
Parallel programming

Introduction



2 / 36 

Why should you care about it?

● Sometimes you want to obtain results faster
– an algorithm with time-consuming computations
– a large amount of data

Applications: scientific computing (simulations, 
calculations), big data computing (faster 
processing, databases), machine learning,
deep learning

● Sometimes you have limited time to fulfill a task
– sequential execution is too slow 
– real-time processing

Benefit: some general principles apply to thinking about the 
architecture of separate programs for related tasks



3 / 36 

● Parallel computing is a dominant player in scientific and cluster 
computing. Why?

● Moore’s law (number of transistors doubles about every 2 years; for 
the same price, price per power halving) is reaching its limits

● Increase in transistor density is limited
● Memory access time has not been reduced at a rate comparable with 

processing speed

Why should you care about it?



4 / 36 

Why should you care about it?

● How to get out of this trap?
– The most promising approach is to have multiple cores 

on a single processor
– The number of cores is increasing, speed per core is 

improving more slowly
– Today's desktop computers (2025)

Intel Core Ultra 9 285 - 24 cores (16 efficient, 8 performance), 24 threads, 2.5 GHz performance, 
1.9 GHz efficient, TDP 182W, Boost 5.6 GHz.
AMD Ryzen 9 9950X3D - 16 cores, 32 threads, 4.3GHz, TDP 170W, Boost 5.7 GHz

– Parallel computing can be found in many devices today:



5 / 36 

● Yes, the compiler can help you, but without your guidance, 
it is not able to make it all the way to a successful result.
– Parallel programs often look very different than sequential ones

– An efficient parallel implementation of a serial program may not be 
obtained by simply parallelizing each step

– Rather, the best parallelization may be obtained by stepping back 
and devising an entirely new algorithm

– Instruction level parallelization

OK; however, it should be a task for the compiler 
and not for me!!!



6 / 36 

What is the aim of labs?

● To get a feel for parallel programming

1) Understand what makes parallelization complicated

2) Which problems can occur during parallelization

3) What can be a bottleneck

4) How to think about algorithms from the parallelization point of 
view

Familiar terms: race condition, false sharing, synchronization, deadlocks, communication 
overhead, work imbalance, idling, alternative algorithm design vs. sequential version

● To get basic skills in common parallel programming frameworks

1) for multi-core processors

2) for computer clusters

3) for GPU (nice opportunity to play with)



7 / 36 

Seminar topics

● OpenMP – for multi-core processors, an easy way to parallelize 
originally sequential code, UMA concept

● MPI – for computer clusters, concept of units communicating 
through messages, NUMA concept

● Numba – computation on GPU

● Theoretical seminars – help you prepare for the exam



8 / 36 

Basic terminology

● Processor: The physical chip that contains one 
or more cores.

● Core: A hardware execution unit inside the 
processor that can execute instructions 
independently.

● Thread: An execution context within a core, with 
its own program counter and registers, allowing 
a core to execute multiple instruction streams

Core != Thread (Simultaneous Multi-Threading [AMD], Hyper-Threading [Intel])



9 / 36 

Using OpenMP vs MPI

AMD Threadripper – use OpenMP Raspberry Pi stack – use MPI



10 / 36 

Course web

● Course page https://cw.fel.cvut.cz/wiki/courses/pag/start
– Detailed plan of labs, grading

● 5 homework assignments with strict deadlines during the 
semester

● Theoretical test in the 9th lecture (10 points)

● You need to obtain at least 25 points during the semester

HW1 HW2 Report HW3 HW4

7 points 8 points 7 points 11 points 7 points

https://cw.fel.cvut.cz/wiki/courses/pag/start


11 / 36 

Be ethical in homework solutions

● Write your own code
● Do not plagiarise
● Adhere to the university

rules on AI use



12 / 36 

What does this course require?

