
Parallel programming

MPI basics
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● Node independence: each computing node operates 
independently, with its own local memory

● Communication challenges: explicit communication 
mechanisms to exchange data

● Scalability: distribute workloads and manage resources

Distributed memory
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● Each unit has its own memory space
● Explicit communication between units (often through a 

network) is required
– point-to-point communication
– collective communication

● Frequent application: cluster computing

Distributed memory
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● A standard for developing parallel distributed applications
● MPI is supported by many programming languages and 

platforms:
– C, C++, and Fortran

– For JAVA see: Message Passing for Java Express (MPJ Express)

– For .NET see: https://github.com/mpidotnet/MPI.NET

MPI: Message Passing Interface

https://github.com/mpidotnet/MPI.NET
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Communication example
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● All processes run the same program
● Each process is assigned a rank 

(i.e., identification of the process)
● Processes with different ranks can differ in what 

they execute
● Processes communicate by sending and 

receiving messages through a communicator

MPI: Message Passing Interface
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● Use HelloWorld.cpp skeleton

● Write a program that 
– Initializes MPI 
– Each process prints its rank 
– Process with rank 0 prints the total number of 

processes (communicator size)

Example: “Hello, world!”
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● #include <mpi.h>
– Include the header file with MPI functions

● int MPI_Init(int *argc, char ***argv)
– Initializes MPI runtime environment

● int MPI_Finalize()
– Terminates MPI execution environment

● int MPI_Comm_size(MPI_Comm comm, int *size)
– Queries the size of the group associated with the communicator

– MPI_COMM_WORLD: default communicator grouping all the processes

● int MPI_Comm_rank(MPI_Comm comm, int *rank)
– Queries the rank (identifier) of the process in the communicator

Basic MPI operations
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cmake_minimum_required(VERSION 3.5)
project(MyProject)

find_package(MPI)
include_directories(${MPI_INCLUDE_PATH})

add_executable(Program Program.cpp)
target_compile_options(Program PRIVATE ${MPI_CXX_COMPILE_FLAGS})
target_link_libraries(Program ${MPI_CXX_LIBRARIES} ${MPI_CXX_LINK_FLAGS})

● CLion setup (use whereis command to locate paths in 
your operating system)

-DCMAKE_BUILD_TYPE=DEBUG
-DMPI_CXX_COMPILER=/usr/bin/mpicxx
-DMPI_C_COMPILER=/usr/bin/mpicc
-DMPIEXEC_EXECUTABLE=/usr/bin/mpiexec

Compilation - CMake



10 / 26 

● mpiexec -np 4 -f hostfile PROGRAM ARGS
– np – number of used processes

– hostfile – file with a list of hosts on which to launch MPI 
processes (for cluster computing)

– PROGRAM – program to run

– ARGS – arguments for the program

● This will run PROGRAM using 4 processes of the cluster

● All nodes run the same program

MinGW setup:

– To be able to reach and run mpiexec program from the Windows Command Prompt 
(PowerShell), it is necessary to install a library from this link

Running MPI programs

https://www.microsoft.com/en-US/download/details.aspx?id=105289
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● int MPI_Send(const void *buf, 
             int count,
             MPI_Datatype datatype, 
             int dest, 
             int tag, 
             MPI_Comm comm)

● buf -  buffer that contains the data elements to be sent
● count - number of elements to be sent
● datatype - data type of elements
● dest - rank of the target process
● tag - message tag which can be used by the receiver to distinguish 

between different messages from the same sender
● comm - communicator used for the communication

Send a message

Blocking variant. For the 
non-blocking version, 
wait for a future lab.
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● int MPI_Recv(void *buf,
             int count, 
             MPI_Datatype datatype,
             int source, 
             int tag,
             MPI_Comm comm,
             MPI_Status *status)

● Same as before. New arguments:
– count – maximal number of elements to be received 
– source – rank of the source process
– status 

● data structure that contains information (rank of the sender, tag of the message, 
actual number of received elements) about the message that was received

● can be used by functions such as MPI_Get_count (returns the number of 
elements in the message)

● If not needed, MPI_STATUS_IGNORE can be used instead
● Each MPI_Send must be matched with a corresponding MPI_Recv
● Messages are delivered in the order in which they have been sent

