Principles of Parallel Algorithm Design

Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar

To accompany the text “Introduction to Parallel Computing”,
Addison Wesley, 2003.

Chapter Overview: Algorithms and Concurrency

Introduction to Parallel Algorithms

— Tasks and Decomposition
Decomposition Techniques

— Recursive Decomposition

— Data Decomposition

— Exploratory Decomposition

— Hybrid Decomposition
Characteristics of Tasks

Mapping Technigues for Load Balancing
— Static and Dynamic Mapping

Preliminaries: Decomposition, Tasks, and
Dependency Graphs

The first step in developing a parallel algorithm is to decompose
the problem into tasks that can be executed concurrently

A given problem may be decomposed into tasks in many different
ways.

Tasks may be of same, different, or even interminate sizes.

A decomposition can be illustrated in the form of a directed graph
with nodes corresponding to tasks and edges indicating that the

result of one task is required for processing the next. Such a graph
Is called a task dependency graph.

Example: Multiplying a Dense Matrix with a Vector
A b y

01 n

Task 1

n-1
Task n

Computation of each element of output vector y is independent of other
elements. Based on this, a dense matrix-vector product can be decomposed
into n tasks. The figure highlights the portion of the matrix and vector accessed
by Task 1.

LTI T T T T TTTTT

Observations: While tasks share data (namely, the vector b), they do
not have any control dependencies - i.e., no task needs to wait for the
(partial) completion of any other. All tasks are of the same size in
terms of number of operations. Is this the maximum number of tasks
we could decompose this problem into?

Example: Database Query Processing

Consider the execution of the query:

MODEL = "CIVIC" AND YEAR = 2001 AND

(COLOR = "GREEN" OR COLOR = "WHITE)

on the following database:

ID# Model Year Color Dealer Price

4523 Civic 2002 Blue MN $18,000
3476 Corolla 1999 White IL $15,000
7623 Camry 2001 Green NY $21,000
9834 Prius 2001 Green CA $18,000
6734 Civic 2001 White OR $17,000
5342 Altima 2001 Green FL $19,000
3845 Maxima 2001 Blue NY $22,000
8354 Accord 2000 Green VT $18,000
4395 Civic 2001 Red CA $17,000
7352 Civic 2002 Red WA $18,000

Example: Database Query Processing

The execution of the query can be divided into subtasks in various
ways. Each task can be thought of as generating an intermediate
table of entries that satisfy a particular clause.

ID# | Year
ID# | Model ID# | Color
7623 | 2001
4523 | Civic 6734 | 2001 ID# | Color | | 7623 | Green
6734 | Civic 5342 | 2001 9834 | Green
4395 | Civic 3845 | 2001 3476 | White | | 5342 | Green
7352 | Civic 4395 | 2001 6734 | White | | 8354 | Green

ID# | Color

ID# | Model | Year 3476 | White
7623 | Green

734 civie | 2001 [Civic AND 2001 (White OR Green) 7D | Sreen

4395 | Civic | 2001 6734 | White

5342 | Green
8354 | Green

7%

(civic AND 2001 AND (White OR Green))

ID# | Model | Year| Color
6734 | Civic | 2001 | White

Decomposing the given guery into a number of tasks.
Edges in this graph denote that the output of one task
IS needed to accomplish the next.

Example: Database Query Processing

Note that the same problem can be decomposed into subtasks in other
ways as well.

ID# | Year
ID# | Model ID# | Color
7623 2001
4523 Civic 6734 2001 ID# | Color 7623 | Green
6734 Civic 5342 2001 9834 Green
4395 Civic 3845 2001 3476 ‘White 5342 Green
7352 Civic 4395 2001 6734 | White 8354 | Green

(civie) 2001
ID# | Color
White OR Green 3476 | White

7623 | Green
9834
6734
5342
8354

22ge
FEE

(2001 AND (White or Green)) [ID# | Color | Year

7623 Green | 2001
6734 | White | 2001
5342 | Green | 2001

(__ civic AND 2001 AND (White OR Green))

ID# | Model | Year| Color
6734 | Civic | 2001 | White

An alternate decomposition of the given problem into
subtasks, along with their data dependencies.

Different task decompositions may lead to significant differences with

respect to their eventual parallel performance.

Granularity of Task Decompositions

 The number of tasks into which a problem is decomposed
determines its granularity.

