates tasks

Generation of task

Iteration 0 processed by thread 1
Iteration 2 processed by thread 3
Iteration 3 processed by thread 1
Iteration 1 processed by thread 0
Iteration 5 processed by thread 1
Iteration 4 processed by thread 3
Iteration 7 processed by thread 1
Iteration 8 processed by thread 3
Iteration 9 processed by thread 1
Iteration 6 processed by thread 0

Output:

Iterations processed by all
threads in team

18 / 23

Tasks vs Sections

● Sections are for static number of parallel regions

● Previous example cannot be reimplemented with sections,
code will not compile

error: work-sharing region may not be closely nested inside of work-sharing

19 / 23

Tasks synchronization
#pragma omp parallel
{
 #pragma omp single
 {
 #pragma omp task
 cout << "I'm a lonely task outside of task group :(" << endl;

 #pragma omp task
 cout << "I'm a lonely task outside of task group :(" << endl;

 #pragma omp taskwait

 #pragma omp taskgroup
 {
 #pragma omp task
 cout << "I'm a happy task inside of task group :)" << endl;

 #pragma omp task
 cout << "I'm a happy task inside of task group :)" << endl;
 }
 }
}

Waits on all tasks generated by
the current task from the beginning

I'm a lonely task outside of task group :(
I'm a lonely task outside of task group :(
I'm a happy task inside of task group :)
I'm a happy task inside of task group :)

Output:

Waits until the completion of all
enclosed and descendant tasks

20 / 23

Tasks with dependencies
cout<< "Evaluating expression: 2*(5*3+7*7)" << endl;
int term1 = 0, term2 = 0, sum = 0, total = 0;

#pragma omp parallel
{
 #pragma omp single
 {
 #pragma omp task depend(out: term1)
 term1 = 5*3;

 #pragma omp task depend(out: term2)
 term2 = 7*7;

 #pragma omp task depend(in: term1, term2) depend(out: sum)
 sum = term1+term2;

 #pragma omp task depend(in: sum)
 total = 2*sum;

 #pragma omp taskwait
 cout << "Final value of the expression: "<< total <<endl;
 }
}

5 3 7 7

2

* *

+

*

term1 term2

sum

total

Evaluating expression: 2*(5*3+7*7)
Final value of the expression: 128

Output: Without taskwait the total could be 0!

21 / 23

Data scoping for tasks

● Similar as for sections, with one notable exception:

– Variables of orphaned tasks (not directly in parallel
section) are firstprivate by default!

void task(vector<double> &u) {
 #pragma omp task
 cout << "In orphaned task: " << &u << endl;
}

…

cout << "In main thread: " << &u << endl;
#pragma omp parallel num_threads(1)
{
 #pragma omp task
 cout << "In explicit task: " << &u << endl;
}

#pragma omp parallel num_threads(1)
{
 #pragma omp single
 task(u);
}

Output:
In main thread: 0x7fff3fd79650
In explicit task: 0x7fff3fd79650
In orphaned task: 0xc14b50

Can be corrected by using shared(u)

22 / 23

Example

● Implement parallel merge sort using tasks

– Use the provided skeleton MergeSort.cpp

image source

https://en.wikipedia.org/wiki/Merge_sort

23 / 23

References

● http://jakascorner.com/blog/2016/06/omp-for-scheduling.html

● https://en.wikipedia.org/wiki/Merge_sort

http://jakascorner.com/blog/2016/06/omp-for-scheduling.html
https://en.wikipedia.org/wiki/Merge_sort

	Snímek 1
	Snímek 2
	Snímek 3
	Snímek 4
	Snímek 5
	Snímek 6
	Snímek 7
	Snímek 8
	Snímek 9
	Snímek 10
	Snímek 11
	Snímek 12
	Snímek 13
	Snímek 14
	Snímek 15
	Snímek 16
	Snímek 17
	Snímek 18
	Snímek 19
	Snímek 20
	Snímek 21
	Snímek 22
	Snímek 23

