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Analytical Modeling - Basics

A sequential algorithm is evaluated by its runtime (in general,
asymptotic runtime as a function of input size).

The asymptotic runtime of a sequential program is identical on any
serial platform.

The parallel runtime of a program depends on the input size, the
number of processors, and the communication parameters of
the machine.

An algorithm must therefore be analyzed in the context of the
underlying platform.

A parallel system is a combination of a parallel algorithm and an
underlying platform.



Analytical Modeling - Basics

A number of performance measures are intuitive.

Wall clock time - the time from the start of the first processor to the
stopping time of the last processor in a parallel ensemble. But how
does this scale when the number of processors is changed of
the program is ported to another machine altogether?

How much faster is the parallel version? This begs the obvious
followup question - whats the baseline serial version with which we
compare? Can we use a suboptimal serial program to make our
parallel program look

Raw FLOPS (FLoating-point Operatlons Per Second) - How good
Is FLOPS measure when it don’t solve a problem?



Sources of Overhead in Parallel Programs

If | use two processors, shouldnt my program run twice as fast?

No - a number of overheads, including wasted computation,
communication, idling, and contention cause degradation in
performance.
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The execution profile of a hypothetical parallel program
executing on eight processing elements. Profile indicates times spent
performing computation (both essential and excess), communication,

and idling.
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Sources of Overheads in Parallel Programs

Interprocess interactions: Processors working on any non-trivial
parallel problem will need to talk to each other.

Idling: Processes may idle because of load imbalance,
synchronization, or serial components.

Excess Computation: This is computation not performed by the
serial version. This might be because the serial algorithm is
difficult to parallelize, or that some computations are repeated
across processors to minimize communication.



Performance Metrics for Parallel Systems: Execution
Time

Serial runtime of a program is the time elapsed between the
beginning and the end of its execution on a sequential computer.

The parallel runtime is the time that elapses from the moment the
first processor starts to the moment the last processor finishes
execution.

We denote the serial runtime by T and the parallel runtime by T;.



Performance Metrics for Parallel Systems: Total Parallel
Overhead

Let T, be the total time collectively spent by all the processing
elements.

T is the serial time.

Observe that T, - Tg is then the total time spend by all processors
combined in non-useful work. This is called the total overhead.

The total time collectively spent by all the processing elements
Ta =P Tp  (pis the number of processors).

The overhead function (T,) is therefore given by

To=p Tp-Ts (1)



Performance Metrics for Parallel Systems: Speedup

What is the benefit from parallelism?

Speedup (S) is the ratio of the time taken to solve a problem on a
single processor to the time required to solve the same problem on
a parallel computer with p identical processing elements.

T
S==
T'p



Performance Metrics: Example

Consider the problem of adding n numbers by using n processing
elements.

If n is a power of two, we can perform this operation in log n steps
by propagating partial sums up a logical binary tree of processors.
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Performance Metrics: Example
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Performance Metrics: Example (continued)

If an addition takes constant time, say, t. and communication
of a single word takes time t_ + t,,, we have the parallel time
To =0 (log n)

We know that T¢= O (n)

Speedup Sisgivenby S=0 (n/log n) ,
n/logn
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Performance Metrics: Speedup

For a given problem, there might be many serial algorithms
available. These algorithms may have different asymptotic runtimes
and may be parallelizable to different degrees.

For the purpose of computing speedup, we always consider the
best sequential program as the baseline.
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Performance Metrics: Speedup Example

Consider the problem of parallel bubble sort.
The serial time for bubblesort is 150 seconds.

The parallel time for odd-even sort (efficient parallelization of
bubble sort) is 40 seconds.

The speedup would appear to be 150/40 = 3.75.
But is this really a fair assessment of the system?

What if serial quicksort only took 30 seconds? In this case, the
speedup is 30/40 = 0.75. This is a more realistic assessment of the
system.
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Performance Metrics: Speedup Bounds

Speedup can be as low as 0 (the parallel program never
terminates).

Speedup, in theory, should be upper bounded by p - after all, we
can only expect a p-fold speedup if we use times as many
resources.

A speedup greater than p is possible only if each processing
element spends less than time T/ p solving the problem.

In this case, a single processor could be timeslided to achieve a
faster serial program, which contradicts our assumption of fastest
serial program as basis for speedup.
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Performance Metrics: Superlinear Speedups

One reason for superlinearity Is that the parallel version does
less work than corresponding serial algorithm.

