
Parallel programming

Introduction
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Why should you care about it?

● Sometimes you want to obtain results faster
– an algorithm with time-consuming computations
– a large amount of data

Applications: scientific computing (simulations, 
calculations), big data computing (faster 
processing, databases), machine learning,
deep learning

● Sometimes you have limited time to fulfill a task
– sequential execution is too slow 
– real-time processing

Benefit: some general principles apply to thinking about the 
architecture of separate programs for related tasks
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● Parallel computing is a dominant player in scientific and cluster 
computing. Why?

● Moore’s law (number of transistors doubles about every 2 years; for 
the same price, price per power halving) is reaching its limits

● Increase in transistor density is limited
● Memory access time has not been reduced at a rate comparable with 

processing speed

Why should you care about it?
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Why should you care about it?

● How to get out of this trap?
– The most promising approach is to have multiple cores 

on a single processor
– The number of cores is increasing, speed per core is 

improving more slowly
– Today's desktop computers (2025)

Intel Core Ultra 9 285 - 24 cores (16 efficient, 8 performance), 24 threads, 2.5 GHz performance, 
1.9 GHz efficient, TDP 182W, Boost 5.6 GHz.
AMD Ryzen 9 9950X3D - 16 cores, 32 threads, 4.3GHz, TDP 170W, Boost 5.7 GHz

– Parallel computing can be found in many devices today:
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● Yes, the compiler can help you, but without your guidance, 
it is not able to make it all the way to a successful result.
– Parallel programs often look very different than sequential ones

– An efficient parallel implementation of a serial program may not be 
obtained by simply parallelizing each step

– Rather, the best parallelization may be obtained by stepping back 
and devising an entirely new algorithm

– Instruction level parallelization

OK; however, it should be a task for the compiler 
and not for me!!!
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What is the aim of labs?

● To get a feel for parallel programming

1) Understand what makes parallelization complicated

2) Which problems can occur during parallelization

3) What can be a bottleneck

4) How to think about algorithms from the parallelization point of 
view

Familiar terms: race condition, false sharing, synchronization, deadlocks, communication 
overhead, work imbalance, idling, alternative algorithm design vs. sequential version

● To get basic skills in common parallel programming frameworks

1) for multi-core processors

2) for computer clusters

3) for GPU (nice opportunity to play with)
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Seminar topics

● OpenMP – for multi-core processors, an easy way to parallelize 
originally sequential code, UMA concept

● MPI – for computer clusters, concept of units communicating 
through messages, NUMA concept

● Numba – computation on GPU

● Theoretical seminars – help you prepare for the exam
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Basic terminology

● Processor: The physical chip that contains one 
or more cores.

● Core: A hardware execution unit inside the 
processor that can execute instructions 
independently.

● Thread: An execution context within a core, with 
its own program counter and registers, allowing 
a core to execute multiple instruction streams

Core != Thread (Simultaneous Multi-Threading [AMD], Hyper-Threading [Intel])
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Using OpenMP vs MPI

AMD Threadripper – use OpenMP Raspberry Pi stack – use MPI
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Course web

● Course page https://cw.fel.cvut.cz/wiki/courses/pag/start
– Detailed plan of labs, grading

● 5 homework assignments with strict deadlines during the 
semester

● Theoretical test in the 9th lecture (10 points)

● You need to obtain at least 25 points during the semester

HW1 HW2 Report HW3 HW4

7 points 8 points 7 points 11 points 7 points

https://cw.fel.cvut.cz/wiki/courses/pag/start
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Be ethical in homework solutions

● Write your own code
● Do not plagiarise
● Adhere to the university

rules on AI use
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What does this course require?

● Knowledge of C, C++ and basics of Python

● Analytical thinking and being open-minded

● Basic skills with Linux – shell, ssh, etc. (for MetaCentrum)
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Setting up the environment

● Installation during the lab is recommended to detect 
problems

● Be prepared for coding next week

● Small HelloWorld examples are prepared for you to check 
if your environment runs smoothly

● Recommendations follow
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● Linux, Mac OS, Windows

– CMake and g++

– IDE: CLion
● https://download.cvut.cz JetBrains

– Libraries for support of OpenMP and MPI

– Lab and homework skeletons are provided as CMake projects

– See guide in the following slides, depends on your platform
● Windows+Visual Studio? :(

– Use at your own risk

– Do not use MSVC (no support for newer OpenMP)

Preferred developer tools

https://download.cvut.cz/
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1. IDE and codes

● Download and install CLion
– https://download.cvut.cz/jetbrains/, free educational license
– https://www.jetbrains.com/clion/

● Download introduction_helloworlds.zip 
skeleton and unzip it in your file system
– https://cw.fel.cvut.cz/wiki/courses/pag/cviceni

https://download.cvut.cz/jetbrains/
https://www.jetbrains.com/clion/
https://cw.fel.cvut.cz/wiki/courses/pag/cviceni
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2. Managers and libraries installation

● This step varies for each platform!!
● We provide instructions for

– Ubuntu apt manager (linux)
– Windows with MSYS2 distribution manager (MINGW)
– Windows with WSL (Windows Subsystem for Linux)
– MacOs with Homebrew manager

● Keep the variant relevant for you
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2. Ubuntu (linux)

● Install g++ and cmake
>> sudo apt install g++ cmake gdb

● GCC should contain built-in OpenMP support
● Install MPI library 

>> sudo apt install libopenmpi-dev
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2. Windows with MINGW

● Install msys2, see this link

● In the console MSYS2 MINGW32/64 do the following
>> pacman -Syu
>> pacman -Su
>> pacman -S base-devel mingw-w64-x86_64-toolchain
>> pacman -S mingw-w64-x86_64-msmpi

Library detail: https://packages.msys2.org/base/mingw-w64-msmpi

● Add msys2 directories to your PATH environment variable, e.g.,
Depends on your selected installation folder (just default location present) 
C:\msys64
C:\msys64\mingw64\bin

How to add a path to the PATH variable e.g. this guide

https://www.msys2.org/
https://packages.msys2.org/base/mingw-w64-msmpi
https://learn.microsoft.com/en-us/previous-versions/office/developer/sharepoint-2010/ee537574(v=office.14)#to-add-a-path-to-the-path-environment-variable
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2. Windows with WSL

● WSL already installed?