Receive a message
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Datatypes in MPI
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● int MPI_Sendrecv(const void *sendbuf,
                 int sendcount, 
                 MPI_Datatype sendtype,
                 int dest, 
                 int sendtag, 
                 void *recvbuf, 
                 int recvcount,
                 MPI_Datatype recvtype, 
                 int source, 
                 int recvtag,
                 MPI_Comm comm, 
                 MPI_Status *status)

● Parameters: Combination of parameters for Send and Receive
● Performs send and receive at the same time
● Useful for data exchange and ring communication:

Simultaneous Send and Receive
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● Use SendAndReceive.cpp skeleton

● Write a program that
– sends short message “IDDQD” from one process to 

another one 
– receiving process prints the result

Example: “Send me a secret code!”
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● Communication between all the processes inside a 
communicator group

● Examples of collective communication:
– spread common data to all processes
– gather results from many processes
– etc.

● MPI provides several functions implementing collective 
communication patterns

● All these operations have:
– A blocking version
– A non-blocking version

Collective communication
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● int MPI_Bcast(void *buf,
              int count,
              MPI_Datatype datatype, 
              int root,
              MPI_Comm comm)

● The simplest communication: one process sends a piece of data to all 
other processes

● Parameters:

– root – rank of the process that provides data (all others receive 
it)

Broadcast message
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● int MPI_Barrier(MPI_Comm comm)

● Synchronization point among processes.
– All processes must reach a point in their code before they 

can all begin executing again

Barrier synchronization
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● int MPI_Scatter(const void *sendbuf, 
                int sendcount, 
                MPI_Datatype sendtype,
                void *recvbuf, 
                int recvcount, 
                MPI_Datatype recvtype, 
                int root,
                MPI_Comm comm)

● Sends personalized data from one root process to all other processes in a communicator group 

● The primary difference between MPI_Bcast and MPI_Scatter is that MPI_Bcast sends the 
same piece of data to all processes while MPI_Scatter sends chunks of an array to different 
processes

● Parameters:
– sendcount - dictates how many elements of a sendtype will be sent to each process. 

Scatter operation
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● int MPI_Gather(const void *sendbuf, 
               int sendcount, 
               MPI_Datatype sendtype,
               void *recvbuf, 
               int recvcount, 
               MPI_Datatype recvtype, 
               int root,
               MPI_Comm comm)

● MPI_Gather is the inverse of MPI_Scatter

● MPI_Gather takes elements from many processes and gathers them to 
one single root process (ordered by rank)

Gather operation
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● int MPI_Reduce(const void *sendbuf, 
void *recvbuf, 
int count,
MPI_Datatype datatype, 
MPI_Op op, 
int root,
MPI_Comm comm)

● Takes an array of input elements on each process and returns an array of 
output elements to the root process (similarly to Gather)

● The output elements contain the reduced result.

Reduce operation
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Operations for reduction
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● Works exactly like the basic operation followed by broadcasting (everyone has the same result 
at the end)

● Allgather

– int MPI_Allgather(const void *sendbuf, int sendcount, 
       MPI_Datatype sendtype, void *recvbuf, 
       int recvcount, MPI_Datatype recvtype, MPI_Comm comm)

● Allreduce

– int MPI_Allreduce(const void *sendbuf, void *recvbuf, 
        int count, MPI_Datatype datatype, MPI_Op op, 
        MPI_Comm comm)

All-versions of operations
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● int MPI_Alltoall(const void *sendbuf, 
                 int sendcount, 
                 MPI_Datatype sendtype, 
                 void *recvbuf, 
                 int recvcount, 
                 MPI_Datatype recvtype, 
                 MPI_Comm comm)

● Each process sends personalized data to all other processes

● Total exchange of information 

All-to-All communication - Gossiping
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● Use VectorNormalization.cpp skeleton

● Compute vector normalization using MPI:
– Root process generates random vector, splits it into 

chunks and distributes the corresponding chunks to 
processes

– Each process works with its chunk
– The normalized vector is gathered in the root 

process

Example: Vector normalization
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Visualization of Example 2
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