M’-’*&F@Mﬁm o)

FAKULTA .
ELEKTROTECHNICKA
CVUT V PRAZE

Introduction to OpenMP

OpenMP (Open Multi-Processing) provides constructs for parallel programming in C+
+, C, and Fortran on Linux, MacOS, and Windows.

A sequential code is transformed to a parallel one by adding compiler pragmas, so if
a compiler does not support OpenMP, the pragmas are skipped and the output is a
seqguential program.

- OpenMP manual: 1.3 Execution model: more detailed (first paragraph)

OpenMP is widely used in software like Blender, fftw, OpenBLAS (MATLAB, Python
libraries — e.g. NumPy or Scipy, R), and eigen to accelerate computations.

It is easy to use!

https://www.openmp.org/spec-html/5.0/openmpse3.html

Execution model

OpenMP program starts with a single thread only (master thread).

It is executed sequentially until it reaches a parallel region defined by OpenMP
pragma.

At the entry of parallel region, new team of threads is created. Each thread
executes concurrently with the others sharing the work.

parallel regions

master

] o %

w i “ ”
% L1 U I"
B

s
—*.—.

nested parallel region

sequential part sequential part sequential part

Using OpenMP

* |nclude header file

#include <omp.h>

 Cmake (multi-platform)
find package(OpenMP)
if (OPENMP_FOUND)
set (CMAKE_C_FLAGS "${CMAKE_C_FLAGS} ${OpenMP_C_FLAGS}")
set (CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${OpenMP_CXX_FLAGS}")

set (CMAKE_EXE_LINKER FLAGS "${CMAKE_EXE_LINKER FLAGS} ${OpenMP_EXE_LINKER FLAGS}")
endif()

* gcC

g++ -fopenmp ...

Hello world! In OpenMP...

lab codes/src/HelloWorld. cpp

 Demonstrated task:
1) Vector multiplied by scalar value
2) Sum of vector components

Runtime Library Routines

omp_get num_procs()

Returns the number of processors that are
available to the program

omp_get num_threads()

Returns the number of threads that are currently in
the team executing the parallel region from which it
Is called

omp _get thread num()
Returns the calling thread index within the current

team

#pragma omp parallel

Creates team of threads and

/ starts executing them in parallel

#pragma omp parallel
{

cout << "This is thread " << omp get thread num() << " speaking" << endl;

}<

cout << "Parallel block finished" << endl;

Output:

This is thread 0 speaking
This is thread 3 speaking
This is thread 2 speaking
This is thread 1 speaking
Parallel block finished

Waits for threads to finish (barrier)

#pragma omp parallel

Creates team of 8 threads

#pragma omp parallel num threads(8)

{
cout << "This is thread " << omp get thread num() << " speaking" << endl;

}

Output:

This is thread 0 speaking
This is thread 3 speaking
This is thread 6 speaking
This is thread 1 speaking
This is thread 2 speaking
This is thread 7 speaking
This is thread 4 speaking
This is thread 5 speaking

#pragma omp single

Block performed by single thread

#pragma omp parallel

{
cout << "This is thread " << omp get thread num() << " speaking" << endl;
#pragma omp single
{
cout << "The single part was done by thread " << omp get thread num() << endl;
}
}
Output:

This is thread 3 speaking
The single part was done by thread 3
This is thread 1 speaking
This is thread 2 speaking
This is thread 0 speaking

#pragma omp parallel
{

#pragma omp sections
{ Di— Each section is performed by only one thread
#pragma omp section

{
cout << "section 1, first: " << omp get thread num() << endl;
cout << "section 1, second: " << omp get thread num() << endl;
}
#pragma omp section
{
cout << "section 2, first: " << omp get thread num() << endl;
cout << "section 2, second: " << omp get thread num() << endl;
}

} } Waits for threads to finish (barrier).
Can be changed by

#pragma omp sections nowait

Output:

section 2, first: O
section 2, second: O
section 1, first: 1
section 1, second: 1

#pragma omp critical

int sum;
#pragma omp parallel Critical region, performed by all threads
{ o <« butnotat once (mutual exclusion)
#pragma omp critical
{

cout << "Thread " << omp get thread num() << " in critical region" << endl;
sum += omp get thread num();

}

cout << sum << endl;

Output:

Thread 1 in critical region
Thread 0 in critical region
Thread 3 in critical region
Thread 2 in critical region
6

#pragma omp barrier

Threads in team wait on the barrier

#pragma omp parallel

{
cout << "Before barrij thread " << omp get thread num() << endl;
#pragma omp barrier
cout << "After barrier thread " << omp get thread num() << endl;
}
Output:

Before barrier thread 0
Before barrier thread 3
Before barrier thread 1
Before barrier thread 2
After barrier thread 1
After barrier thread 2
After barrier thread 0
After barrier thread 3

* Write a function for computing vector normalization. Split

the vector into two halves, each one is processed a
separate section.

