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Introduction to OpenMP

OpenMP (Open Multi-Processing) provides constructs for parallel programming in C+
+, C, and Fortran on Linux, MacOS, and Windows.

A sequential code is transformed to a parallel one by adding compiler pragmas, so if
a compiler does not support OpenMP, the pragmas are skipped and the output is a
seqguential program.

- OpenMP manual: 1.3 Execution model: more detailed (first paragraph)

OpenMP is widely used in software like Blender, fftw, OpenBLAS (MATLAB, Python
libraries — e.g. NumPy or Scipy, R), and eigen to accelerate computations.

It is easy to use!



https://www.openmp.org/spec-html/5.0/openmpse3.html

Execution model

OpenMP program starts with a single thread only (master thread).

It is executed sequentially until it reaches a parallel region defined by OpenMP
pragma.

At the entry of parallel region, new team of threads is created. Each thread
executes concurrently with the others sharing the work.
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Using OpenMP

* |nclude header file

#include <omp.h>

 Cmake (multi-platform)
find package(OpenMP)
if (OPENMP_FOUND)
set (CMAKE_C_FLAGS "${CMAKE_C_FLAGS} ${OpenMP_C_FLAGS}")
set (CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${OpenMP_CXX_FLAGS}")

set (CMAKE_EXE_LINKER FLAGS "${CMAKE_EXE_LINKER FLAGS} ${OpenMP_EXE_LINKER FLAGS}")
endif()

* gcC

g++ -fopenmp ...




Hello world! In OpenMP...

lab codes/src/HelloWorld. cpp

 Demonstrated task:
1) Vector multiplied by scalar value
2) Sum of vector components




Runtime Library Routines

omp_get num_procs()

Returns the number of processors that are
available to the program

omp_get num_threads()

Returns the number of threads that are currently in
the team executing the parallel region from which it
Is called

omp _get thread num()
Returns the calling thread index within the current

team




#pragma omp parallel

Creates team of threads and

/ starts executing them in parallel

#pragma omp parallel
{

cout << "This is thread " << omp get thread num() << " speaking" << endl;

}< 

cout << "Parallel block finished" << endl;

Output:

This is thread 0 speaking
This is thread 3 speaking
This is thread 2 speaking
This is thread 1 speaking
Parallel block finished

Waits for threads to finish (barrier)




#pragma omp parallel

Creates team of 8 threads

#pragma omp parallel num threads(8)

{
cout << "This is thread " << omp get thread num() << " speaking" << endl;

}

Output:

This is thread 0 speaking
This is thread 3 speaking
This is thread 6 speaking
This is thread 1 speaking
This is thread 2 speaking
This is thread 7 speaking
This is thread 4 speaking
This is thread 5 speaking




#pragma omp single

Block performed by single thread

#pragma omp parallel

{
cout << "This is thread " << omp get thread num() << " speaking" << endl;
#pragma omp single
{
cout << "The single part was done by thread " << omp get thread num() << endl;
}
}
Output:

This is thread 3 speaking
The single part was done by thread 3
This is thread 1 speaking
This is thread 2 speaking
This is thread 0 speaking




#pragma omp parallel
{

#pragma omp sections
{ Di— Each section is performed by only one thread
#pragma omp section

{
cout << "section 1, first: " << omp get thread num() << endl;
cout << "section 1, second: " << omp get thread num() << endl;
}
#pragma omp section
{
cout << "section 2, first: " << omp get thread num() << endl;
cout << "section 2, second: " << omp get thread num() << endl;
}

} } Waits for threads to finish (barrier).
Can be changed by

#pragma omp sections nowait

Output:

section 2, first: O
section 2, second: O
section 1, first: 1
section 1, second: 1




#pragma omp critical

int sum;
#pragma omp parallel Critical region, performed by all threads
{ o <« butnotat once (mutual exclusion)
#pragma omp critical
{

cout << "Thread " << omp get thread num() << " in critical region" << endl;
sum += omp get thread num();

}

cout << sum << endl;

Output:

Thread 1 in critical region
Thread 0 in critical region
Thread 3 in critical region
Thread 2 in critical region
6




#pragma omp barrier

Threads in team wait on the barrier

#pragma omp parallel

{
cout << "Before barrij thread " << omp get thread num() << endl;
#pragma omp barrier
cout << "After barrier thread " << omp get thread num() << endl;
}
Output:

Before barrier thread 0
Before barrier thread 3
Before barrier thread 1
Before barrier thread 2
After barrier thread 1
After barrier thread 2
After barrier thread 0
After barrier thread 3




* Write a function for computing vector normalization. Split

the vector into two halves, each one is processed a
separate section.

