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Chapter Overview: Algorithms and Concurrency 

• Introduction to Parallel Algorithms 

– Tasks and Decomposition 

• Decomposition Techniques 

– Recursive Decomposition 

– Data Decomposition 

– Exploratory Decomposition 

– Hybrid Decomposition

• Characteristics of Tasks

• Mapping Techniques for Load Balancing 

– Static and Dynamic Mapping



Preliminaries: Decomposition, Tasks, and 

Dependency Graphs

• The first step in developing a parallel algorithm is to decompose 

the problem into tasks that can be executed concurrently 

• A given problem may be decomposed into tasks in many different 

ways. 

• Tasks may be of same, different, or even interminate sizes. 

• A decomposition can be illustrated in the form of a directed graph 

with nodes corresponding to tasks and edges indicating that the 

result of one task is required for processing the next. Such a graph 

is called a task dependency graph.  



Example: Multiplying a Dense Matrix with a Vector

Computation of each element of output vector y is independent of other 

elements. Based on this, a dense matrix-vector product can be decomposed 

into n tasks. The figure highlights the portion of the matrix and vector accessed 

by Task 1. 

Observations: While tasks share data (namely, the vector b ), they do 

not have any control dependencies - i.e., no task needs to wait for the 

(partial) completion of any other. All tasks are of the same size in 

terms of number of operations. Is this the maximum number of tasks 

we could decompose this problem into?



Example: Database Query Processing 

Consider the execution of the query:

MODEL = ``CIVIC'' AND YEAR = 2001 AND

(COLOR = ``GREEN'' OR COLOR = ``WHITE)

on the following database: 

ID# Model Year Color Dealer Price 

4523 Civic 2002 Blue MN $18,000 

3476 Corolla 1999 White IL $15,000 

7623 Camry 2001 Green NY $21,000 

9834 Prius 2001 Green CA $18,000 

6734 Civic 2001 White OR $17,000 

5342 Altima 2001 Green FL $19,000 

3845 Maxima 2001 Blue NY $22,000 

8354 Accord 2000 Green VT $18,000 

4395 Civic 2001 Red CA $17,000 

7352 Civic 2002 Red WA $18,000 



Example: Database Query Processing

The execution of the query can be divided into subtasks in various

ways. Each task can be thought of as generating an intermediate

table of entries that satisfy a particular clause.

Decomposing the given query into a number of tasks.

Edges in this graph denote that the output of one task

is needed to accomplish the next.



Example: Database Query Processing 

Note that the same problem can be decomposed into subtasks in other

ways as well.

An alternate decomposition of the given problem into

subtasks, along with their data dependencies.

Different task decompositions may lead to significant differences with

respect to their eventual parallel performance. 



Granularity of Task Decompositions 

• The number of tasks into which a problem is decomposed 

determines its granularity. 

• Decomposition into a large number of tasks results in fine-grained 

decomposition and that into a small number of tasks results in a 

coarse grained decomposition. 

A coarse grained counterpart to the dense matrix-vector product 

example. Each task in this example corresponds to the computation of three 

elements of the result vector. 



Degree of Concurrency 

• The number of tasks that can be executed in parallel is the 
degree of concurrency of a decomposition. 

• Since the number of tasks that can be executed in parallel may 
change over program execution, the maximum degree of 
concurrency is the maximum number of such tasks at any point 
during execution. What is the maximum degree of concurrency of 
the database query examples?

• The average degree of concurrency is the average number of 
tasks that can be processed in parallel over the execution of the 
program. In other words, it is a ratio of the total amount of work to 
the critical path length (see next slide).

• The degree of concurrency increases as the decomposition 
becomes finer in granularity and vice versa. 



Critical Path Length 

• A directed path in the task dependency graph represents a 

sequence of tasks that must be processed one after the other. 

• The longest such path determines the shortest time in which the 

program can be executed in parallel. 

• The length of the longest path in a task dependency graph is called 

the critical path length. 



Critical Path Length 

Consider the task dependency graphs of the two database query

decompositions: 

What are the critical path lengths for the two task dependency graphs?

What is the shortest parallel execution time for each decomposition?

How many processors are needed in each case to achieve this minimum parallel 

execution time?

What is the maximum and average degree of concurrency? 



Limits on Parallel Performance 

• It would appear that the parallel time can be made arbitrarily small 
by making the decomposition finer in granularity. 

• There is an inherent bound on how fine the granularity of a 
computation can be. For example, in the case of multiplying a dense 
matrix with a vector, there can be no more than Θ(n2) concurrent 
tasks.

• Concurrent tasks may also have to exchange data with other tasks. 
This results in communication overhead. The tradeoff between the 
granularity of a decomposition and associated overheads often 
determines performance bounds. 



Task Interaction Graphs 

• Subtasks generally exchange data with others in a 

decomposition. For example, even in the trivial decomposition of the 

dense matrix-vector product, if the vector is not replicated across all 

tasks, they will have to communicate elements of the vector. 

• The graph of tasks (nodes) and their interactions/data exchange 

(edges) is referred to as a task interaction graph. 

• Note that task interaction graphs represent data dependencies, 

whereas task dependency graphs represent control dependencies. 



Task Interaction Graphs: An Example 

Consider the problem of multiplying a sparse matrix A with a 

vector b. The following observations can be made:

• As before, the computation of each element of the result vector can be 

viewed as an independent task. 

• Unlike a dense matrix-vector product though, only non-zero elements of 

matrix A participate in the computation. 

• If, for memory optimality, we also partition b across tasks, then one can 

see that the task interaction graph of the computation is identical to the 

graph of the matrix A (the graph for which A represents the adjacency 

structure). 



Decomposition Techniques 

So how does one decompose a task into various subtasks? 