« Decomposition into a large number of tasks results in fine-grained
decomposition and that into a small number of tasks results in a
coarse grained decomposition.

A

01 n

c
«

Task 1

Task 2

Task 3

Task 4

A coarse grained counterpart to the dense matrix-vector product
example. Each task in this example corresponds to the computation of three
elements of the result vector.

Degree of Concurrency

The number of tasks that can be executed in parallel is the
degree of concurrency of a decomposition.

Since the number of tasks that can be executed in parallel may
change over program execution, the maximum degree of
concurrency is the maximum number of such tasks at any point
during execution. What is the maximum degree of concurrency of
the database query examples?

The average degree of concurrency is the average number of
tasks that can be processed in parallel over the execution of the
program. In other words, it is a ratio of the total amount of work to
the critical path length (see next slide).

The degree of concurrency increases as the decomposition
becomes finer in granularity and vice versa.

Critical Path Length

A directed path in the task dependency graph represents a
sequence of tasks that must be processed one after the other.

The longest such path determines the shortest time in which the
program can be executed in parallel.

The length of the longest path in a task dependency graph is called
the critical path length.

Critical Path Length

Consider the task dependency graphs of the two database query
decompositions:

Task 4 Task 3 Task 2 Task 1 Task 4 Task 3 Task 2 Task 1

(@ (b)

What are the critical path lengths for the two task dependency graphs?
What is the shortest parallel execution time for each decomposition?

How many processors are needed in each case to achieve this minimum parallel
execution time?

What is the maximum and average degree of concurrency?

Limits on Parallel Performance

« |t would appear that the parallel time can be made arbitrarily small
by making the decomposition finer in granularity.

« Thereis aninherent bound on how fine the granularity of a
computation can be. For example, in the case of multiplying a dense
matrix with a vector, there can be no more than ©(n?) concurrent
tasks.

« Concurrent tasks may also have to exchange data with other tasks.
This results in communication overhead. The tradeoff between the
granularity of a decomposition and associated overheads often
determines performance bounds.

Task Interaction Graphs

Subtasks generally exchange data with others in a
decomposition. For example, even in the trivial decomposition of the
dense matrix-vector product, if the vector is not replicated across all
tasks, they will have to communicate elements of the vector.

The graph of tasks (nodes) and their interactions/data exchange
(edges) is referred to as a task interaction graph.

Note that task interaction graphs represent data dependencies,
whereas task dependency graphs represent control dependencies.

Task Interaction Graphs: An Example

Consider the problem of multiplying a sparse matrix A with a
vector b. The following observations can be made:

As before, the computation of each element of the result vector can be
viewed as an independent task.

Unlike a dense matrix-vector product though, only non-zero elements of
matrix A participate in the computation.

If, for memory optimality, we also partition b across tasks, then one can
see that the task interaction graph of the computation is identical to the
graph of the matrix A (the graph for which A represents the adjacency

structure).
Task 0

o
o

91011

LI JES)
o0 e —
CES

o0 oo
oo

e [«
N |

{ I(]
o000 66 |u
o

g @

Task 11

—_
oo
-
=
-~

Decomposition Techniques

So how does one decompose a task into various subtasks?

While there is no single recipe that works for all problems, we
present a set of commonly used techniques that apply to broad
classes of problems. These include:

recursive decomposition
data decomposition
exploratory decomposition
speculative decomposition

Recursive Decomposition

Generally suited to problems that are solved using the divide-and-
conquer strategy.

A given problem is first decomposed into a set of sub-problems.

These sub-problems are recursively decomposed further until a
desired granularity is reached.

Recursive Decomposition: Example

A classic example of a divide-and-conquer algorithm on which we
can apply recursive decomposition is Quicksort.

|5/12[11] 1]10| 6|8 |3|7]a] 9] 2]

l1]3]|a]2] | 5|12]11]10| 68| 7| 9|
[1]2] [3]4] [5/6|8]7] Lo [12] 11[10]
] [2] 4] sle] [7]s] (o] [to[12]11]
s ls] 7] L8] [1o] [11]12]

In this example, once the list has been partitioned around the pivot, each
sublist can be processed concurrently (i.e., each sublist represents an
independent subtask). This can be repeated recursively.

Recursive Decomposition: Example

The problem of finding the minimum number in a given list (or
indeed any other associative operation such as sum, AND, etc.) can
be fashioned as a divide-and-conquer algorithm. The following
algorithm illustrates this.