Hocjﬁw ?esﬁig element 1

A5

Searching an unstructured tree for a node with a given label,
'S', on two processing elements using depth-first traversal. The
two-processor version with processor 0 searching the left subtree
and processor 1 searching the right subtree expands only the
shaded nodes before the solution is found. The corresponding serial
formulation expands the entire tree. It is clear that the serial
algorithm does more work than the parallel algorithm.

16



Amdahl’'s Law

All programs contain parts that are naturally sequential (8) and the
other fraction is naturally parallel (1 - B).

Speedup of the algorithm is limited by the naturally sequential part of
the algorithm. Amdahl’s Law defines theoretically possible speedup,
ignoring overhead and communication costs.

The serial part of the program can be computed in STg, and the
parallel program in time (1- B)T¢/p. Then Tp=BTg+ (1- B)Ts/p.

. T p
< =
The speedup isthen S < BTt (=B Te/p  Bot(1—B)

Example: B=0.1,p=100=>3=<9.1
B =0.1,p=1000 => S < 9.91
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Performance Metrics: Efficiency

Efficiency is a measure of the fraction of time for which a
processing element is usefully employed

Mathematically, it is given by

FE =

S
—. (2)
p

Following the bounds on speedup, efficiency can be as low as 0O
and as high as 1.
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Performance Metrics: Efficiency Example

The speedup of adding numbers on processors is given by

___n
logn

Efficiency is given by

_ ()
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Parallel Time, Speedup, and Efficiency Example

Consider the problem of edge-detection in images. The
problem requires us to apply a 3 x 3 template to each pixel. If each
multiply-add operation takes time t., the serial time for an n x n
image is given by Tc= 9t, n2.
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Example of edge detection: (a) an 8 x 8 image; (b) typical
templates for detecting edges; and (c) partitioning of the image
across four processors with shaded regions indicating image
data that must be communicated from neighboring processors to
processor 1.
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Parallel Time, Speedup, and Efficiency Example
(continued)

* One possible parallelization partitions the image equally into vertical
segments, each with n? / p pixels.

« The boundary of each segment is 2n pixels. This is also the number
of pixel values that will have to be communicated. This takes time
2(t, +t,n).

« Templates may now be applied to all n?/ p pixels in time
9t.n?/p.
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Parallel Time, Speedup, and Efficiency Example
(continued)

The total time for the algorithm is therefore given by:

2

n
p

The corresponding values of speedup and efficiency are given by:

Ot .n?
S = 2
gtc% + 2(ts + tyn)
and
1
F =

2p(ts+twn)’
L + 9t .n2
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Cost of a Parallel System

Cost is the product of parallel runtime and the number of processing
elements used (p x Tp ).

Cost reflects the sum of the time that each processing element
spends solving the problem.

A parallel system is said to be cost-optimal if the cost of solving a
problem on a parallel computer is asymptotically identical to
serial cost.

Since E=Tg/ p Tp, for cost optimal systems, E = O(1).

Cost is sometimes referred to as work or processor-time product.
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Cost of a Parallel System: Example

Consider the problem of adding numbers on processors.
We have, T, =log n (for p = n).
The cost of this system is given by p T, = n log n.

Since the serial runtime of this operation is @(n), the algorithm is not
cost optimal.
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Effect of Granularity on Performance

Often, using fewer processors improves performance of parallel
systems.

Using fewer than the maximum possible number of processing
elements to execute a parallel algorithm is called scaling down a
parallel system.

A naive way of scaling down is to think of each processor in the
original case as a virtual processor and to assign virtual
processors equally to scaled down processors.

Since the number of processing elements decreases by a factor of
n / p, the computation at each processing element increases by a
factorof n / p.

The communication cost should not increase by this factor since
some of the virtual processors assigned to a physical
processors might talk to each other. This is the basic reason for
the improvement from building granularity.
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Building Granularity: Example

Consider the problem of adding n numbers on p processing
elements such that p < n and both n and p are powers of 2.

Use the parallel algorithm for n processors, except, in this case, we
think of them as virtual processors.

Each of the p processors is now assigned n / p virtual processors.

The first log p of the log n steps of the original algorithm are
simulated in (n / p) log p steps on p processing elements.

Subsequent log n - log p steps do not require any
communication.
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Building Granularity: Example (continued)

12 I3 t4 [5
L p fLk L1
4 5 §] 7
0 I 2 3
® 00 0
Substep |
12 13 [4 L5
8 £l L1k L
2§ X,
z, L,
© O @ ©
Substep 3

|12 I3 14 15
b 4 14 1t
- ] i 7
E'lllil E:‘
© 000
Substep 2

-4
-
—
.
o
g

E% E?”]

