Introduction

FAKULTA .
ELEKTROTECHNICKA
CVUT V PRAZE

 Sometimes you want to obtain results faster
— an algorithm with time-consuming computations
- alarge amount of data

Applications: scientific computing (simulations,
calculations), big data computing (faster
processing, databases), machine learning,
deep learning

 Sometimes you have limited time to fulfill a task
- seguential execution Is too slow
- real-time processing

Benefit: some general principles apply to thinking about the
architecture of separate programs for related tasks

Why should you care about It?

* Parallel computing is a dominant player in scientific and cluster
computing. Why?

 Moore’s law (number of transistors doubles about every 2 years; for
the same price, price per power halving) is reaching its limits

* Increase In transistor density is limited

* Memory access time has not been reduced at a rate comparable with
processing speed

Moore s Law: The number of transistors on microchips doubles every tuo years Our World 8
MUOYL \ des \) th empirical regularity that the m\ua(hv tr u\mtc\tt LUL UD\L puu\ l Y eVt \\/t in Data

mportant fo! QMC aspects of technological progress in ¢

Tran5|stor count
50,000,000,000 c °

10,000,000,000 2 b & ‘8‘ g 2
- e .
5,000,000,000 W88 e § N Transistor Cost

(relative to 28nm)

1,000,000,000 i 8,
500,000,000 / LI 2

100,000,000 ° o
50,000,000 so0

10,000,000
5,000,000 7S N

LY
, o ‘. “Moore’s Law”
1,000,000 > @ ‘

500,000 e ° 0.5

1 9038tg, gisle @ 180nm 130nm 90nm 65nm 40nm 28nm 20nm l6am 10nm 7nm TJEUV
100,000 @ i ° 2002 2004 2006 2008 2010 2012 2014 2016 2017 2018 2019
50,000

° o @ o 4 - - - - . e R
) pd 2. This chart shows the Linley Group's “Cost Per Transistor” curve (2017) taken from
10,000 £ 3 ,

o , S Cadence'c 4 hAac™ hlny
5000 @ reagee § Cadence's “Breakfast Bytes” blog.

1,000
/Q"%h/‘bﬁ’\,b‘o’bﬁﬂ,&oﬁb 32 b & O 9 X b & O
A GGG ICINCIC I Tt gt e g

‘Year in which the mi crod ip was ﬁ rst m(roducod

t problems. CC-BY by the authors Hannah Ritchie

tor_count)
ogress ag

Why should you care about It?

 How to get out of this trap?

— The most promising approach is to have multiple cores
on a single processor

— The number of cores Is increasing, speed per core Is
Improving more slowly

- Today's desktop computers (2025)

Intel Core Ultra 9 285 - 24 cores (16 efficient, 8 performance), 24 threads, 2.5 GHz performance,
1.9 GHz efficient, TDP 182W, Boost 5.6 GHz.
AMD Ryzen 9 9950X3D - 16 cores, 32 threads, 4.3GHz, TDP 170W, Boost 5.7 GHz

- Parallel computing can be found in many devices today:

)]

OK; however, it should be a task for the compiler

and not for me!ll

* Yes, the compiler can help you, but without your guidance,
It Is not able to make it all the way to a successful result.

Parallel programs often look very different than sequential ones

An efficient parallel implementation of a serial program may not be
obtained by simply parallelizing each step

Rather, the best parallelization may be obtained by stepping back
and devising an entirely new algorithm

Instruction level parallelization

What is the aim of labs?

* To get a feel for parallel programming N N p,
1) Understand what makes parallelization complicated
2) Which problems can occur during parallelization
3) What can be a bottleneck

4) How to think about algorithms from the parallelization point of
view

Familiar terms: race condition, false sharing, synchronization, deadlocks, communication
overhead, work imbalance, idling, alternative algorithm design vs. sequential version

* To get basic skills in common parallel programming frameworks

1) for multi-core processors

2) for computer clusters
3) for GPU (nice opportunity to play with)

Seminar topics

OpenMP — for multi-core processors, an easy way to parallelize
originally sequential code, UMA concept

MPI1 — for computer clusters, concept of units communicating
through messages, NUMA concept

Numba — computation on GPU

Theoretical seminars — help you prepare for the exam

Basic terminology

* Processor: The physical chip that contains one
Or more cores.

* Core: A hardware execution unit inside the
processor that can execute instructions
iIndependently.

