Basic Communication Operations

Ananth Grama, Anshul Gupta, George
Karypis, and Vipin Kumar

To accompany the text "Introduction to Parallel Computing”, Addison Wesley, 2003

Topic Overview

One-to-All Broadcast and All-to-One Reduction
All-to-All Broadcast and Reduction

All-Reduce and Prefix-Sum Operations
Scatter and Gather

All-to-All Personalized Communication
Circular Shift

Basic Communication Operations:
Introduction

Many interactions in practical parallel programs
occur in well-defined patterns involving groups of
Processors.

Efficient implementations of these operations can
Improve performance, reduce development effort and
cost, and improve software quality.

Efficient implementations must leverage underlying
architecture. For this reason, we refer to specific
architectures here.

We select a descriptive set of architectures to
llustrate the process of algorithm design.

Basic Communication Operations:
Introduction

Group communication operations are built using point-
to-point messaging primitives.
Recall from our discussion of architectures that

communicating a message of size m over an
uncongested network takes time t, +t, m.

We use this as the basis for our analyses. Where
necessary, we take congestion into account explicitly by
scaling the t,, term.

We assume that the network is bidirectional and that
communication is single-ported.

One-to-All Broadcast and All-to-One
Reduction

* One processor has a piece of data (of size m) it needs
to send to everyone.

* The dual of one-to-all broadcast is all-to-one reduction.

 In all-to-one reduction, each processor has m units of
data. These data items must be combined piece-wise
(using some associative operator, such as addition or
min), and the result made available at a target
processor.

One-to-All Broadcast and All-to-One
Reduction

One-to-all Broadcast
%l =

M M M
00 . o OO0 -
-to-one Reduction

—
——

One-to-all broadcast and all-to-one reduction among processors.

One-to-All Broadcast and All-to-One
Reduction on Rings

« Simplest way is to send p-1 messages from the source
to the other p-1 processors - this is not very efficient.

« Use recursive doubling: source sends a message to a
selected processor. We now have two independent
problems defined over halves of machines.

* Reduction can be performed in an identical fashion by
Inverting the process.

One-to-All Broadcast

S e e
O s O m—" O
__ :

One-to-all broadcast on an eight-node ring. Node O is the source of the
broadcast. Each message transfer step is shown by a numbered,
dotted arrow from the source of the message to its destination. The
number on an arrow indicates the time step during which the
message is transferred.

All-to-One Reduction

4
O>—OO—O—0
:ﬁﬁIﬁﬁﬁﬁﬁﬁﬁfﬁﬁfﬁlﬁfﬁﬁffﬁ """"""""""""""""""""""" e -

Reduction on an eight-node ring with node 0 as the
destination of the reduction.

Broadcast and Reduction: Example

Consider the problem of multiplying a matrix with a vector.

The n x n matrix is assigned to an n x n (virtual) processor grid.
The vector is assumed to be on the first row of processors.

The first step of the product requires a one-to-all broadcast of the
vector element along the corresponding column of processors.
This can be done concurrently for all n columns.

The processors compute local product of the vector element and
the local matrix entry.

In the final step, the results of these products are accumulated to
the first row using n concurrent all-to-one reduction operations
along the columns (using the sum operation).

Broadcast and Reduction: Matrix-Vector
Multiplication Example

.‘LI]-lu-ulue Input Vector
reduction

L

=~— Omne-to-all broadcast

,_

Matrix

Output
Wector

One-to-all broadcast and all-to-one reduction in the multiplication of a 4
X 4 matrix with a 4 x 1 vector.

Broadcast and Reduction on a Mesh

 We can view each row and column of a square mesh of
p nodes as a linear array of Vp nodes.

« Broadcast and reduction operations can be performed in
two steps - the first step does the operation along a
row and the second step along each column

concurrently.
« This process generalizes to higher dimensions as
well.

Broadcast and Reduction on a Mesh:
Example

One-to-all broadcast on a 16-node mesh.