– Check WSL distributions in Powershell

● See with wsl -l -v, Name Ubuntu should be listed and displayed with * before 
name (meaning default distribution)

● To add Ubuntu distribution run: wsl --install - d Ubuntu
● To set Ubuntu as default distribution run: wsl -s Ubuntu

– Ensure access to Ubuntu terminal:

● Directly from Powershell with 
C:\Windows\system32\wsl.exe -d Ubuntu

● Installed Ubuntu terminal as an application in Windows

● As one of possible terminals inside Windows terminal this link

● Pure installation?

– Install WSL, see this link

● In Powershell run: wsl –install
– Install Ubuntu distribution via microsoft store if not already installed, see this link

https://apps.microsoft.com/detail/9n0dx20hk701
https://learn.microsoft.com/en-us/windows/wsl/install#install-wsl-command
https://apps.microsoft.com/store/detail/ubuntu/9PDXGNCFSCZV
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2. Windows with WSL

● Open Ubuntu terminal, initiate system if first run (user access 
setup), then run the following

>> sudo apt update

>> sudo apt install g++ cmake gdb

>> sudo apt install libopenmpi-dev
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2. MacOS

● Install package manager Homebrew (if you don’t have it)

● Install g++ and cmake by Homebrew
>> brew install gcc cmake

● Install OpenMP and MPI
>> brew install libomp open-mpi

● Find the installed gcc and g++ executable. Look for installed 
versions under location /opt/homebrew/bin, there should be 
programs gcc-V and g++-V, where V means your version

– remember the installed version, you will need it later

https://brew.sh/
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3. Open skeletons with CLion

● You need to open the project properly!

● Project should contain cmake and src directories

● CLion will try to load the CMake project, ignore that for 
now, continue to the next step
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4. CLion Create toolchain

● Set up toolchain to build and run from CLion
● Use the variant relevant for you in this step
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4. Ubuntu Toolchains settings

● All should detect automatically
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4. Windows MINGW

● Create MinGW toolchain in CLion, see this link.

● If msys2 is installed in default location, set C:
\msys64\mingw64 as your MinGW Environment path 
(everything else should be detected automatically)

● Set up in CLion Settings -> CMake -> Generator on value 
“MINGW Makefiles”

https://www.jetbrains.com/help/clion/quick-tutorial-on-configuring-clion-on-windows.html#MinGW
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4. Windows MINGW Toolchains settings



27 / 36 

4. Windows MINGW CMake settings
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4. Windows WSL

● Set up WSL in CLion toolchains, see this link
● You can check your settings using screenshots in the 

following slides

https://www.jetbrains.com/help/clion/quick-tutorial-on-configuring-clion-on-windows.html#WSL
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4. Windows WSL Toolchains settings
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4. Windows WSL CMake settings
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4. MacOS

● You should remember the installed gcc and g++ version

● Set C and C++ compilers in CLion: Settings → Build, Execution, 
Deployment →Toolchains → C compiler and C++ compiler 
(Compilers under Homebrew can be detected automatically, if not 
continue)

● Set manually paths to the compilers
E.g. for version 14, specific paths will look like
C compiler: /opt/homebrew/bin/gcc-14
C++ compiler: /opt/homebrew/bin/g++-14
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5. Reload CMake

● Delete generated folder cmake-build-debug 

● Right-click the cmake folder and select Reload 
CMake Project
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6. Check CMake console output

● You should see in the CMake console output:
Found OpenMP: TRUE
Found MPI: TRUE

OPENMP (needed for next week), MPI (there is time to solve issues, used later)
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7. Run OpenMP example

● Select HelloWorldOpenMP
● Build with hammer icon
● Run with play button
● Output should look like

Number of available threads 4 
This is thread 1 speaking 
This is thread 0 speaking 
This is thread 2 speaking 
This is thread 3 speaking 
Parallel block finished 
Value of x: 550 
 
Process finished with exit code 0
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8. Run MPI example with mpiexec

● To run the MPI example, you need to run the compiled 
program with mpiexec utility

● For Windows with MinGW extra installation of mpiexec 
is needed:
– Download MPI SDK containing mpiexec program (download 

msmpisetup.exe installer)

– You can check whether Mpiexec.exe is installed in C:\Program 
Files\MPI\bin

– Check the path listed under the PATH environment variable; if it is not 
found, add the path C:\Program Files\MPI\bin

https://www.microsoft.com/en-us/download/details.aspx?id=105289
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8. Run MPI example with mpiexec

● Select HelloWorldMPI
● Build with hammer icon
● Open console in CLion (For WSL usage you have to 

select Ubuntu console)
● Run with mpiexec

mpiexec -np 4 cmake/cmake-build-debug/HelloWorldMPI.exe (Windows MINGW) 
mpiexec -np 4 cmake/cmake-build-debug/HelloWorldMPI (Windows WSL, Ubuntu, 
MacOS)

● Output should look like
My ranking hello world example: 0
My ranking hello world example: 1
Total number of processes: 4
My ranking hello world example: 3
My ranking hello world example: 2

Process finished with exit code 0
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