
Parallel programming

MPI basics

2 / 26

● Node independence: each computing node operates
independently, with its own local memory

● Communication challenges: explicit communication
mechanisms to exchange data

● Scalability: distribute workloads and manage resources

Distributed memory

3 / 26

● Each unit has its own memory space
● Explicit communication between units (often through a

network) is required
– point-to-point communication
– collective communication

● Frequent application: cluster computing

Distributed memory

4 / 26

● A standard for developing parallel distributed applications
● MPI is supported by many programming languages and

platforms:
– C, C++, and Fortran

– For JAVA see: Message Passing for Java Express (MPJ Express)

– For .NET see: https://github.com/mpidotnet/MPI.NET

MPI: Message Passing Interface

https://github.com/mpidotnet/MPI.NET

5 / 26

Communication example

6 / 26

● All processes run the same program
● Each process is assigned a rank

(i.e., identification of the process)
● Processes with different ranks can differ in what

they execute
● Processes communicate by sending and

receiving messages through a communicator

MPI: Message Passing Interface

7 / 26

● Use HelloWorld.cpp skeleton

● Write a program that
– Initializes MPI
– Each process prints its rank
– Process with rank 0 prints the total number of

processes (communicator size)

Example: “Hello, world!”

8 / 26

● #include <mpi.h>
– Include the header file with MPI functions

● int MPI_Init(int *argc, char ***argv)
– Initializes MPI runtime environment

● int MPI_Finalize()
– Terminates MPI execution environment

● int MPI_Comm_size(MPI_Comm comm, int *size)
– Queries the size of the group associated with the communicator

– MPI_COMM_WORLD: default communicator grouping all the processes

● int MPI_Comm_rank(MPI_Comm comm, int *rank)
– Queries the rank (identifier) of the process in the communicator

Basic MPI operations

9 / 26

cmake_minimum_required(VERSION 3.5)
project(MyProject)

find_package(MPI)
include_directories(${MPI_INCLUDE_PATH})

add_executable(Program Program.cpp)
target_compile_options(Program PRIVATE ${MPI_CXX_COMPILE_FLAGS})
target_link_libraries(Program ${MPI_CXX_LIBRARIES} ${MPI_CXX_LINK_FLAGS})

● CLion setup (use whereis command to locate paths in
your operating system)

-DCMAKE_BUILD_TYPE=DEBUG
-DMPI_CXX_COMPILER=/usr/bin/mpicxx
-DMPI_C_COMPILER=/usr/bin/mpicc
-DMPIEXEC_EXECUTABLE=/usr/bin/mpiexec

Compilation - CMake

10 / 26

● mpiexec -np 4 -f hostfile PROGRAM ARGS
– np – number of used processes

– hostfile – file with a list of hosts on which to launch MPI
processes (for cluster computing)

– PROGRAM – program to run

– ARGS – arguments for the program

● This will run PROGRAM using 4 processes of the cluster

● All nodes run the same program

MinGW setup:

– To be able to reach and run mpiexec program from the Windows Command Prompt
(PowerShell), it is necessary to install a library from this link

Running MPI programs

https://www.microsoft.com/en-US/download/details.aspx?id=105289

11 / 26

● int MPI_Send(const void *buf,
 int count,
 MPI_Datatype datatype,
 int dest,
 int tag,
 MPI_Comm comm)

● buf - buffer that contains the data elements to be sent
● count - number of elements to be sent
● datatype - data type of elements
● dest - rank of the target process
● tag - message tag which can be used by the receiver to distinguish

between different messages from the same sender
● comm - communicator used for the communication

Send a message

Blocking variant. For the
non-blocking version,
wait for a future lab.