Broadcast and Reduction on a
Hypercube

« A hypercube with 29 nodes can be regarded as a d-
dimensional mesh with two nodes in each dimension.

« The mesh algorithm can be generalized to a hypercube
and the operation is carried out in d (=log p) steps.

Broadcast and Reduction on a
Hypercube: Example

(110 3 (111

gLy

One-to-all broadcast on a three-dimensional hypercube.
The binary representations of node labels are shown in
parentheses.

Broadcast and Reduction Algorithms

All of the algorithms described above are adaptations of
the same algorithmic template.

We illustrate the algorithm for a hypercube, but the
algorithm, as has been seen, can be adapted to other
architectures.

The hypercube has 29 nodes and my_id is the label for
a node.

X Is the message to be broadcast, which initially
resides at the source node 0.

Broadcast and Reduction Algorithms

= 0 ® N O AW~

14.
15.
16.

procedure GENERAL_ONE_TO_ALL_BC(d, my_id, source, X)
begin
my_virtual_id .= my_td XOR source;
mask :— 2% — 1;
fori:—=d—1downtoOdo /" QOuterloop */
mask 1= mask XOR 2%; /* Set bit 1 of maskto 0 */
if (my_virtual_id AND mask) = 0 then
if (my_virtual_id AND 2%) = 0 then
virtual_dest := my_virtual_id XOR 2%
send X 1o (virfual_dest XOR source);
/* Convert virfual_dest to the label of the physical destination */
else
virtual_source := my_virtual_id XOR 2%
receive X from (virfual_source XOR source);
/* Convert virfual_source to the label of the physical source */
endelse;
endfor;
end GENERAL_ONE_TO_ALL_BC

One-to-all broadcast of a message X from source on a hypercube.

Broadcast and Reduction Algorithms

1. procedure ALL_TO_ONE_REDUCE(d, my_id, m. X, sum)
2. begin
3. for j .= 0tom — 1dosum|j] .= X[j]:
4, mask := 0,
5. for: .= 0tod—1do
/7 Select nodes whose lower : bits are 0 */
6. if (my_id AND mask) = 0 then
7. if (my_id AND 2°) # 0 then
8. msg_destination := my_id XOR 2¢;
Q. send sum 10 msg_destination,
10. else
11, msg_source := my_id XOR 2%
12. receive X from msg_source;
13. forj .= 0tom —1do
14, sum(j| :=sumiy] + X|[7]:
15. endelse;
16. mask := mask XOR 2%, J* Set bit 1 of maskto 1%/
17. endfor;
18. end ALL_TO_ONE_REDUCE

Single-node accumulation on a d-dimensional hypercube. Each node contributes a message X containing m words,
and node 0 is the destination.

Cost Analysis

« The broadcast or reduction procedure involves log p
point-to-point simple message transfers, each at a
time cost of t, + t,m.

« The total time is therefore given by:

T

(ts + twm) log p.

All-to-All Broadcast and Reduction

« (Generalization of broadcast in which each processor is
the source as well as destination.

« A process sends the same m-word message to every
other process, but different processes may
broadcast different messages.

All-to-All Broadcast and Reduction

My, Mg, M,
All-to-all broadcast
= M, M, M,
M, 1 Mp M, M, M,
@ s @ ;H-m-all reduction L

All-to-all broadcast and all-to-all reduction.

All-to-All Broadcast and Reduction on a
Ring

Simplest approach: perform p one-to-all broadcasts.
This is not the most efficient way, though.

Each node first sends to one of its neighbors the
data it needs to broadcast.

In subsequent steps, it forwards the data received
from one of its neighbors to its other neighbor.

The algorithm terminates in p-1 steps.