— You may use skeleton
lab codes/src/VectorNormalization.cpp

To remind normalization:
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Sequential summing of matrix rows

vector<vector<double>> matrix;: 3 1 2
4 5 3
1 6 5
vector<double> rowSums(matrix.size(), 0); 6 «-—— 3 1 2
for (int i = 0; 1 < matrix.size(); i++) {
for (int j = 0; j < matrix[i].size(); j++) { 127 €« 4 5 3

rowSums[i] += matrix[i][j];

} 27« 1 6 5

double sum = 0.0;
for (int i = 0; 1 < matrix.size(); i++) {
sum += rowSums[1i];

} 12

(o))
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Parallel summing of matrix rows

#pragma omp parallel
{ /

#pragma omp for

Each iteration of for loop performed
by a thread (in parallel) from the team

for (int i = 0; 1 < matrix.size(); i++) {
for (int j = 0; j < matrix[i].size(); j++) {
rowSums [i] += matrix[i]1[j];

}

A shorter code...

#pragma omp parallel for

for (int i = 0; 1 < matrix.size(); i++) {
for (int j = 0; j < matrix[i].size(); j++) {

rowSums[i] += matrix[i][j];

}

Question: what happens if you write
the pragma on the inner loop?




If clause

#pragma omp parallel for if(matrix.size() >= 10)
for (int i = 0; 1 < matrix.size(); i++) {
for (int j = 0; j < matrix[i].size(); j++) {
rowSums[i] += matrix[1][]];
}

\

Threads are only created
for large matrices. Small
matrices are summed
sequentially since it does
not pays off to create
threads.




Reduction

* Parallel aggregation of an expression, e.g., a sum

sum = rowSums[Q] + rowSums[1l] + rowSums[2] + ... + rowSums[matrix.size() - 1];
Operators:
+1 *5 ™
& |, &&, |, List of variables:
max, min var, var, ..., var_
double sum = 0.0; ¥ / Useful for doing multiple
#pragma omp parallel for reduction(+:sum) reductions at once

for (int i = 0; 1 < matrix.size(); i++) {
sum += rowSums|[i];
}




Collapse

Collapse for loops into
one for distribution of the
work among threads

matrix.size();
matrix[0].size();

int numRows
int numCols

double sum = 0.0;
#pragma omp parallel for collapse(2) reduction(+:sum)
for (int i = 0; i < numRows; i++) {
for (int j = 0; j < numCols; j++) {
sum += matrix[i][j];
}




Data sharing

int a = 10; = Shared among
int b = 100; = threads
#pragma omp parallel for

_O.

for (int 1 i< 10; i++) {
int c =M
} < 

* The sharing can be stated explicitly as a clause

- #pragma omp parallel for private(a, b)

* Variables a and b are private to each thread (without global initialization)

Thread private

- #pragma omp parallel for firstprivate(a, b)

* Variables a and b are private to each thread (with global initialization)

- #pragma omp parallel for shared(a, b)

e Variables a and b are shared among threads

* The default policy can be set to
- #pragma omp parallel for default(shared)

* By default, all the variables outside of the parallel section are shared

- #pragma omp parallel for default(none)

* The programmer must explicitly state the sharing policy of the variables



* Vector normalization using parallel for (reduction, critical
section ...)

 Computation of pi using estimating the value using Monte

Carlo
VRN

\\

Samples from uniform
4| distribution

4-numSamplesInCircle _
totalNumSamples

Derivation: .\. /.

area of the circle _ 7r? _ 1

area of the square — 4r2 ~— 4

m_ no. of points generated inside the circle
4~ total no. of points generated or no. of points generated inside the square

no. of points generated inside the circle
no. of points generated inside the square
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