● Knowledge of C, C++ and basics of Python

● Analytical thinking and being open-minded

● Basic skills with Linux – shell, ssh, etc. (for MetaCentrum)



13 / 36 

Setting up the environment

● Installation during the lab is recommended to detect 
problems

● Be prepared for coding next week

● Small HelloWorld examples are prepared for you to check 
if your environment runs smoothly

● Recommendations follow



14 / 36 

● Linux, Mac OS, Windows

– CMake and g++

– IDE: CLion
● https://download.cvut.cz JetBrains

– Libraries for support of OpenMP and MPI

– Lab and homework skeletons are provided as CMake projects

– See guide in the following slides, depends on your platform
● Windows+Visual Studio? :(

– Use at your own risk

– Do not use MSVC (no support for newer OpenMP)

Preferred developer tools

https://download.cvut.cz/


15 / 36 

1. IDE and codes

● Download and install CLion
– https://download.cvut.cz/jetbrains/, free educational license
– https://www.jetbrains.com/clion/

● Download introduction_helloworlds.zip 
skeleton and unzip it in your file system
– https://cw.fel.cvut.cz/wiki/courses/pag/cviceni

https://download.cvut.cz/jetbrains/
https://www.jetbrains.com/clion/
https://cw.fel.cvut.cz/wiki/courses/pag/cviceni


16 / 36 

2. Managers and libraries installation

● This step varies for each platform!!
● We provide instructions for

– Ubuntu apt manager (linux)
– Windows with MSYS2 distribution manager (MINGW)
– Windows with WSL (Windows Subsystem for Linux)
– MacOs with Homebrew manager

● Keep the variant relevant for you



17 / 36 

2. Ubuntu (linux)

● Install g++ and cmake
>> sudo apt install g++ cmake gdb

● GCC should contain built-in OpenMP support
● Install MPI library 

>> sudo apt install libopenmpi-dev



18 / 36 

2. Windows with MINGW

● Install msys2, see this link

● In the console MSYS2 MINGW32/64 do the following
>> pacman -Syu
>> pacman -Su
>> pacman -S base-devel mingw-w64-x86_64-toolchain
>> pacman -S mingw-w64-x86_64-msmpi

Library detail: https://packages.msys2.org/base/mingw-w64-msmpi

● Add msys2 directories to your PATH environment variable, e.g.,
Depends on your selected installation folder (just default location present) 
C:\msys64
C:\msys64\mingw64\bin

How to add a path to the PATH variable e.g. this guide

https://www.msys2.org/
https://packages.msys2.org/base/mingw-w64-msmpi
https://learn.microsoft.com/en-us/previous-versions/office/developer/sharepoint-2010/ee537574(v=office.14)#to-add-a-path-to-the-path-environment-variable


19 / 36 

2. Windows with WSL

● WSL already installed?

– Check WSL distributions in Powershell

● See with wsl -l -v, Name Ubuntu should be listed and displayed with * before 
name (meaning default distribution)

● To add Ubuntu distribution run: wsl --install - d Ubuntu
● To set Ubuntu as default distribution run: wsl -s Ubuntu

– Ensure access to Ubuntu terminal:

● Directly from Powershell with 
C:\Windows\system32\wsl.exe -d Ubuntu

● Installed Ubuntu terminal as an application in Windows

● As one of possible terminals inside Windows terminal this link

● Pure installation?

– Install WSL, see this link

● In Powershell run: wsl –install
– Install Ubuntu distribution via microsoft store if not already installed, see this link

https://apps.microsoft.com/detail/9n0dx20hk701
https://learn.microsoft.com/en-us/windows/wsl/install#install-wsl-command
https://apps.microsoft.com/store/detail/ubuntu/9PDXGNCFSCZV


20 / 36 

2. Windows with WSL

● Open Ubuntu terminal, initiate system if first run (user access 
setup), then run the following

>> sudo apt update

>> sudo apt install g++ cmake gdb

>> sudo apt install libopenmpi-dev



21 / 36 

2. MacOS

● Install package manager Homebrew (if you don’t have it)

● Install g++ and cmake by Homebrew
>> brew install gcc cmake

● Install OpenMP and MPI
>> brew install libomp open-mpi

● Find the installed gcc and g++ executable. Look for installed 
versions under location /opt/homebrew/bin, there should be 
programs gcc-V and g++-V, where V means your version

– remember the installed version, you will need it later

https://brew.sh/


22 / 36 

3. Open skeletons with CLion

● You need to open the project properly!