We first start with a simple serial loop for computing the
minimum entry in a given list:

. procedure SERIAL_MIN (A, n)

. begin

. min = A[0];

fori:=1ton-1do

If (A[i] < min) min := AJi];
. endfor;

. return min;

.end SERIAL_MIN

©~NOUAWNER

Recursive Decomposition: Example

We can rewrite the loop as follows:

1. procedure RECURSIVE_MIN (A, n)
2. begin

3.1f(n=1)then

4. min:=A]0] ;

5. else

6. Imin:= RECURSIVE_MIN (A, n/2);

7. rmin = RECURSIVE_MIN (&(A[n/2]),n -n/2);
8. If (Imin <rmin) then
9.

1

min := Imin;
0. else
11. min ;= rmin;
12. endelse;
13. endelse;

14. return min;
15. end RECURSIVE_MIN

Recursive Decomposition: Example

The code in the previous foil can be decomposed naturally using a
recursive decomposition strategy. We illustrate this with the
following example of finding the minimum number in the set {4, 9, 1,
7, 8, 11, 2, 12}. The task dependency graph associated with this
computation is as follows:

min(1,2)

T

min(4,1) min(8,2)

N N

min(4,9) min(1,7) min(8,11) min(2,12)

Data Decomposition

ldentify the data on which computations are performed.
Partition this data across various tasks.
This partitioning induces a decomposition of the problem.
Data can be partitioned in various ways:

— OQOutput data partitioning

— Input data partitioning

— Intermediate data partitioning

The partitioning critically impacts performance of a parallel
algorithm.

Data Decomposition: Output Data Decomposition

Often, each element of the output can be computed
iIndependently of others (but simply as a function of the input).

A partition of the output across tasks decomposes the problem
naturally.

Output Data Decomposition: Example

Consider the problem of multiplying two n x n matrices A and B to
yield matrix C. The output matrix C can be partitioned into four tasks
as follows:

Al,l A112 Bljl Bl,? . Cl,l 0112
Aggl A212 | B211 82!2 02’1 02’2
Taskl: Cy; =A11B11+ A12B2;
Task2: Cy 5 =A11B12+ A12B52

Task3: Cqyq = Ag1B11+ Az2Bs 1
Task 4. 02,2 = A2,1B1=2 + AQ,QBQQ

Output Data Decomposition: Example

A partitioning of output data does not result in a unique decomposition into
tasks. For example, for the same problem as in previus foil, with identical

output data distribution, we can derive the following two (other)
decompositions:

Decomposition |

Decomposition |l

Task 1.
Task 2:
Task 3:
Task 4.
Task 5:
Task 6:
Task 7:

Task 8:

Ci1=A11 B,
C11=Ci1+tA1,By,
Ci2=A11 B,
C12=Cio+ A1, B
Co1=A,1 By,
Co1=Co1+ Ay, By,
Co2=A;1 By
C22=Coo+t A5 By5

Task 1.
Task 2:
Task 3:
Task 4.
Task 5:
Task 6:
Task 7:

Task 8:

Ci1=A11 B,
C11=5Cia+tA1,B5,
Ci2=A12B;,
C12=Cio+A11 By
C21=A22B5;
Co1=Co1+ A1 By,
Co2=As1 By
C22=Co+t Ay, By5

Output Data Decomposition: Example

Consider the problem of counting the instances of given itemsets in a
database of transactions. In this case, the output (itemset frequencies)
can be partitioned across tasks.

(a) Transactions (input), itemsets (input), and frequencies (output)

A,B,C,E,G.H A,B,C 1
. BDEFRKL D,E > 3
S ABFIHL C,F,G g 0
8§ DERH 3 AE g 2
§ FGHK § oo 5 1
E AEFKL "~ DK E 2
£ BCDGHL B,C,F =0
8 GHL C,D,K 0

D,E,F,K,L

F,G,H,L

(b) Partitioning the frequencies (and itemsets) among the tasks

A,B,C,E, G, H , ABC g1 A,B,C,E,G,H , GD g1
= [} @ Q
B,D,E,F,K,L ® D,E 2 3 B,D,E,FK,L ® DK 32
(7} [2] (7]
£ ABFEHL § cre £ 9| |§ ABEHL § Bcr £
8 D,EFH AE 2 2 % pEFRH C,D,K g 0
2 = 2 £
E F’ G’ H’ K’ g E F, G’ H, K, g
E AEFKL E AE,FX,L
% B,C,D,G,H,L % B,C,D,G,H,L
S GHL 8 GHL
D,E,F,K,L D,E,F,K, L
F,G,H,L F,G,H,L

task 1 task 2

Output Data Decomposition: Example

From the previous example, the following observations can be
made:

If the database of transactions is replicated across the
processes, each task can be independently accomplished with no
communication.