All-to-All Broadcast and Reduction on a

L (6}
O OO RO
{7
T o :
Ly e
o Ist communication step
¥
0
L
243
B P
{7
7.6
28 2 (2)
2nd communication step
: 0,7}
¥
0
2
. -
L] L
L] L
7 7N 7 (6)
e eemene e et e [
GF—CO—CG—0
NS NS 4
Po|mes54320) (6543.210) (3432107 4321076 :
7T)
. .) . 7th communication step
Do |orssann 0076543 LI0T634) (3210765
(G O—0)
70 73 74

All-to-all broadcast on an eight-node ring.

All-to-All Broadcast and Reduction on a
Ring
procedure ALL_TO_ALL_BC_RING(mwy_id, my_msqg, p, resul)
begin
left .= (my_id — 1) mod p;
right .= (my-id + 1) mod p;
resulf i= my_msgq;
msq .= result;
fori:—1top —1do
send msg to right;
receive msg from left;
result .= result U msg;

endfor:
end ALL_TO_ALL_BC_RING

N b W~

—_— — —)
N — O

All-to-all broadcast on a p-node ring.

All-to-all Broadcast on a Mesh

« Performed in two phases - in the first phase, each row
of the mesh performs an all-to-all broadcast using the
procedure for the linear array.

« In this phase, all nodes collect Vp messages
corresponding to the Vp nodes of their respective rows.
Each node consolidates this information into a single
message of size mp.

« The second communication phase is a columnwise all-
to-all broadcast of the consolidated messages.

All-to-all Broadcast on a Mesh

(&) (7 () 6,78 (6,7.8) (6,7.8)

@ @ @ @ @ @

o
Ay
oy
L
£
NS
py

(0) (1) @) 0,12 (0.12) 0.1.2)

ia) Imitial data distribution by Data distribution after rowwise broadcast

All-to-all broadcast on a 3 x 3 mesh. The groups of nodes
communicating with each other in each phase are enclosed by
dotted boundaries. By the end of the second phase, all nodes get
(0,1,2,3,4,5,6,7) (that is, a message from each node).

All-to-all Broadcast on a Mesh

1. procedure ALL_TO_ALL_BC_MESH(my_i:d, my_msg, p, resulf)
2. begin

J* Communication along rows */

3. left .= my_id — (my_id mod \/p) + (my_id — 1)mod,/p:
4, right:= my_id — (my_id mod /p) + (my_id + 1) mod /p.
5. result .= my_msg;

6. msg = resuff;

/. fori.=1to./p—1do

8. send msg to right;

9. receive msg from leff;

10. result .= resulf U msg;

11. endfor;

J* Communication along columns */

12. up = (my-id — \/p) mod p;

13. down = (my_id + /p) mod p;

14, msg = resuff;

15. fori:=1to,/p—1do

16. send msg to down;

17. receive msg from up;

18. result .= result U msg;

19. endfor;

20. end ALL_TO_ALL BC_MESH

All-to-all broadcast on a square mesh of p nodes.

All-to-all broadcast on a Hypercube

« Generalization of the mesh algorithm to log p
dimensions.

« Message size doubles at each of the log p steps.

All-to-all broadcast on a Hypercube

(¢} Distribution before the third step (d) Final distribution of messages

All-to-all broadcast on an eight-node hypercube.

— O O NOO A WN

0.

All-to-all broadcast on a Hypercube

procedure ALL_TO_ALL_BC _HCUBE(my_id, my_msgq. d, result)
begin
resulf .= my_msg.
for: .= 0tod —1do
oartner:= my_id XOR 2%;
send result to pariner;
receive msg from partner;
result .= resulf U msg;

endfor;
end ALL_TO_ALL_BC_HCUBE

All-to-all broadcast on a d-dimensional hypercube.

All-to-all Reduction

« Similar communication pattern to all-to-all broadcast,
except in the reverse order.

* On receiving a message, a node must combine it with
the local copy of the message that has the same
destination as the received message before
forwarding the combined message to the next neighbor.