— You may use skeleton
lab codes/src/VectorNormalization.cpp

To remind normalization:

||ﬁ:|| — ,V"'rg,[% _|_,5[%_|_ _|_ﬂ;?.“ ﬁ:f—:]Rn

l_._ﬁ_(ﬂllﬂﬁl Lﬂn)
&l \llall &t lall

Sequential summing of matrix rows

vector<vector<double>> matrix;: 3 1 2
4 5 3
1 6 5
vector<double> rowSums(matrix.size(), 0); 6 «-—— 3 1 2
for (int i = 0; 1 < matrix.size(); i++) {
for (int j = 0; j < matrix[i].size(); j++) { 127 €« 4 5 3

rowSums[i] += matrix[i][j];

} 27« 1 6 5

double sum = 0.0;
for (int i = 0; 1 < matrix.size(); i++) {
sum += rowSums[1i];

} 12

(o))

12

Parallel summing of matrix rows

#pragma omp parallel
{ /

#pragma omp for

Each iteration of for loop performed
by a thread (in parallel) from the team

for (int i = 0; 1 < matrix.size(); i++) {
for (int j = 0; j < matrix[i].size(); j++) {
rowSums [i] += matrix[i]1[j];

}

A shorter code...

#pragma omp parallel for

for (int i = 0; 1 < matrix.size(); i++) {
for (int j = 0; j < matrix[i].size(); j++) {

rowSums[i] += matrix[i][j];

}

Question: what happens if you write
the pragma on the inner loop?

If clause

#pragma omp parallel for if(matrix.size() >= 10)
for (int i = 0; 1 < matrix.size(); i++) {
for (int j = 0; j < matrix[i].size(); j++) {
rowSums[i] += matrix[1][]];
}

\

Threads are only created
for large matrices. Small
matrices are summed
sequentially since it does
not pays off to create
threads.

Reduction

* Parallel aggregation of an expression, e.g., a sum

sum = rowSums[Q] + rowSums[1l] + rowSums[2] + ... + rowSums[matrix.size() - 1];
Operators:
+1 *5 ™
& |, &&, |, List of variables:
max, min var, var, ..., var_
double sum = 0.0; ¥ / Useful for doing multiple
#pragma omp parallel for reduction(+:sum) reductions at once

for (int i = 0; 1 < matrix.size(); i++) {
sum += rowSums|[i];
}

Collapse

Collapse for loops into
one for distribution of the
work among threads

matrix.size();
matrix[0].size();

int numRows
int numCols

double sum = 0.0;
#pragma omp parallel for collapse(2) reduction(+:sum)
for (int i = 0; i < numRows; i++) {
for (int j = 0; j < numCols; j++) {
sum += matrix[i][j];
}

Data sharing

int a = 10; = Shared among
int b = 100; = threads
#pragma omp parallel for

_O.

for (int 1 i< 10; i++) {
int c =M
} <

* The sharing can be stated explicitly as a clause

- #pragma omp parallel for private(a, b)

* Variables a and b are private to each thread (without global initialization)

Thread private

- #pragma omp parallel for firstprivate(a, b)

* Variables a and b are private to each thread (with global initialization)

- #pragma omp parallel for shared(a, b)

e Variables a and b are shared among threads

* The default policy can be set to
- #pragma omp parallel for default(shared)

* By default, all the variables outside of the parallel section are shared

- #pragma omp parallel for default(none)

* The programmer must explicitly state the sharing policy of the variables

* Vector normalization using parallel for (reduction, critical
section ...)

 Computation of pi using estimating the value using Monte

Carlo
VRN

\\

Samples from uniform
4| distribution

4-numSamplesInCircle _
totalNumSamples

Derivation: .\. /.

area of the circle _ 7r? _ 1

area of the square — 4r2 ~— 4

m_ no. of points generated inside the circle
4~ total no. of points generated or no. of points generated inside the square

no. of points generated inside the circle
no. of points generated inside the square

	Snímek 1
	Snímek 2
	Snímek 3
	Snímek 4
	Snímek 5
	Snímek 6
	Snímek 7
	Snímek 8
	Snímek 9
	Snímek 10
	Snímek 11
	Snímek 12
	Snímek 13
	Snímek 14
	Snímek 15
	Snímek 16
	Snímek 17
	Snímek 18
	Snímek 19
	Snímek 20