If the database is partitioned across processes as well (for

reasons of memory utilization), each task first computes partial
counts. These counts are then aggregated at the appropriate task.

Input Data Partitioning

« Generally applicable if each output can be naturally computed as a
function of the input.

* In many cases, this is the only natural decomposition because the
output is not clearly known a-priori (e.g., the problem of finding
the minimum in a list, sorting a given list, etc.).

« Ataskis associated with each input data partition. The task
performs as much of the computation with its part of the data.
Subseqguent processing combines these partial results.

Input Data Partitioning: Example

In the database counting example, the input (i.e., the transaction
set) can be partitioned. This induces a task decomposition in
which each task generates partial counts for all itemsets. These
are combined subsequently for aggregate counts.

Partitioning the transactions among the tasks

(7] (7]
_S AaB’CaEaG’H A’B’C 1 _S A,B,C 0
S B D,EFKL D,E > 2 9 D,E > 1
[7,] c (7] o
§ A,BFHL C,F,G S0 & C,F,G S 0
= 2 4 [2 4
[0} D9E9F>H 8 AiE = 1 [(}) A,E,F,K,L 3 A,E S 1
7 £ L @ £ o
-§ FsGsHst 9 CsD "qm-" 0 _§ B,C,D,G,H,L ﬁ C,D :';S]_
3 D,K E1] |8 GHL D,K £ |
B,C,F 0 D,E,F,K,L B,C,F T 0
C,D,K 0 F,G,H,L C,D,K 0

task 1 task 2

Partitioning Input and Output Data

Often input and output data decomposition can be combined for a
higher degree of concurrency. For the itemset counting example, the
transaction set (input) and itemset counts (output) can both be
decomposed as follows:

Partitioning both transactions and frequencies among the tasks

w [72]

§ A.B,C,E.GH A,B,C 1 § A,B,CEGH

S B,D.E,F.K,L D,E Z 2 8 B,D,E,FKL oy

2 = &2 =

§ ABFHL C,F, G S o & ABFHL]

—= £ g — 0 g

¢ DEFH 2 AE e 1 g DEFH 2 i

8§ FGHK 5 b £ FEGHK g cp B o

5 5 3 D,K B!

B,C,F 0
C,D,K 0
task 1 task 2

17:3 [72)

s A, B, C 0 S

5 > 2)

3 D,E g1 g 3

s C,F, G 8 0 s g

= 2 g = 2 8

© A,E. F,K,L @ AE 21 g AEBFKL 2 A

(72}

2 B.CD.GHL 5 B 8§ B.C.D.GHL 5 cp g 1

® GHL 5 s GHL D, K 51
D,E,F,K,L - D,E.F,K,L B,C,F 0
F.G,H, L F.G, H, L C,D,K 0

task 3 task 4

Intermediate Data Partitioning

Computation can often be viewed as a sequence of
transformation from the input to the output data.

In these cases, it is often beneficial to use one of the intermediate
stages as a basis for decomposition.

Intermediate Data Partitioning: Example

Let us revisit the example of dense matrix-matrix multiplication.
We first show how we can visualize this computation in terms of
iIntermediate matrices D.

AL))
1,1 B11 | Bip Dy | Drag

A
2,1 Dy 2.1 Dy 2.2

|
AL
1,2 Doy | Do
. —_—
A) .
2,2 B1 | Boo Doz | Dop2
Ci11]| C1,2

Intermediate Data Partitioning: Example

A decomposition of intermediate data structure leads to the following
decomposition into 8 + 4 tasks:

Stage |
D1,1,1 D1,1,2
A1,1 A1,2 B1,1 B1,2 . D1,2,2 D1,2,2
A2,1 A2,2 ' B2,1 Bz,z D2,1,1 2,1,2
2,2,2 2,2,2
Stage Il
D1,1,1 D1,1,2 4 D2,1,1 D2,1,2 N Cl,l Cl,2
D1,2,2 D1,2,2 D2,2,2 D2,2,2 02,1 02,2
Task 03: Di1,=A;1By5 Task 04: D,,,=A;1,B,,
Task 05: Di,:=A,1B, Task 06: D,,,=A,,B5,

Intermediate Data Partitioning: Example

The task dependency graph for the decomposition (shown in
previous foil) into 12 tasks is as follows:

Exploratory Decomposition

 In many cases, the decomposition of the problem goes hand-in-
hand with its execution.