Cost Analysis

* On aring, the time is given by: (t, + t,m)(p-1).
« On a mesh, the time is given by: 2t,(Np — 1) + t, m(p-1).
« On a hypercube, we have:

logp

T = Z(ts + 2" t,m)

=1

=tglogp + tym(p — 1).

All-Reduce and Prefix-Sum Operations

In all-reduce, each node starts with a buffer of size m
and the final results of the operation are identical
buffers of size m on each node that are formed by
combining the original p buffers using an associative
operator.

ldentical to all-to-one reduction followed by a one-to-
all broadcast. This formulation is not the most efficient.
Uses the pattern of all-to-all broadcast, instead. The only
difference is that message size does not increase
here. Time for this operation is (t; + t,m) log p.

Different from all-to-all reduction, in which p
simultaneous all-to-one reductions take place, each with
a different destination for the result.

The Prefix-Sum Operation

* Given p numbers ngy,ny,...,n,; (one on each node), the
problem is to compute the sums s, = > *_, n; for all k
between 0 and p-1.

* Initially, n, resides on the node labeled k, and at the
end of the procedure, the same node holds S,.

The Prefix-Sum Operation

G| (571 [6+7]

(a) Imitial distribution of values

[d+5+6) [4+5+4] [d+53+6+70 [d45+6+T]

(c) Distribution of sums before third step (d) Final distribution of prefix sums

Computing prefix sums on an eight-node hypercube. At each node, square

brackets show the local prefix sum accumulated in the result buffer and

parentheses enclose the contents of the outgoing message buffer for the
next step.

The Prefix-Sum Operation

The operation can be implemented using the all-to-all
broadcast kernel.

We must account for the fact that in prefix sums the
node with label k uses information from only the k-
node subset whose labels are less than or equal to k.

This is implemented using an additional result buffer.
The content of an incoming message is added to the
result buffer only if the message comes from a node with
a smaller label than the recipient node.

The contents of the outgoing message (denoted by
parentheses in the figure) are updated with every
Incoming message.

= — =000 N O AN~

N — O

The Prefix-Sum Operation

procedure PREFIX_SUMS_HCUBE(my_id, my_number, d, resulf)
begin
result := my_number;
msg := resulf;
fori:=0tod — 1do
partner .= my_id XOR 2%;
send msg to parfner;
receive humber from parfner;
msg := msg + humber,
if (partner < my_id) then result .= resulf + number;
endfor;
end PREFIX_SUMS_HCUBE

Prefix sums on a d-dimensional hypercube.

Scatter and Gather

In the scatter operation, a single node sends a unigque
message of size m to every other node (also called a
one-to-all personalized communication).

In the gather operation, a single node collects a
unique message from each node.

While the scatter operation is fundamentally different
from broadcast, the algorithmic structure is similar,
except for differences in message sizes (messages
get smaller in scatter and stay constant in broadcast).

The gather operation is exactly the inverse of the
scatter operation and can be executed as such.

Gather and Scatter Operations

M,

Scatter

Iwl
M,

M, M, M,
© 0O -0 @ O ®

Scatter and gather operations.

Example of the Scatter Operation

() Distribution before the third step (d) Final distribution of messages

The scatter operation on an eight-node hypercube.

Cost of Scatter and Gather

There are log p steps, in each step, the machine size
halves and the data size halves.

We have the time for this operation to be:

T'=tilogp+t,m(p—1).

This time holds for a linear array as well as a 2-D mesh.
These times are asymptotically optimal in message size.

All-to-All Personalized Communication

« Each node has a distinct message of size m for
every other node.

« This is unlike all-to-all broadcast, in which each node
sends the same message to all other nodes.

 All-to-all personalized communication is also known as
total exchange.

All-to-All Personalized Communication

=

Mop1 Mip. Mpi. o My Mpoy, p-l. p-l
My, Mll Mp.1 Ml.ﬂ Ml.l M,
Mg My o All-to-all personalized M,

communication
@ @ @) < = @ @ ©

All-to-all personalized communication.