S

E‘[J

@ (I) @ @
Substep 4
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Building Granularity: Example (continued)
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Building Granularity: Example (continued)
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Building Granularity: Example (continued)

The overall parallel execution time of this parallel system is
© ((n/p)logp).

The costis © (n log p), which is asymptotically higher than the © (n)
cost of adding n numbers sequentially. Therefore, the parallel
system is not cost-optimal.
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Building Granularity: Example (continued)

Can we build granularity in the example in a cost-optimal
fashion?

 Each processing element locally adds its n / p numbers in time
@ (n/p).

« Thep partlal sums on p processmg elements can be added in time
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A cost-optimal way of computing the sum of 16 numbers using four
processing elements.
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Building Granularity: Example (continued)

« The parallel runtime of this algorithm is

Tp = O(n/p + logp), 3)

« Thecostis O(n + plogp)

« This is cost-optimal, so long as n = £2(plog p)!
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Scalability of Parallel Systems

How do we extrapolate performance from small problems
and small systems to larger problems on larger configurations?

Consider three parallel algorithms for computing an n-point Fast
Fourier Transform (FFT) on 64 processing elements.

40 o _7477__f:____ﬁr_{___,u-_--;:‘:_':-

10 Binary exchange ——
" 2-D transpose -
3-D transpose ----

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

no—

A comparison of the speedups obtained by the binary-exchange, 2-D
transpose and 3-D transpose algorithms on 64 processing elements
witht,=2,t, =4,t, =25, and t, = 2.

Clearly, it is difficult to infer scaling characteristics from
observations on small datasets on small machines.
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Scaling Characteristics of Parallel Programs

« The efficiency of a parallel program can be written as:

p_°_1Is
p plp
or E = lT' (4)
l—I—T—;

« The total overhead function T, is an increasing function of p.

« For a given problem size (i.e., the value of T remains constant),
as we increase the number of processing elements, T,
Increases.

 The overall efficiency of the parallel program goes down. This
Is the case for all parallel programs.
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Scaling Characteristics of Parallel Programs: Example

Consider the problem of adding numbers on processing
elements.

We have seen that:

Tp = E+210gp (5)
D
5 - n
- » +2logp (6)
E = . (7)
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Scaling Characteristics of Parallel Programs: Example
(continued)

Plotting the speedup for various input sizes gives us:
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Speedup versus the number of processing elements for
adding a list of numbers.

Speedup tends to saturate and efficiency drops as a
conseguence of Amdahl's law
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Scaling Characteristics of Parallel Programs

Total overhead function T, is a function of both problem size (n ->
T,) and the number of processing elements p.

In many cases, T, grows sublinearly with respect to T..

In such cases, the efficiency increases if the problem size is
Increased keeping the number of processing elements
constant.

For such systems, we can simultaneously increase the problem
size and number of processors to keep efficiency constant.

We call such systems scalable parallel systems.
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Scaling Characteristics of Parallel Programs

Recall that cost-optimal parallel systems have an efficiency of
O(1).

Scalability and cost-optimality are therefore related.

A scalable parallel system can always be made cost-optimal if
the number of processing elements and the size of the computation
are chosen appropriately.

For a given problem size, as we increase the number of
processing elements, the overall efficiency of the parallel system
goes down for all systems.
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Isoefficiency Metric of Scalability

Fixed problem size (W)

p
()

Fixed number of processors (p)

w
(b)

Variation of efficiency: (a) as the number of processing elements is
Increased for a given problem size; and (b) as the problem size is
Increased for a given number of processing elements. The
phenomenon illustrated in graph (b) is not common to all parallel

systems.
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Isoefficiency Metric of Scalability

What is the rate at which the problem size must increase with

respect to the number of processing elements to keep the
efficiency fixed?

This rate determines the scalability of the system. The slower this
rate, the better.

Before we formalize this rate, we define the problem size W as the
asymptotic number of operations associated with the best serial
algorithm to solve the problem.

43



|soefficiency Metric of Scalability

« We can write parallel runtime as:

s =
p
* The resulting expression for speedup is
s - W
Tp
_ Wp
W + T,(W, p)
* Finally, we write the expression for efficiency as
o
p
_ %%
W + To(W, p)

L+ To(W,p)/W"

(8)

()
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Isoefficiency Metric of Scalability

For scalable parallel systems, efficiency can be maintained at a
fixed value (between O and 1) if the ratio T, / W is maintained at a
constant value.

For a desired value E of efficiency,
1

FE —
L+ To(W,p) /W’
To(mp) _ 1 -F

W E
E (11)
W =_——"_T.(W,p).
TR (W, p)

If K=E/(1-E) isaconstant depending on the efficiency to be
maintained, since T, is a function of W and p, we have

W = KT,(W,p). (12)
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|soefficiency Metric of Scalability

The problem size W can usually be obtained as a function of p by
algebraic manipulations to keep efficiency constant.