* Thread: An execution context within a core, with
Its own program counter and registers, allowing
a core to execute multiple instruction streams

Core != Thread (Simultaneous Multi-Threading [AMD], Hyper-Threading [Intel]) ﬂ

AMD £
THREADRIPPER

PRO

AMD Threadripper — use OpenMP Raspberry Pi stack — use MPI

Course web

Course page https://cw.fel.cvut.cz/wiki/courses/pag/start
- Detailed plan of labs, grading

5 homework assignments with strict deadlines during the
semester

7/ points = 8 points = 7 points 11 points | 7 points

Theoretical test in the 9th lecture (10 points)

You need to obtain at least 25 points during the semester

https://cw.fel.cvut.cz/wiki/courses/pag/start

Be ethical in homework solutions

_ ATRADE OFFERA
* Write your own code

i receive: you receive:

* Do not plagiarise No compications No complications

rules on Al use

b
&

» g
2\

Both sides willi profit

e

for (tount = 13 counT< =500 ; count++)
Print€ ("I will not Throw paper dirplanes n class.”);
ceturn 03

éing open-minded

@)

* Analytical thinking and

» Basic skills with Linux — shell, ssh, etc. (for MetaCentrum)

MAKE ME A SANDWICH,
WHAT? MAKE
IT YOURSELF.
SUDO MAKE ME /
A SANDWICH,
OKaY.
\ /

& 4

Setting up the environment

Installation during the lab is recommended to detect
problems

Be prepared for coding next week

Small HelloWorld examples are prepared for you to check

If your environment runs smoothly SO YOU CREATE C-++ PROGRAMS IN
NOTEPRD

Recommendations follow

!'

1, TOO'LIKETOLIVE

t

Preferred developer tools

* Linux, Mac OS, Windows
- CMake and g++

- IDE: CLion
e https://download.cvut.cz JetBrains

— Libraries for support of OpenMP and MPI
- Lab and homework skeletons are provided as CMake projects
- See guide in the following slides, depends on your platform
* Windows+Visual Studio? :(
- Use at your own risk
— Do not use MSVC (no support for newer OpenMP)

https://download.cvut.cz/

1. IDE and codes

e Download and install CLion g

- https://download.cvut.cz/jetbrains/, free educational license
— https://www.jetbrains.com/clion/

* Download introduction_helloworlds.zip
skeleton and unzip it in your file system

- https://cw.fel.cvut.cz/wiki/courses/pag/cviceni

em introduction_helloworlds.zip

https://download.cvut.cz/jetbrains/
https://www.jetbrains.com/clion/
https://cw.fel.cvut.cz/wiki/courses/pag/cviceni

2. Managers and libraries installation

* This step varies for each platform!!

* We provide instructions for
— Ubuntu apt manager (linux)
- Windows with MSYS2 distribution manager (MINGW)
- Windows with WSL (Windows Subsystem for Linux)
- MacOs with Homebrew manager

* Keep the variant relevant for you

2. Ubuntu (linux)

 |nstall g++ and cmake

>> sudo apt install g++ cmake gdb

* GCC should contain built-in OpenMP support
* Install MPI library

>> sudo apt install libopenmpi-dev

2. Windows with MINGW

* Install msys2, see this link
* Inthe console MSYS2 MINGW32/64 do the following

> pacman -Syu
>> pacman -Su p!
>> pacman -S base-devel mingw-w64-x86_64-toolchain SVS
>> pacman -S mingw-w64-x86_64-msmpi

MSYS2 MSY5S

Library detail: https://packages.msys2.org/base/mingw-w64-msmpi

* Add msys2 directories to your PATH environment variable, e.g.,

Depends on your selected installation folder (just default location present)

C:\msys64
C:\msys64\mingw64\bin

How to add a path to the PATH variable e.g. this guide

https://www.msys2.org/
https://packages.msys2.org/base/mingw-w64-msmpi
https://learn.microsoft.com/en-us/previous-versions/office/developer/sharepoint-2010/ee537574(v=office.14)#to-add-a-path-to-the-path-environment-variable

2. Windows with WSL

« WSL already installed?
- Check WSL distributions in Powershell

e Seewithwsl -1 -v, Name Ubuntu should be listed and displayed with * before
name (meaning default distribution)

* To add Ubuntu distribution run: wsl --install - d Ubuntu
* To set Ubuntu as default distribution run: wsl -s Ubuntu
- Ensure access to Ubuntu terminal:

e Directly from Powershell with
C:\Windows\system32\wsl.exe -d Ubuntu

* Installed Ubuntu terminal as an application in Windows

* As one of possible terminals inside Windows terminal this link

 Pure installation? >
- Install WSL, see this link

* In Powershell run: wsl -install

- Install Ubuntu distribution via microsoft store if not already installed, see this Iinkd