All-to-All Personalized Communication:
Example

Consider the problem of transposing a matrix.
Each processor contains one full row of the matrix.

The transpose operation in this case is identical to an
all-to-all personalized communication operation.

All-to-All Personalized Communication:

Example
]
R A F -~
, E EARE
By # # of
. & ﬁ,.--" 5
||r

All-to-all personalized communication in transposing a 4 X 4 matrix
using four processes.

All-to-All Personalized Communication
on a Ring

Each node sends all pieces of data as one
consolidated message of size m(p — 1) to one of its
neighbors.

Each node extracts the information meant for it from
the data received, and forwards the remaining (p — 2)
pieces of size m each to the next node.

The algorithm terminates in p — 1 steps.
The size of the message reduces by m at each step.

All-to-All Personalized Communication
on a Ring

B G e R 5
]] A1]
4w ISLOON L ted)gosp
TR Tl 4%]
..;....l..[.‘..'ﬁ.'_.'::..[.‘..'.l..'.J.;;”H'“{"J -3
({35} .. 132]) H24ah... {2150
2 B T T :

: ELH.HLEHS'{I'['E él.l'ﬂjl. :
: ({300, (5) fleSle : é é
op2OL e 5y a0y s g
2 T 2) G (23], 1 1L o gy B0, SH43D
P s s (200, (1904 o5)
T Sz (L0
vy v v ¥ 7 YT
....... (011050 Sz prop S/ 123 4
....... U5.0) . 1540 U02p.. 1050
_______ Uad) 430 U520 {54])
({314 {32} 425 {430 4
({2.1}) ({324
5 .. j

All-to-all personalized communication on a six-node ring. The label of each
message is of the form {x,y}, where x is the label of the node that originally
owned the message, and v is the label of the node that is the final
destination of the message. The label ({X;,y.}, {X,,¥,}, ..., {X,,¥,}, indicates a
message that is formed by concatenating n individual messages.

All-to-All Personalized Communication
on a Ring: Cost

We have p — 1 steps in all.
In step I, the message size is m(p — i).

The total time is given by:
p—1

T = Z(tq + t-wn?’(p — ?))
1=1
p—1

= ts(p—1)+ Z 1t
1=1

= (ts+tump/2)(p—1).

The t, term in this equation can be reduced by a factor
of 2 by communicating messages in both directions.

All-to-All Personalized Communication
on a Mesh

Each node first groups its p messages according to
the columns of their destination nodes.

All-to-all personalized communication is performed
Independently in each row with clustered messages of
size m\p.

Messages in each node are sorted again, this time
according to the rows of their destination nodes.

All-to-all personalized communication is performed
Independently in each column with clustered messages
of size mvp.

on a Mesh

S EXINERIRET IS

IBALIBA)LIBT),
©[B21IBS)IEED

({6,0}.163).16.6}, ({704 17.31.07.6).
(6.1}, [64).067). [TARATALITTY.
[8.2}.165).168)) [T2LI750178D

All-to-All Personalized Communication

5,00 153).0560
510540047

[7.007.3}.17.6).
(8.0}.{83).{86))

[TAhI7.40{7.7).
[BA}(B41L(8T]

.. [j.j:’-[j.j},l’j.&:‘]
({3.00.133}.13.6}. (1400143} 14.5).
(3110340037 [4.11.04.4}.047).
[32}.013.3}.138) [42}.14.3}.148) ({6.0}.{6.3}.(6.6}. (a1 {64} (6T} (16,2} {6.5}.(6.8},

(7210751178},
(82}.{85).88))

C32)035)
PO[3EL04.2).
[45),148).1
[5.2).155).1

(580

D334
N K RER T
[44).0471.1
(510054}

(570 5(’4‘\5
AN

l[G.G}.['G.EII-.[G.{:I'.
{00}, {0.4],10.7],
[0.2}.{05}.[08))

(10} (13, (1.6],
(L3 {14} 1T)
(121115}, 1.8))

l["{l} [2.3},{2.6},
(2.0, [24).127).
[2.2}.[23}.12.8))