« These problems typically involve the exploration (search) of a
state space of solutions.

* Problems in this class include a variety of discrete optimization
problems (0O/1 integer programming, QAP, etc.), theorem proving,
game playing, etc.

Exploratory Decomposition: Example

A simple application of exploratory decomposition is in the solution
to a 15 puzzle (atile puzzle). We show a sequence of three moves
that transforms a given initial state (a) to desired final state (d).

1]2]3]4 1]2(3]4 1]2(3]4 1]2]3]4
5016 5 7 51678 5/6|7]8
I
9 10| 7 |11 9 |10| =ril 9 |10[11] 4 9 |10[11]12
I
13| 14|15/ 12 13| 14|15/ 12 13| 14|15/ 12 13| 14|15
(a) (b) (c) (d)

Of-course, the problem of computing the solution, in general, is
much more difficult than in this simple example.

Exploratory Decomposition: Example

The state space can be explored by generating various successor
states of the current state and to view them as independent tasks.

oo |n =
NEED
[=N w
Szl
task 1 task 2 task 3 task 4
S |o|wn|= % | - o |© v = |0 |w |~
HEEE HEEE HEE HEEE
o N w o N w oS |N|w o =N w
IR =N NEN =R 0S| [+ I % | &
Do n|=||Hlo|n|=]||G|e|un|~ oo |wn|=||m|e|wn Do v =||5]|e - e |n|=||Gle|n|=]| |G w = 5o v~ (e |a=||Gle|n|=]| |50 |wn|~
NSRS Sla(v| RS || NI AN L NS N (RS [N rla(v| R N R (n] RS |0 rlela(d| RIS (N] (RIS (N
Y =N (W AN |w]|IR|G|N|w 7y =S |w o N |w v BN w5 w B[N |w BN |w oo |N|w] |G =N (W R N|w | (REN|w]| |5 NS W
QS| |n]| Q|2 |oe|n = oo | n SR |s| [R|Rle|s] |RI2 L~ ES SR~ B2 AR (R (| |R[2 o> IS CREN ISR AR [R oo »

Exploratory Decomposition: Anomalous Computations

* In many instances of exploratory decomposition, the decomposition
technigue may change the amount of work done by the parallel

formulation.
» This change results in super- or sub-linear speedups.

())
Solutlon
Total serial work: 2m+1 Total serial work: m
Total parallel work: 4 Total parallel work: 4m

(a) (b)

Hybrid Decompositions

Often, a mix of decomposition techniques is necessary for
decomposing a problem. Consider the following examples:

In quicksort, recursive decomposition alone limits concurrency (Why?). A
mix of data and recursive decompositions is more desirable.

Even for simple problems like finding a minimum of a list of numbers, a
mix of data and recursive decomposition works well.

37 (219 11| 4 5 8 7 10| 6| 13 1l 19 3 9]c?ei[gmposition
2 1 Recursive

decomposition

Characteristics of Tasks

Once a problem has been decomposed into independent tasks, the
characteristics of these tasks critically impact choice and
performance of parallel algorithms. Relevant task characteristics
include:

« Task generation.
 Task sizes.
* Size of data associated with tasks.

Task Generation

Static task generation: Concurrent tasks can be identified a-priori.
Typical matrix operations, graph algorithms, image processing
applications, and other regularly structured problems fall in this
class. These can typically be decomposed using data or recursive
decomposition techniques.

Dynamic task generation: Tasks are generated as we perform
computation. A classic example of this is in game playing - each 15
puzzle board is generated from the previous one. These applications
are typically decomposed using exploratory or speculative
decompositions.

Task Sizes

Task sizes may be uniform (i.e., all tasks are the same size) or non-
uniform.

Non-uniform task sizes may be such that they can be determined
(or estimated) a-priori or not.