● Project should contain cmake and src directories

● CLion will try to load the CMake project, ignore that for 
now, continue to the next step



23 / 36 

4. CLion Create toolchain

● Set up toolchain to build and run from CLion
● Use the variant relevant for you in this step



24 / 36 

4. Ubuntu Toolchains settings

● All should detect automatically



25 / 36 

4. Windows MINGW

● Create MinGW toolchain in CLion, see this link.

● If msys2 is installed in default location, set C:
\msys64\mingw64 as your MinGW Environment path 
(everything else should be detected automatically)

● Set up in CLion Settings -> CMake -> Generator on value 
“MINGW Makefiles”

https://www.jetbrains.com/help/clion/quick-tutorial-on-configuring-clion-on-windows.html#MinGW


26 / 36 

4. Windows MINGW Toolchains settings



27 / 36 

4. Windows MINGW CMake settings



28 / 36 

4. Windows WSL

● Set up WSL in CLion toolchains, see this link
● You can check your settings using screenshots in the 

following slides

https://www.jetbrains.com/help/clion/quick-tutorial-on-configuring-clion-on-windows.html#WSL


29 / 36 

4. Windows WSL Toolchains settings



30 / 36 

4. Windows WSL CMake settings



31 / 36 

4. MacOS

● You should remember the installed gcc and g++ version

● Set C and C++ compilers in CLion: Settings → Build, Execution, 
Deployment →Toolchains → C compiler and C++ compiler 
(Compilers under Homebrew can be detected automatically, if not 
continue)

● Set manually paths to the compilers
E.g. for version 14, specific paths will look like
C compiler: /opt/homebrew/bin/gcc-14
C++ compiler: /opt/homebrew/bin/g++-14



32 / 36 

5. Reload CMake

● Delete generated folder cmake-build-debug 

● Right-click the cmake folder and select Reload 
CMake Project



33 / 36 

6. Check CMake console output

● You should see in the CMake console output:
Found OpenMP: TRUE
Found MPI: TRUE

OPENMP (needed for next week), MPI (there is time to solve issues, used later)



34 / 36 

7. Run OpenMP example

● Select HelloWorldOpenMP
● Build with hammer icon
● Run with play button
● Output should look like

Number of available threads 4 
This is thread 1 speaking 
This is thread 0 speaking 
This is thread 2 speaking 
This is thread 3 speaking 
Parallel block finished 
Value of x: 550 
 
Process finished with exit code 0



35 / 36 

8. Run MPI example with mpiexec

● To run the MPI example, you need to run the compiled 
program with mpiexec utility

● For Windows with MinGW extra installation of mpiexec 
is needed:
– Download MPI SDK containing mpiexec program (download 

msmpisetup.exe installer)

– You can check whether Mpiexec.exe is installed in C:\Program 
Files\MPI\bin

– Check the path listed under the PATH environment variable; if it is not 
found, add the path C:\Program Files\MPI\bin

https://www.microsoft.com/en-us/download/details.aspx?id=105289


36 / 36 

8. Run MPI example with mpiexec

● Select HelloWorldMPI
● Build with hammer icon
● Open console in CLion (For WSL usage you have to 

select Ubuntu console)
● Run with mpiexec

mpiexec -np 4 cmake/cmake-build-debug/HelloWorldMPI.exe (Windows MINGW) 
mpiexec -np 4 cmake/cmake-build-debug/HelloWorldMPI (Windows WSL, Ubuntu, 
MacOS)

● Output should look like
My ranking hello world example: 0
My ranking hello world example: 1
Total number of processes: 4
My ranking hello world example: 3
My ranking hello world example: 2

Process finished with exit code 0


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