12 / 26

● int MPI_Recv(void *buf,
 int count,
 MPI_Datatype datatype,
 int source,
 int tag,
 MPI_Comm comm,
 MPI_Status *status)

● Same as before. New arguments:
– count – maximal number of elements to be received
– source – rank of the source process
– status

● data structure that contains information (rank of the sender, tag of the message,
actual number of received elements) about the message that was received

● can be used by functions such as MPI_Get_count (returns the number of
elements in the message)

● If not needed, MPI_STATUS_IGNORE can be used instead
● Each MPI_Send must be matched with a corresponding MPI_Recv
● Messages are delivered in the order in which they have been sent

Receive a message

13 / 26

Datatypes in MPI

14 / 26

● int MPI_Sendrecv(const void *sendbuf,
 int sendcount,
 MPI_Datatype sendtype,
 int dest,
 int sendtag,
 void *recvbuf,
 int recvcount,
 MPI_Datatype recvtype,
 int source,
 int recvtag,
 MPI_Comm comm,
 MPI_Status *status)

● Parameters: Combination of parameters for Send and Receive
● Performs send and receive at the same time
● Useful for data exchange and ring communication:

Simultaneous Send and Receive

15 / 26

● Use SendAndReceive.cpp skeleton

● Write a program that
– sends short message “IDDQD” from one process to

another one
– receiving process prints the result

Example: “Send me a secret code!”

16 / 26

● Communication between all the processes inside a
communicator group

● Examples of collective communication:
– spread common data to all processes
– gather results from many processes
– etc.

● MPI provides several functions implementing collective
communication patterns

● All these operations have:
– A blocking version
– A non-blocking version

Collective communication

17 / 26

● int MPI_Bcast(void *buf,
 int count,
 MPI_Datatype datatype,
 int root,
 MPI_Comm comm)

● The simplest communication: one process sends a piece of data to all
other processes

● Parameters:

– root – rank of the process that provides data (all others receive
it)

Broadcast message

18 / 26

● int MPI_Barrier(MPI_Comm comm)

● Synchronization point among processes.
– All processes must reach a point in their code before they

can all begin executing again

Barrier synchronization

19 / 26

● int MPI_Scatter(const void *sendbuf,
 int sendcount,
 MPI_Datatype sendtype,
 void *recvbuf,
 int recvcount,
 MPI_Datatype recvtype,
 int root,
 MPI_Comm comm)

● Sends personalized data from one root process to all other processes in a communicator group

● The primary difference between MPI_Bcast and MPI_Scatter is that MPI_Bcast sends the
same piece of data to all processes while MPI_Scatter sends chunks of an array to different
processes

● Parameters:
– sendcount - dictates how many elements of a sendtype will be sent to each process.

Scatter operation

20 / 26

● int MPI_Gather(const void *sendbuf,
 int sendcount,
 MPI_Datatype sendtype,
 void *recvbuf,
 int recvcount,
 MPI_Datatype recvtype,
 int root,
 MPI_Comm comm)

● MPI_Gather is the inverse of MPI_Scatter

● MPI_Gather takes elements from many processes and gathers them to
one single root process (ordered by rank)

Gather operation

21 / 26

● int MPI_Reduce(const void *sendbuf,
void *recvbuf,
int count,
MPI_Datatype datatype,
MPI_Op op,
int root,
MPI_Comm comm)

● Takes an array of input elements on each process and returns an array of
output elements to the root process (similarly to Gather)

● The output elements contain the reduced result.

Reduce operation

22 / 26

Operations for reduction

23 / 26

● Works exactly like the basic operation followed by broadcasting (everyone has the same result
at the end)

● Allgather

– int MPI_Allgather(const void *sendbuf, int sendcount,
 MPI_Datatype sendtype, void *recvbuf,
 int recvcount, MPI_Datatype recvtype, MPI_Comm comm)

● Allreduce

– int MPI_Allreduce(const void *sendbuf, void *recvbuf,
 int count, MPI_Datatype datatype, MPI_Op op,
 MPI_Comm comm)

All-versions of operations

24 / 26

● int MPI_Alltoall(const void *sendbuf,
 int sendcount,
 MPI_Datatype sendtype,
 void *recvbuf,
 int recvcount,
 MPI_Datatype recvtype,
 MPI_Comm comm)

● Each process sends personalized data to all other processes

● Total exchange of information

All-to-All communication - Gossiping

25 / 26

● Use VectorNormalization.cpp skeleton

● Compute vector normalization using MPI:
– Root process generates random vector, splits it into

chunks and distributes the corresponding chunks to
processes

– Each process works with its chunk
– The normalized vector is gathered in the root

process

Example: Vector normalization

26 / 26

Visualization of Example 2

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