Examples in this class include discrete optimization problems, in
which it is difficult to estimate the effective size of a state space.

Mapping Technigues

Once a problem has been decomposed into concurrent tasks, these
must be mapped to processes (that can be executed on a parallel
platform).

Mappings must minimize overheads.
Primary overheads are communication and idling.

Minimizing these overheads often represents contradicting
objectives.

Assigning all work to one processor trivially minimizes
communication at the expense of significant idling.

Mapping Techniques for Minimum Idling

Mapping must simultaneously minimize idling and load balance.
Merely balancing load does not minimize idling.

Pl
P2

P3

P4

start

synchronization
}
|
5| ! 9
1 ' I '
|
6| 1 |10
e
|
7] |11
. |
|
8| 1 |12
é

finish

Pl
P2

P3

P4

start

synchronization

10

11

12

- - - - = — e — = =

-+
I
(V8]

(b)

Mapping Techniques for Minimum Idling

Mapping techniques can be static or dynamic.

Static Mapping: Tasks are mapped to processes a-priori. For this to
work, we must have a good estimate of the size of each task. Even
In these cases, the problem may be NP complete.

Dynamic Mapping: Tasks are mapped to processes at runtime.
This may be because the tasks are generated at runtime, or that
their sizes are not known.

Other factors that determine the choice of techniques include the
size of data associated with a task and the nature of underlying
domain.

Mapping of Tasks and Complexity

Determining the optimal mapping of tasks is an NP-complete
problem in general. Some examples:

Mapping of tasks with dependencies on a single processor is
solvable in polynomial time.

Mapping of tasks without dependencies on a parallel processors
(even 2) is NP-complete.

The same problem but with uniform task size can be solved in
polynomial time.

If we add dependencies the problem becomes NP-complete.

Schemes for Static Mapping

« Mappings based on data partitioning.
« Mappings based on task graph partitioning.
« Hybrid mappings.

Mappings Based on Data Partitioning

We can combine data partitioning with the ~"owner-computes" rule to
partition the computation into subtasks. The simplest data
decomposition schemes for dense matrices are 1-D block
distribution schemes.

row-wise distribution column-wise distribution

Block Array Distribution Schemes

Block distribution schemes can be generalized to higher
dimensions as well.

Block Array Distribution Schemes: Examples

For multiplying two dense matrices A and B, we can partition the
output matrix C using a block decomposition.

For load balance, we give each task the same number of
elements of C. (Note that each element of C corresponds to a
single dot product.)

The choice of precise decomposition (1-D or 2-D) is determined
by the associated communication overhead.

In general, higher dimension decomposition allows the use of
larger number of processes.

Data Sharing in Dense Matrix Multiplication

y 00000000
p]
r 000000000
s 000000000000
00000000
;, 0000000000
]
g 00000
-]

Cyclic and Block Cyclic Distributions

If the amount of computation associated with data items varies,
a block decomposition may lead to significant load imbalances.

A simple example of this is in LU decomposition (or Gaussian
Elimination) of dense matrices.

LU Factorization of a Dense Matrix

A decomposition of LU factorization into 14 tasks - notice the

significant load imbalance.

Arg A A
Ax1 Azs Asgs
As1 Aszs Azgs

: A1,1 — L1,1U1,1

. _ —1
. L2,1—A2,1U1,1
: Lg1=A3.U]
. 3,1 — £33,1%¥1.1
Uy =L 1A
1,2 — H~1,1441,2

_ 71
U1,3 - L1,1A1,3

Lin 0 0
— | Loqx Lo 0
L31 Lzs L3gj

6: Aso=Azo— LU
7. A3,2 = A3,2 - L3,1U1,2

8. As3z=Ayz— Ly Us3

9: Azz=Azz— L31U13

10: Az,z — L 2Us o

Ui

0
0

11:

12:

13:

14:

Uip Uiz
Usp Usgs
0 Usgs

_ —1
L3,2 - A3,2U2,2
Usz = Ly 5 A

2,3 2,24%2,3

Az 3= Az3 — L3 2Us3

A3,3 — L3,3U3,3

LU Factorization of a Dense Matrix

A serial column-based algorithm to factor a nonsingular matrix A into
a lower-triangular matrix L and an upper-triangular matrix U.