This function is called the isoefficiency function.

This function determines the ease with which a parallel system can
maintain a constant efficiency and hence achieve speedups
Increasing in proportion to the number of processing elements.

If W needs to grow only linearly with respect to p, then the parallel
system is highly scalable. On the other hand, if W might need to
grow, e.g., as an exponential function of p to keep the efficiency
from dropping as p increases. Such parallel systems are poorly
scalable.
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|soefficiency Metric: Example

The overhead function for the problem of adding n numbers on p
processing elements is approximately 2p log p .

Substituting T, by 2p log p , we get

W = K2plogp. (13)

Thus, the asymptotic isoefficiency function for this parallel system is
O(plogp) -

If the number of processing elements is increased from p to p’, the
problem size (in this case, n ) must be increased by a factor of
(p’log p’) / (p log p) to get the same efficiency as on p processing
elements.
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|soefficiency Metric: Example

Consider a more complex example where 7T, = p/2 + p3/4W3/4
Using only the first term of T, in Equation 12, we get

W = KPSXQ_ (14)

Using only the second term, Equation 12 yields the following
relation between W and p:

W = Kp3/4w3f4
w = K*%° (15)

The larger of these two asymptotic rates determines the
isoefficiency. This is given by O(p3)
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Cost-Optimality and the Isoefficiency Function

A parallel system is cost-optimal if and only if

plp = ©((W). (16)

From this, we have:

W+T,(W,p) = O(W)
T.(W.p) = O(W) ()
W = Q(T,(W,p)) (18)

If we have an isoefficiency function f(p), then it follows that the
relation W = Q(f(p)) must be satisfied to ensure the cost-optimality of
a parallel system as it is scaled up.

49



Lower Bound on the Isoefficiency Function

* For a problem consisting of W units of work, no more than W
processing elements can be used cost-optimally.

« The problem size must increase at least as fast as O(p) to maintain
fixed efficiency; hence, Q(p) is the asymptotic lower bound on the

Isoefficiency function.
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Degree of Concurrency and the Isoefficiency Function

The maximum number of tasks that can be executed simultaneously
at any time in a parallel algorithm is called its degree of concurrency.

If C(W) is the degree of concurrency of a parallel algorithm, then for
a problem of size W, no more than C(W) processing elements can
be employed effectively.
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Degree of Concurrency and the Isoefficiency Function: Example

Consider solving a system of equations in variables by using
Gaussian elimination (W = ©(n?3))

The n variables must be eliminated one after the other, and
eliminating each variable requires ©(n?) computations.

At most O(n?) processing elements can be kept busy at any time.

Since W = O(n?) for this problem, the degree of concurrency C(W) is
@(WZ/B) _

Given p processing elements, the problem size should be at least
Q(p??) to use them all.
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Minimum Execution Time

Often, we are interested in the minimum time to solution.

« We can determine the minimum parallel runtime T,™" for a given W
by differentiating the expression for T, w.rt. p and equating it to
Zero.

d
_T —
ap P 0 (19)

* If p, is the value of p as determined by this equation, Tp(p,) Is the
minimum parallel time.
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Minimum Execution Time: Example

Consider the minimum execution time for adding n numbers.

Tp = = +2logp. (20)
p

Setting the derivative w.r.t. p to zero, we have p =n/ 2. The
corresponding runtime is

T;“'ﬂ = 2logn. (21)

(One may verify that this is indeed a min by verifying that the second
derivative is positive).

Note that at this point, the formulation is not cost-optimal.
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Asymptotic Analysis of Parallel Programs

Consider the problem of sorting a list of n numbers. The fastest
serial programs for this problem run in time ©(n log n). Consider
four parallel algorithms, Al, A2, A3, and A4 as follows:

Comparison of four different algorithms for sorting a given list of
numbers. The table shows number of processing elements, parallel
runtime, speedup, efficiency and the pT, product.

Algorithm

A4

P
S

B

plp

o

Jn
Vnlogn
Jn

]
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Asymptotic Analysis of Parallel Programs

If the metric is speed, algorithm Al is the best, followed by A3, A4,
and A2 (in order of increasing Tp).

In terms of efficiency, A2 and A4 are the best, followed by A3 and
Al.

In terms of cost, algorithms A2 and A4 are cost optimal, A1 and A3
are not.

It is important to identify the objectives of analysis and to use
appropriate metrics!
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