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Topic Overview 

• One-to-All Broadcast and All-to-One Reduction 

• All-to-All Broadcast and Reduction 

• All-Reduce and Prefix-Sum Operations 

• Scatter and Gather 

• All-to-All Personalized Communication 

• Circular Shift



Basic Communication Operations: 

Introduction

• Many interactions in practical parallel programs 

occur in well-defined patterns involving groups of 

processors. 

• Efficient implementations of these operations can 

improve performance, reduce development effort and 

cost, and improve software quality. 

• Efficient implementations must leverage underlying 

architecture. For this reason, we refer to specific 

architectures here. 

• We select a descriptive set of architectures to 

illustrate the process of algorithm design. 



Basic Communication Operations: 

Introduction 

• Group communication operations are built using point-

to-point messaging primitives. 

• Recall from our discussion of architectures that 

communicating a message of size m over an 

uncongested network takes time ts +twm. 

• We use this as the basis for our analyses. Where 

necessary, we take congestion into account explicitly by 

scaling the tw term. 

• We assume that the network is bidirectional and that 

communication is single-ported. 



One-to-All Broadcast and All-to-One 

Reduction 

• One processor has a piece of data (of size m) it needs 

to send to everyone. 

• The dual of one-to-all broadcast is all-to-one reduction. 

• In all-to-one reduction, each processor has m units of 

data. These data items must be combined piece-wise 

(using some associative operator, such as addition or 

min), and the result made available at a target 

processor. 



One-to-All Broadcast and All-to-One 

Reduction 

One-to-all broadcast and all-to-one reduction among   processors. 



One-to-All Broadcast and All-to-One 

Reduction on Rings 

• Simplest way is to send p-1 messages from the source 

to the other p-1 processors - this is not very efficient. 

• Use recursive doubling: source sends a message to a 

selected processor. We now have two independent 

problems defined over halves of machines. 

• Reduction can be performed in an identical fashion by 

inverting the process. 



One-to-All Broadcast 

One-to-all broadcast on an eight-node ring. Node 0 is the source of the 
broadcast. Each message transfer step is shown by a numbered, 

dotted arrow from the source of the message to its destination. The 
number on an arrow indicates the time step during which the 

message is transferred. 



All-to-One Reduction 

Reduction on an eight-node ring with node 0 as the 
destination of the reduction.



Broadcast and Reduction: Example 

Consider the problem of multiplying a matrix with a vector.

• The n x n matrix is assigned to an n x n (virtual) processor grid. 

The vector is assumed to be on the first row of processors. 

• The first step of the product requires a one-to-all broadcast of the 

vector element along the corresponding column of processors. 

This can be done concurrently for all n columns. 

• The processors compute local product of the vector element and 

the local matrix entry. 

• In the final step, the results of these products are accumulated to 

the first row using n concurrent all-to-one reduction operations 

along the columns (using the sum operation).



Broadcast and Reduction: Matrix-Vector 

Multiplication Example 

One-to-all broadcast and all-to-one reduction in the multiplication of a 4 

x 4 matrix with a 4 x 1 vector.



Broadcast and Reduction on a Mesh 

• We can view each row and column of a square mesh of 

p nodes as a linear array of √p nodes. 

• Broadcast and reduction operations can be performed in 

two steps - the first step does the operation along a 

row and the second step along each column 

concurrently. 

• This process generalizes to higher dimensions as 

well. 



Broadcast and Reduction on a Mesh: 

Example 

One-to-all broadcast on a 16-node mesh. 



Broadcast and Reduction on a 

Hypercube 

• A hypercube with 2d nodes can be regarded as a   d-

dimensional mesh with two nodes in each dimension. 

• The mesh algorithm can be generalized to a hypercube 

and the operation is carried out in  d (= log p) steps. 



Broadcast and Reduction on a 

Hypercube: Example 

One-to-all broadcast on a three-dimensional hypercube. 
The binary representations of node labels are shown in 

parentheses. 



Broadcast and Reduction Algorithms 

• All of the algorithms described above are adaptations of 

the same algorithmic template. 

• We illustrate the algorithm for a hypercube, but the 

algorithm, as has been seen, can be adapted to other 

architectures. 

• The hypercube has 2d nodes and my_id is the label for 

a node. 

• X is the message to be broadcast, which initially 

resides at the source node 0. 