{a) Data distribution at the
beginning of first phase

N
v _
E0d).[04),
RV IRERTR:
(L4007
(213024

(27 (’I‘\E

(30113311361, |
[4,0).{43}.146),
[3.00.{533}.056])

(o)

L (102).005).]
(081012},
(1500181
(2230251

(28)) @

ib) Data distribution at the beginning of second phase

(10.0}.{03).106). |
[LOL113).016], ¢
[2,0}.{23}.(26}) "

The distribution of messages at the beginning of each phase of all-to-all personalized
communication on a 3 x 3 mesh. At the end of the second phase, node i has
messages ({0,i},...,{8,i}), where 0 </ < 8. The groups of nodes communicating
together in each phase are enclosed in dotted boundaries.

All-to-All Personalized Communication
on a Mesh: Cost

« Time for the first phase is identical to that in a ring with
\p processors, i.e., (t, + t,mp/2)(Np — 1).

 Time in the second phase is identical to the first
phase. Therefore, total time is twice of this time, I.e.,

I'= (2ts +tump)(\/p—1).

It can be shown that the time for rearrangement is less
much less than this communication time.

All-to-All Personalized Communication
on a Hypercube

Generalize the mesh algorithm to log p steps.

At any stage in all-to-all personalized communication,
every node holds p packets of size m each.

While communicating in a particular dimension, every
node sends p/2 of these packets (consolidated as one
message).

A node must rearrange its messages locally before
each of the log p communication steps.

All-to-All Personalized Communication
on a Hypercube

({e0}.06.2).(6.4]. (6.6}, (16,1}.16,3}.16,5).16.7).
6.0] ... (67} (7.0} .. {7,7D [TOHAT7.20.0740 07600 [TAAT 37501770

(20} .. {27 13,0} ..
........ =

(371 £120}.42.2),
H241i126),
{30032,
H34)i03.6))

([4.1).14.3],
(455147},
[3.15,15.3),
1550157

(0.0} ... (0.7} ({10} .. [17]) l[ﬂ,{l}.;'ij','z 0A4106)] L3S LILT)

(100125114 Hus:.; 10,1}.10,3).[0,5].107})
{a) Initial distribution of messages ib) Distribution before the second step
(62146611425 (456), (FALTTLI531,05.7),
5,5[?%;["-0#[5.2}@.[51::.1 (6.3, 06.7).043).14.7)) ([0.6) ... (761 ({07} .. (77D
J"I :

410611,
[4.5).16.5),
(5100700,
[5.501.17.5D)

0.00,[047,[2.05,12.4). HLTRILSE(3. 03 135). 0.0} .. {7.00) (0.1} . 7.1}
[LO} (141300 (34]) [0} 105021).025))
ic) Distribution before the third step (d) Final distribution of messages

An all-to-all personalized communication algorithm on a three-dimensional hypercube.

All-to-All Personalized Communication
on a Hypercube: Cost

« We have log p iterations and mp/2 words are
communicated In each iteration. Therefore, the cost Is:

T = (ts + twmp/2) log p.

« This is not optimal! (Each of the p nodes sends and
receives m(p - 1) words, the average distance
between any two nodes on a hypercube is (log p)/2 and

there is a total of (p log p)/2 links in the hypercube

network) tepm(p = 1)(log p)/2

(plog p)/2
= tpym(p-—1).

I =

All-to-All Personalized Communication
on a Hypercube: Optimal Algorithm

Each node simply performs p —1 communication
steps, exchanging m words of data with a different

node in every step.

A node must choose its communication partner in each
step so that the hypercube links do not suffer
congestion.

In the j'" communication step, node i exchanges data
with node (i XOR).

In this schedule, all paths in every communication step

are congestion-free, and none of the bidirectional links
carry more than one message in the same direction.