Windows PowerShell

https://apps.microsoft.com/detail/9n0dx20hk701
https://learn.microsoft.com/en-us/windows/wsl/install#install-wsl-command
https://apps.microsoft.com/store/detail/ubuntu/9PDXGNCFSCZV

2. Windows with WSL

* Open Ubuntu terminal, initiate system if first run (user access
setup), then run the following

>> sudo apt update
>> sudo apt install g++ cmake gdb

>> sudo apt install libopenmpi-dev

Install package manager Homebrew (if you don’t have it)

Install g++ and cmake by Homebrew
>> prew install gcc cmake

Install OpenMP and MPI

>> prew install libomp open-mpi

Find the installed gcc and g++ executable. Look for installed
versions under location /opt/homebrew/bin, there should be

programs gcc-V and g++-V, where V means your version
- remember the installed version, you will need it later

https://brew.sh/

3. Open skeletons with CLion

* You need to open the project properly!

* Project should contain cmake and src directories

* CLion will try to load the CMake project, ignore that for
now, continue to the next step

~ [3introduction_helloworlds
~ [cmake
CMakelLists.txt
~ [src
(E5 HelloWorldMPl.cpp

ZF HelloWorldOpenMP.cpp

=) runmpi.sh

b External Libraries

= Scratches and Consoles

] /"Oﬂ-
k3

<

"> 4. CLion Create toolchain

VO
W=<g

e Set up toolchain to build and run from CLion
* Use the variant relevant for you in this step

 All should detect automatically

Settings

Build, Execution, Deployment @ Toolchains

Appearance & Behavior
Default
Keymap

Editor

(=] Default

CMake: Bundled
Plugins
Version Control S

~ Build, Execution, Deployment Build Tool:

Toolchains

C Compiler:

CMake

Compilation Database C++ Compiler:

Meson

Custom Build Targets
Makefile Debugger: Bundled GDB
Build Tools Version: 14.2
Debugger

Python Debugger

4. Windows MINGW

e Create MINnGW toolchain in CLion, see this link.

* If msys2 is installed in default location, set C:

\msys64\mingw64 as your MinGW Environment path
(everything else should be detected automatically)

e Set up in CLion Settings -> CMake -> Generator on value
*“MINGW Makefiles”

https://www.jetbrains.com/help/clion/quick-tutorial-on-configuring-clion-on-windows.html#MinGW

,E_L_ Settings

Q- Build, Execution, Deployment » Toolchains
Appearance & Behavior b —
i Mame: MinGW
= MinGW (default)
A WsL Toolset: Bundled MinGW

Keymap
Editor
Plugins
: Version: wG4 11.0
Version Control
~ Build, Execution, Deployment Bundled
Toolchains
Version: 3.26.4
ChMake
_ Build Tool:
Compilation Database
Custom Build Targets i C Compiler:
Makefile C++ Compiler:
Build Tools
Debugger
Py[hon Debugger E}Ebugger: Bundled GDB

Python Interpreter Varsion:13.1
Deployment

Console

Coverage

Docker

Dynamic Analysis Tools

Embedded Development

Required Plugins

Run Targets

Trusted Locations

4. Windows MINGW CMake settings

[Settings

Q- Build, Execution, Deployment » CMake

. .
EhisaiEe R Reload CMake project on editing CMakeLists.txt or other CMake configuration files

Keymap
Editor Profiles

Plugins
& Profile is a named set of build options. For example, create separate profiles for Debug and Release builds and switch

Version Control between them when needed.

Build, Execution, Deployment
_ + - @
> Toolchains ¥ Enable profile

— - Debug
L Name: Debug

Compilation Database
Custom Build Targets Build type: Debug
Makefile

Build Tools

Toolchain: Use default

Debugger Generator: Use default

Python Debugger CMake options:
Python Interpreter
Deployment

Console = > Cache variables

Coverage . :

Build directory:
Docker
Dynamic Analysis Tools Build options:
Embedded Development

Reauired Pluains

Cancel

4. Windows WSL

 Set up WSL in CLion toolchains, see this link

* You can check your settings using screenshots in the
following slides

https://www.jetbrains.com/help/clion/quick-tutorial-on-configuring-clion-on-windows.html#WSL

Settings

Build, Execution, Deployment » Toolchains

Appearance & Behavior S

@ v Name: WSL
Keymap

Editor

&, WSL (default)

& MinGW Toolset: Ubuntu
Plugins
Version: Ubuntu 20.04 LTS
Version Control
Build, Execution, Deployment WSL CMake
> Toolchains

CMake

Version: 3.16.3

= Build Tool:
Compilation Database

Custom Build Targets C Compiler:
Makefile
Build Tools

C++ Compiler:

Debugger

Python Debugger Debugger: WSL GDB
Python Interpreter Version: 9.1
Deployment

Console

Coverage

Docker

Dynamic Analysis Tools

Embedded Development

Reauired Pluains

Cancel

&} Settings

Q- Build, Execution, Deployment » CMake

5 .
Appserance & Beliavier Reload CMake project on editing CMakelLists.txt or other CMake configuration files

Keymap

Editor Profiles

Plugins
. Profile is a named set of build options. For example, create separate profiles for Debug and Release builds and switch

Version Control between them when needed.
Build, Execution, Deployment
: + — @ _
> Toolchains ¥ Enable profile

Debug
Sl Name: Debug

Compilation Database
Custom Build Targets Build type: Debug
Makefile

Build Tools

Toolchain: Use default

Debugger Generator: Let CMake decide

Python Debugger CMake options:
Python Interpreter

Deployment

Console > Cache variables

Coverage . .
Build directory:

Docker

Dynamic Analysis Tools Build options:

Embedded Development

Reauired Pludins

* You should remember the installed gcc and g++ version

 Set C and C++ compilers in CLion: Settings — Build, Execution,
Deployment - Toolchains — C compiler and C++ compiler
(Compilers under Homebrew can be detected automatically, if not
continue)

e Set manually paths to the compilers
E.g. for version 14, specific paths will look like
C compiler: /opt/homebrew/bin/gcc-14
C++ compiler: /opt/homebrew/bin/g++-14

5. Reload CMake

* Delete generated folder cmake-build-debug

* Right-click the cmake folder and select Reload
CMake Project

~ [3introduction_helloworlds
~ [Jcmake
cmake-build-debug

", CMakelists.txt
ew

r\
(€ HelloWorldMPL.cpg “» Reload CMake Project

'r T HelloWorldOpenbdl
(3 runmpi.sh
ith External Libraries #= Cut

= Scratches and Consoles [E Copy

Copy Path/Reference...

6. Check CMake console output

You should see in the CMake console output:
Found OpenMP: TRUE
Found MPI: TRUE

Debug

Check for working CXX compiler: /usr/bin/c++ -- woOrks

Detecting CXX compiler ABI info

Detecting CXX compiler ABI info - done

Detecting CXX compile features

Detecting CXX compile features - done

Found OpenMP_C: -fopenmp (found version "4.5")

Found OpenMP_CXX: -fopenmp (found version "4.5")

Found OpenMP: TRUE (found version "4.5")

Found MPI_C: /usr/lib/x86_64-1inux-gnu/openmpi/1lib/1libmpi.so (found version "3.1")

Found MPI_CXX: /usr/1lib/x86_64-1inux-gnu/openmpi/1ib/1libmpi_cxx.so (found version "3.1")
Found MPI: TRUE (found version "3.1")

Configuring done

Generating done

Build files have been written to: /mnt/c/Users/stejs/Desktop/weekl_codes/cmake/cmake-build-debug

[Finished]

OPENMP (needed for next week), MPI (there is time to solve issues, used later)

Select HelloWorldOpenMP
Build with hammer icon

HelloWorldOpenMP -~

Run with play button
Output should look like

Number of available threads 4
This is thread 1 speaking

This is thread 0 speaking

This is thread 2 speaking

This is thread 3 speaking
Parallel block finished

Value of x: 550

Process finished with exit code O

8. Run MPI example with mpiexec

* To run the MPI example, you need to run the compiled
program with mpiexec utility

* For Windows with MinGW extra installation of mpiexec
IS needed.:

- Download MPI SDK containing mpiexec program (download
msmpisetup.exe installer)

— You can check whether Mpiexec.exe is installed in C:\Program
Files\MPI\bin

— Check the path listed under the PATH environment variable; if it is not
found, add the path C:\Program Files\MP\bin

https://www.microsoft.com/en-us/download/details.aspx?id=105289

8. Run MPI example with mpiexec

Select HelloWorldMPI
Build with hammer icon

HelloWorldMPl ~ Co

Open console in CLion (For WSL usage you have to
select Ubuntu console)

Run with mpiexec

mpiexec -np 4 cmake/cmake-build-debug/HelloWorldMPI.exe (Windows MINGW)
mpiexec -np 4 cmake/cmake-build-debug/HelloWorldMPI (Windows WSL, Ubuntu,
MacOS)

v

Output should look like T e 0 e

My ranking hello world example: 0
My ranking hello world example: 1
Total number of processes: 4

My ranking hello world example: 3 v the new cross-plati
My ranking hello world example: 2 |

dows PowerShell Windows PowerShell
(C) Microsofi Command Prompt

Git Bash

4 Ubuntu

Process finished with exit code 0

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