Broadcast and Reduction Algorithms 

One-to-all broadcast of a message X from source on a hypercube.



Broadcast and Reduction Algorithms 

Single-node accumulation on a  d-dimensional hypercube. Each node contributes a message X containing m words, 
and node 0 is the destination. 



Cost Analysis 

• The broadcast or reduction procedure involves log p

point-to-point simple message transfers, each at a 

time cost of ts + twm. 

• The total time is therefore given by:



All-to-All Broadcast and Reduction 

• Generalization of broadcast in which each processor is 

the source as well as destination. 

• A process sends the same m-word message to every 

other process, but different processes may 

broadcast different messages. 



All-to-All Broadcast and Reduction 

All-to-all broadcast and all-to-all reduction.



All-to-All Broadcast and Reduction on a 

Ring 

• Simplest approach: perform p one-to-all broadcasts. 

This is not the most efficient way, though. 

• Each node first sends to one of its neighbors the 

data it needs to broadcast. 

• In subsequent steps, it forwards the data received 

from one of its neighbors to its other neighbor. 

• The algorithm terminates in p-1 steps. 



All-to-All Broadcast and Reduction on a 

Ring 

All-to-all broadcast on an eight-node ring. 



All-to-All Broadcast and Reduction on a 

Ring 

All-to-all broadcast on a p-node ring.



All-to-all Broadcast on a Mesh 

• Performed in two phases - in the first phase, each row 

of the mesh performs an all-to-all broadcast using the 

procedure for the linear array. 

• In this phase, all nodes collect √p messages 

corresponding to the √p nodes of their respective rows. 

Each node consolidates this information into a single 

message of size m√p. 

• The second communication phase is a columnwise all-

to-all broadcast of the consolidated messages. 



All-to-all Broadcast on a Mesh 

All-to-all broadcast on a 3 x 3 mesh. The groups of nodes 

communicating with each other in each phase are enclosed by 

dotted boundaries. By the end of the second phase, all nodes get 

(0,1,2,3,4,5,6,7) (that is, a message from each node).



All-to-all Broadcast on a Mesh 

All-to-all broadcast on a square mesh of p nodes. 



All-to-all broadcast on a Hypercube 

• Generalization of the mesh algorithm to log p

dimensions.

• Message size doubles at each of the log p steps. 



All-to-all broadcast on a Hypercube 

All-to-all broadcast on an eight-node hypercube. 



All-to-all broadcast on a Hypercube 

All-to-all broadcast on a d-dimensional hypercube. 



All-to-all Reduction 

• Similar communication pattern to all-to-all broadcast, 

except in the reverse order. 

• On receiving a message, a node must combine it with 

the local copy of the message that has the same 

destination as the received message before 

forwarding the combined message to the next neighbor. 



Cost Analysis 

• On a ring, the time is given by: (ts + twm)(p-1). 

• On a mesh, the time is given by: 2ts(√p – 1) + twm(p-1).

• On a hypercube, we have: 



All-Reduce and Prefix-Sum Operations 

• In all-reduce, each node starts with a buffer of size m
and the final results of the operation are identical 
buffers of size m on each node that are formed by 
combining the original p buffers using an associative 
operator. 

• Identical to all-to-one reduction followed by a one-to-
all broadcast. This formulation is not the most efficient. 
Uses the pattern of all-to-all broadcast, instead. The only 
difference is that message size does not increase 
here. Time for this operation is (ts + twm) log p. 

• Different from all-to-all reduction, in which p 
simultaneous all-to-one reductions take place, each with 
a different destination for the result. 



The Prefix-Sum Operation 

• Given p numbers n0,n1,…,np-1 (one on each node), the 

problem is to compute the sums sk = ∑i
k
= 0 ni for all k

between 0 and p-1 . 

• Initially, nk resides on the node labeled k, and at the 

end of the procedure, the same node holds Sk. 



The Prefix-Sum Operation 

Computing prefix sums on an eight-node hypercube. At each node, square 
brackets show the local prefix sum accumulated in the result buffer and 

parentheses enclose the contents of the outgoing message buffer for the 
next step.



The Prefix-Sum Operation 

• The operation can be implemented using the all-to-all 
broadcast kernel. 

• We must account for the fact that in prefix sums the 
node with label k uses information from only the k-
node subset whose labels are less than or equal to k. 