All-to-All Personalized Communication
on a Hypercube Optlmal Algorlthm

(z)

Seven steps in all-to-all personalized communication on an eight-node hypercube.

All-to-All Personalized Communication
on a Hypercube: Optimal Algorithm

procedure ALL_LTO_ALL_PERSONAL(d, my_id)
begin
fori := 1to2? — 1 do
begin
partner .= my_id XOR 1;
send M.,y _id partner 1O partner,
receive Myartner,my_ia frOM partner,
endfor;
end ALL_TO_ALL_PERSONAL

VO NO O s N~

A procedure to perform all-to-all personalized communication on a d-
dimensional hypercube. The message M;; initially resides on node |
and is destined for node |.

All-to-All Personalized Communication on a
Hypercube: Cost Analysis of Optimal
Algorithm

There are p — 1 steps and each step involves non-
congesting message transfer of m words.

We have:

T_(ts +tym)(p — 1).

This is asymptotically optimal in message size.

Circular Shift

« A special permutation in which node | sends a data
packet to node (i + q) mod p in a p-node ensemble

(0O=qg=p).

Circular Shift on a Mesh

« The implementation on a ring is rather intuitive. It can
be performed in min{g,p — g} neighbor communications.

« Mesh algorithms follow from this as well. We shift in

one direction (all processors) followed by the next
direction.

« The associated time has an upper bound of:

T = (ts+tem)(/p+1).

Circular Shift on a Mesh

az ,r/ﬂ{{?? }{,‘[\l\.‘.‘.] a5 (15) r,ﬂ\r‘m r\rlJI (14)
O—O0—0—0 O—00—C—0
__':.] ,_’/_[‘:‘.' }/_Q\?] :,,/_““ _\;rm (__\r‘s. - (9 A (10)
O——w—0 O—C——-
41 (5) (&) 7) : I‘" @ s ©
S P T e Ny o TRt
O—O—0—0 ;Cv& O—o—0
(o (1 2) 3) “ o | [
N = = > - NG N N
00— 'O—(C——C—0
(a)]llnirtia] data dilslritbution and the (b) Step to compensate for backward row shift:
irst communication step
) 7 i (8} (9) (10)
e e
'\EI‘TI /“\[BI /"\\IQJ f ErlOI 3) I) Is (3) I (6)
O—CO—o—w O——(o—~(

SN EE N

n
=

0

(6) 3 f/ '/
Q/ \/ S

v Lo ¥ (1 (12) (13) (14)

-\\?ns] N fq\?m ‘&f- 2) ~ N 7 {
O—0—CE—=C O—0O—0—0

(c) Column shifts in the third communication step (d) Final distribution of the data

7

\"J\

(4-\[(3) /—:,-\i (4 ‘/'b"\ (3)
17 e e

e

At e i)

The communication steps in a circular 5-shift on a 4 x 4 mesh.

Circular Shift on a Hypercube

Map a linear array with 29 nodes onto a d-
dimensional hypercube (Gray code).

Any two nodes at a distance of 2' (i>1) on the linear array
are separated by exactly two links on the hypercube.

To perform a g-shift, we expand g as a sum of distinct
powers of 2.

If g Is the sum of s distinct powers of 2, then the circular
g-shift on a hypercube is performed in s phases.

The time for this is upper bounded by:
T = (ts +tum)(2logp — 1).

If E-cube routing is used, this time can be reduced to

1” — tS -+ t-u_r'r?l.

Circular Shift on a Hypercube

4] (5} (3 2}

First communication step of the 4-shift Second communication step of the 4-shift

{(a) The first phase (a 4-shift)

(3

(b) The second phase (a 1-shift) {¢) Final data distribution after the 5-shift

The mapping of an eight-node linear array onto a three-dimensional hypercube
to perform a circular 5-shift as a combination of a 4-shift and a 1-shift.

Circular Shift on a Hypercube

(g) 7-shift

Circular g-shifts on an 8-node hypercube for 1 < g < 8.