1. procedure COL_LU (A)
2. begin
3. fork:=1tondo
forj:=k+1tondo
Alj, K]:=Al[j, KI/ALK, K];
endfor;
forj:=k+ 1tondo
fori:=k+1tondo
All, 1 = Alli, j1- Ali, K] x ALK, JI;
10. endfor;
11. endfor;
/*
After this iteration, column A[k + 1 : n, k] is logically the kth
column of L and row A[k, k : n] is logically the kth row of U.
*/
12. endfor;
13. end COL_LU

© 0N bk

Block-Cyclic Distribution for Gaussian Elimination

The active part of the matrix in Gaussian Elimination changes.
By assigning blocks in a block-cyclic fashion, each processor
receives blocks from different parts of the matrix.

=
Inactive par‘t\ ;5; ;L—g;
TRk] e | - Alkj] = AlkjVATK]
Active part =
__Rowi_ | (i %(ld) ------------------ - Aliy] = A[L] - AlLk] x Alk,

Block Cyclic Distributions

Variation of the block distribution scheme that can be used to
alleviate the load-imbalance and idling problems.

Partition an array into many more blocks than the number of
available processes.

Blocks are assigned to processes in around-robin manner so that
each process gets several non-adjacent blocks.

Block-Cyclic Distribution

A cyclic distribution is a special case in which block size is one.

A block- cyclic distribution is a case in which block size is n/p,
where n is the dimension of the matrix and p is the number of

Processes.
HER BEEEREEREE
P b o P
— P, P P Pa
:Po Pl Po :Pl_
_Pg P3 Pg__ Pg_
RN | TP]
(a) (b)

Mappings Based on Task Paritioning

Partitioning a given task-dependency/task-interaction graph across
processes.

Determining an optimal mapping for a general task-
dependency/task-interaction graph is an NP-complete problem.

Excellent heuristics exist for structured graphs.

Task Paritioning: Mapping a Binary Tree Dependency
Graph

Example illustrates the dependency graph of one view of quick-
sort and how it can be assigned to processes in a hypercube.

/ \ / \
/ \ / \
:/ \: :/ \:
0 2 4 6
/ \ / \ / \ / \
o o o o
/ \ / \ / \ / \
0 1 2 3 4 5 6 7

Task Paritioning: Mapping a Sparse Graph

Sparse graph for computing a sparse matrix-vector product and

. . R X
ItS mapplng 01234567 891011
oo [[® °]
Process0 [lelea o' - CO = (4,5,6,7,8)
D0 0 -
[) e L)L)
Process 1 s eeeelesel C1=(0,1,2,3,8,9,10,11)
e {)
[) e o @ L]
Process 2 8 e el C2 = (0,4,5,6)
° o [
C1=(0,5,6) Process 1
Process 0
C0 =(1,2,6,9)

Process 2 C2=(1,2,4,5,7,8)

Hierarchical Mappings

Sometimes a single mapping technique is inadequate.

For example, the task mapping of the binary tree (quicksort) cannot
use a large number of processors.

For this reason, task mapping can be used at the top level and
data partitioning within each level.

Hierarchical Mapping

An example of task partitioning at top level with data
partitioning at the lower level.

I
PO'P1' P41 PS5

- -+ — - == -
P2!P3' P6'P7
/\

PO P1 P41 P5
L = L =
P2:P3 P6:P7
A A
PO'P1 P21P3 P41 P5 P6 ! P7

PO Pl P2 P3 P4 P5 P6

Schemes for Dynamic Mapping

Dynamic mapping is sometimes also referred to as dynamic load
balancing, since load balancing is the primary motivation for
dynamic mapping.

Dynamic mapping schemes can be centralized or distributed.

Centralized Dynamic Mapping

Processes are designated as masters or slaves.

When a process runs out of work, it requests the master for more
work.

When the number of processes increases, the master may become
the bottleneck.

To alleviate this, a process may pick up a number of tasks (a chunk)
at one time. This is called Chunk scheduling.

Selecting large chunk sizes may lead to significant load imbalances
as well.

A number of schemes have been used to gradually decrease chunk
size as the computation progresses.

Distributed Dynamic Mapping

Each process can send or receive work from other processes.
This alleviates the bottleneck in centralized schemes.

There are four critical questions: how are sensing and receiving
processes paired together, who initiates work transfer, how much
work is transferred, and when is a transfer triggered?

Answers to these questions are generally application specific. We
will look at some of these techniques later in this class.