• This is implemented using an additional result buffer. 
The content of an incoming message is added to the 
result buffer only if the message comes from a node with 
a smaller label than the recipient node. 

• The contents of the outgoing message (denoted by 
parentheses in the figure) are updated with every 
incoming message. 



The Prefix-Sum Operation 

Prefix sums on a d-dimensional hypercube.



Scatter and Gather 

• In the scatter operation, a single node sends a unique 

message of size m to every other node (also called a 

one-to-all personalized communication). 

• In the gather operation, a single node collects a 

unique message from each node. 

• While the scatter operation is fundamentally different 

from broadcast, the algorithmic structure is similar, 

except for differences in message sizes (messages 

get smaller in scatter and stay constant in broadcast). 

• The gather operation is exactly the inverse of the 

scatter operation and can be executed as such. 



Gather and Scatter Operations 

Scatter and gather operations.



Example of  the Scatter Operation 

The scatter operation on an eight-node hypercube.



Cost of  Scatter and Gather 

• There are log p steps, in each step, the machine size 

halves and the data size halves. 

• We have the time for this operation to be: 

• This time holds for a linear array as well as a 2-D mesh. 

• These times are asymptotically optimal in message size. 



All-to-All Personalized Communication 

• Each node has a distinct message of size m for 

every other node. 

• This is unlike all-to-all broadcast, in which each node 

sends the same message to all other nodes. 

• All-to-all personalized communication is also known as 

total exchange. 



All-to-All Personalized Communication 

All-to-all personalized communication. 



All-to-All Personalized Communication: 

Example 

• Consider the problem of transposing a matrix. 

• Each processor contains one full row of the matrix. 

• The transpose operation in this case is identical to an 

all-to-all personalized communication operation. 



All-to-All Personalized Communication: 

Example 

All-to-all personalized communication in transposing a 4 x 4 matrix 

using four processes. 



All-to-All Personalized Communication 

on a Ring 

• Each node sends all pieces of data as one 

consolidated message of size m(p – 1) to one of its 

neighbors. 

• Each node extracts the information meant for it from 

the data received, and forwards the remaining (p – 2) 

pieces of size m each to the next node. 

• The algorithm terminates in p – 1 steps. 

• The size of the message reduces by m at each step. 



All-to-All Personalized Communication 

on a Ring 

All-to-all personalized communication on a six-node ring. The label of each 
message is of the form {x,y}, where x is the label of the node that originally 

owned the message, and y is the label of the node that is the final 
destination of the message. The label ({x1,y1}, {x2,y2},…, {xn,yn}, indicates a 

message that is formed by concatenating n individual messages. 



All-to-All Personalized Communication 

on a Ring: Cost 

• We have p – 1 steps in all. 

• In step i, the message size is m(p – i). 

• The total time is given by:

• The tw term in this equation can be reduced by a factor 

of 2 by communicating messages in both directions. 



All-to-All Personalized Communication 

on a Mesh 

• Each node first groups its p messages according to 

the columns of their destination nodes. 

• All-to-all personalized communication is performed 

independently in each row with clustered messages of 

size m√p. 

• Messages in each node are sorted again, this time 

according to the rows of their destination nodes. 

• All-to-all personalized communication is performed 

independently in each column with clustered messages 

of size m√p. 



All-to-All Personalized Communication 

on a Mesh 

The distribution of messages at the beginning of each phase of all-to-all personalized 
communication on a 3 x 3 mesh. At the end of the second phase, node i has 

messages ({0,i},…,{8,i}), where 0 ≤ i ≤ 8. The groups of nodes communicating 
together in each phase are enclosed in dotted boundaries. 



All-to-All Personalized Communication 

on a Mesh: Cost 

• Time for the first phase is identical to that in a ring with 

√p processors, i.e., (ts + twmp/2)(√p – 1). 

• Time in the second phase is identical to the first 

phase. Therefore, total time is twice of this time, i.e., 

• It can be shown that the time for rearrangement is less 

much less than this communication time. 



All-to-All Personalized Communication 

on a Hypercube 

• Generalize the mesh algorithm to log p steps. 

• At any stage in all-to-all personalized communication, 

every node holds p packets of size m each. 

• While communicating in a particular dimension, every 

node sends p/2 of these packets (consolidated as one 

message). 