One-to-all broadcast

All-to-all broadcast

All-reduce

Scatter

All-to-all personalized

Circular shift

Summary

T = (ts+tym)logp

T =tslogp+ tym(p — 1)
T = (ts +tym)logp
I'=t.logp+ temip—1)
T=(ts +t,m)(p — 1)

T —_ t;_.i- _I_ fu_’-f?l

Distributed ML Training

Distributed Machine Learning (ML) training on 4 GPUSs.
Each GPU has a different subset of training data.
Each GPU computes different gradients.

Gradients obtained by different GPUs are combined by
averaging.

GPU-0 GPU-1 GPU-2 GPU-3
a a az a
b by [b
Ci Ci C C
d d; d d

Q@

PU GPU-1 GPU-2 GPU-3

-0
ao+ar+az+a a aj+az+a aQo+ar1+ax+as do+ar+az+as
bo + by + b2+ bs b bi+ b+ b3 bo + b+ by + b3 bo + b+ by + b3
Co+Ci+C2+C Co+Ci+C2+C3 Co+Ci+C2+C3 Co+Ci+C2+C3
do+di+ds+d do+di+ds+d do+di+d3+ds do+di+d3+ds

a, b, ¢, d are calculated gradients

Distributed ML Training

* NVIDIA's NVLIink is a direct GPU-to-GPU interconnect.

« Allows one to access the memory and CUDA cores as though they
were a single card.

4 GPUs per Node

2 GPUs per Node 3 GPUs per Node

Smgy=

)

GPU GPu GPU
l N
/s

L]

PR PCle Switch

NVLink interconnect topologies and bandwidths

Distributed ML Training

« Communication used is All-Reduce on a logical ring.

« Two phases of communication: i) Reduce-scatter and ii)
All-Gather

GPU-0 GPU-1
ao a
bo b,
—> —_—
Co Cq
do d;
GPU-3 GPU-2
as az
bs b,
C3 C2
ds d;

a, b, c, d are calculated gradients

Distributed ML Training (Reduce-scatter)

GPU-0 + GPU-1 GPU-0 GPU-1
= 1 ow) & e -
bo by — bo bs
c . . e

+

GPU-3 GPU-2 + GPU-3 GPU-2
8 — b
+— C2 C3+C2 2= C2

— d; + dz ds d2

Step 1 Step 2

GPU-0 GPU-1

ao ai+ao

— bo + bz + bs + by by

Co+C3+C2 = C1+ Co + C3+Cy

do +ds3 di+do+ds3 —
GPU-3 GPU-2

a3t+ar+a+ag - a+a+ao

b3 + b2 + by b2 + by

C3 +C2 C2

ds do+di+do+d; +—r

Step 3

Distributed ML Training (All-Gather)

GPU-0 GPU-1
Do+ by + by + by ————[bo+ by + by +b1 |
Co+C3+C2 Ci+Co+C3+Cs
do +ds di+do+ds
GPU-3 GPU-2
az+az+ai+ao a+ar1+ao
b3 + bz + by b2 + by

C3+C2 - Ci1+Co+C3+Cy

Step 1

GPU-0 GPU-1
az+az+ar1+ao az+azx+ar1+ao
bo+b3+b2+b1 bo+b3+b2+b1

—» Ci1+Co+C3+Cas Ci+Co+C3+Cas

d2+d1+do+d3 —_— d2+d1+do+d3

GPU-3 GPU-2

az+az+ar+ao a+a+ar+ap *+—

bo+ b3z + bz +by S bo+bz+b;+b;
Ci+Co+C3+Cs Ci+Co+C3+Cs

dy+di+do+d3 d+di+do+ds

Step 3

« Finally the algorithm computes the averages.

Ref:

[1] A friendly introduction to distributed training (ML Tech Talks),
https://www.youtube.com/watch?v=S1tN9a4Proc, 2023.

https://www.youtube.com/watch?v=S1tN9a4Proc