• A node must rearrange its messages locally before 

each of the log p communication steps. 



All-to-All Personalized Communication 

on a Hypercube 

An all-to-all personalized communication algorithm on a three-dimensional hypercube. 



All-to-All Personalized Communication 

on a Hypercube: Cost 

• We have log p iterations and mp/2 words are 

communicated in each iteration. Therefore, the cost is: 

• This is not optimal! (Each of the p nodes sends and 

receives m(p - 1) words, the average distance 

between any two nodes on a hypercube is (log p)/2 and 

there is a total of (p log p)/2 links in the hypercube 

network)



All-to-All Personalized Communication 

on a Hypercube: Optimal Algorithm 

• Each node simply performs p – 1 communication 

steps, exchanging m words of data with a different 

node in every step. 

• A node must choose its communication partner in each 

step so that the hypercube links do not suffer 

congestion. 

• In the jth communication step, node i exchanges data 

with node (i XOR j). 

• In this schedule, all paths in every communication step 

are congestion-free, and none of the bidirectional links 

carry more than one message in the same direction. 



All-to-All Personalized Communication 

on a Hypercube: Optimal Algorithm 

Seven steps in all-to-all personalized communication on an eight-node hypercube. 



All-to-All Personalized Communication 

on a Hypercube: Optimal Algorithm 

A procedure to perform all-to-all personalized communication on a d-
dimensional hypercube. The message Mi,j initially resides on node i

and is destined for node j. 



All-to-All Personalized Communication on a 

Hypercube: Cost Analysis of  Optimal 

Algorithm 

• There are p – 1 steps and each step involves non-

congesting message transfer of m words. 

• We have: 

• This is asymptotically optimal in message size. 



Circular Shift 

• A special permutation in which node i sends a data 

packet to node (i + q) mod p in a p-node ensemble 

(0 ≤ q ≤ p). 



Circular Shift on a Mesh 

• The implementation on a ring is rather intuitive. It can 

be performed in min{q,p – q} neighbor communications. 

• Mesh algorithms follow from this as well. We shift in 

one direction (all processors) followed by the next 

direction. 

• The associated time has an upper bound of:



Circular Shift on a Mesh 

The communication steps in a circular 5-shift on a 4 x 4 mesh.



Circular Shift on a Hypercube 

• Map a linear array with 2d nodes onto a d-

dimensional hypercube (Gray code).

• Any two nodes at a distance of 2i (i>1) on the linear array 

are separated by exactly two links on the hypercube.

• To perform a q-shift, we expand q as a sum of distinct 

powers of 2.

• If q is the sum of s distinct powers of 2, then the circular 

q-shift on a hypercube is performed in s phases. 

• The time for this is upper bounded by: 

• If E-cube routing is used, this time can be reduced to



Circular Shift on a Hypercube 

The mapping of an eight-node linear array onto a three-dimensional hypercube 
to perform a circular 5-shift as a combination of a 4-shift and a 1-shift. 



Circular Shift on a Hypercube 

Circular q-shifts on an 8-node hypercube for 1 ≤ q < 8. 



Summary

Operation T (hypercube)

One-to-all broadcast

All-to-all broadcast

All-reduce

Scatter

All-to-all personalized

Circular shift



Distributed ML Training

• Distributed Machine Learning (ML) training on 4 GPUs.

• Each GPU has a different subset of training data.

• Each GPU computes different gradients.

• Gradients obtained by different GPUs are combined by

averaging.

a, b, c, d are calculated gradients



Distributed ML Training

• NVIDIA’s NVLink is a direct GPU-to-GPU interconnect.

• Allows one to access the memory and CUDA cores as though they 

were a single card.

NVLink interconnect topologies and bandwidths



Distributed ML Training

• Communication used is All-Reduce on a logical ring.

• Two phases of communication: i) Reduce-scatter and ii)

All-Gather

a, b, c, d are calculated gradients



Distributed ML Training (Reduce-scatter)

Step 1 Step 2

Step 3



Distributed ML Training (All-Gather)

Step 1 Step 3…

• Finally the algorithm computes the averages.

Ref:

[1] A friendly introduction to distributed training (ML Tech Talks), 

https://www.youtube.com/watch?v=S1tN9a4Proc, 2023.

https://www.youtube.com/watch?v=S1tN9a4Proc