While there is no single recipe that works for all problems, we 

present a set of commonly used techniques that apply to broad 

classes of problems. These include: 

• recursive decomposition 

• data decomposition 

• exploratory decomposition 

• speculative decomposition 



Recursive Decomposition 

• Generally suited to problems that are solved using the divide-and-

conquer strategy. 

• A given problem is first decomposed into a set of sub-problems. 

• These sub-problems are recursively decomposed further until a 

desired granularity is reached. 



Recursive Decomposition: Example 

A classic example of a divide-and-conquer algorithm on which we

can apply recursive decomposition is Quicksort. 

In this example, once the list has been partitioned around the pivot, each

sublist can be processed concurrently (i.e., each sublist represents an

independent subtask). This can be repeated recursively.



Recursive Decomposition: Example 

The problem of finding the minimum number in a given list (or

indeed any other associative operation such as sum, AND, etc.) can

be fashioned as a divide-and-conquer algorithm. The following

algorithm illustrates this.

We first start with a simple serial loop for computing the

minimum entry in a given list:

1. procedure SERIAL_MIN (A, n)

2. begin

3. min = A[0];

4. for i := 1 to n − 1 do

5. if (A[i] < min) min := A[i];

6. endfor;

7. return min;

8. end SERIAL_MIN



Recursive Decomposition: Example

We can rewrite the loop as follows: 

1. procedure RECURSIVE_MIN (A, n) 

2. begin

3. if ( n = 1 ) then

4. min := A [0]  ; 

5. else

6. lmin := RECURSIVE_MIN ( A, n/2 ); 

7. rmin := RECURSIVE_MIN (  &(A[n/2]), n - n/2 ); 

8. if (lmin < rmin) then

9. min := lmin; 

10. else

11. min := rmin; 

12. endelse; 

13. endelse; 

14. return min; 

15. end RECURSIVE_MIN 



Recursive Decomposition: Example

The code in the previous foil can be decomposed naturally using a

recursive decomposition strategy. We illustrate this with the

following example of finding the minimum number in the set {4, 9, 1,

7, 8, 11, 2, 12}. The task dependency graph associated with this

computation is as follows:



Data Decomposition 

• Identify the data on which computations are performed. 

• Partition this data across various tasks. 

• This partitioning induces a decomposition of the problem. 

• Data can be partitioned in various ways:

– Output data partitioning

– Input data partitioning

– Intermediate data partitioning

• The partitioning critically impacts performance of a parallel 

algorithm.



Data Decomposition: Output Data Decomposition 

• Often, each element of the output can be computed 

independently of others (but simply as a function of the input). 

• A partition of the output across tasks decomposes the problem 

naturally. 



Output Data Decomposition: Example 

Consider the problem of multiplying two n x n matrices A and B to 

yield matrix C. The output matrix C can be partitioned into four tasks 

as follows: 

Task 1:

Task 2:

Task 3:

Task 4:



Output Data Decomposition: Example 

A partitioning of output data does not result in a unique decomposition into 

tasks. For example, for the same problem as in previus foil, with identical 

output data distribution, we can derive the following two (other) 

decompositions: 

Decomposition I Decomposition II

Task 1:  C1,1 = A1,1 B1,1

Task 2:  C1,1 = C1,1 + A1,2 B2,1

Task 3:  C1,2 = A1,1 B1,2

Task 4:  C1,2 = C1,2 + A1,2 B2,2

Task 5:  C2,1 = A2,1 B1,1

Task 6:  C2,1 = C2,1 + A2,2 B2,1

Task 7:  C2,2 = A2,1 B1,2

Task 8:  C2,2 = C2,2 + A2,2 B2,2

Task 1:  C1,1 = A1,1 B1,1

Task 2:  C1,1 = C1,1 + A1,2 B2,1

Task 3:  C1,2 = A1,2 B2,2

Task 4:  C1,2 = C1,2 + A1,1 B1,2

Task 5:  C2,1 = A2,2 B2,1

Task 6:  C2,1 = C2,1 + A2,1 B1,1

Task 7:  C2,2 = A2,1 B1,2

Task 8:  C2,2 = C2,2 + A2,2 B2,2



Output Data Decomposition: Example 

Consider the problem of counting the instances of given itemsets in a

database of transactions. In this case, the output (itemset frequencies)

can be partitioned across tasks.



Output Data Decomposition: Example 

From the previous example, the following observations can be 

made: 

• If the database of transactions is replicated across the 

processes, each task can be independently accomplished with no 

communication. 

• If the database is partitioned across processes as well (for 

reasons of memory utilization), each task first computes partial 

counts. These counts are then aggregated at the appropriate task. 



Input Data Partitioning 

• Generally applicable if each output can be naturally computed as a 

function of the input. 

• In many cases, this is the only natural decomposition because the 

output is not clearly known a-priori (e.g., the problem of finding 

the minimum in a list, sorting a given list, etc.). 

• A task is associated with each input data partition. The task 

performs as much of the computation with its part of the data. 

Subsequent processing combines these partial results. 



Input Data Partitioning: Example 

In the database counting example, the input (i.e., the transaction

set) can be partitioned. This induces a task decomposition in

which each task generates partial counts for all itemsets. These

are combined subsequently for aggregate counts.



Partitioning Input and Output Data 

Often input and output data decomposition can be combined for a

higher degree of concurrency. For the itemset counting example, the

transaction set (input) and itemset counts (output) can both be

decomposed as follows:



Intermediate Data Partitioning 

• Computation can often be viewed as a sequence of 

transformation from the input to the output data. 

• In these cases, it is often beneficial to use one of the intermediate 

stages as a basis for decomposition. 



Intermediate Data Partitioning: Example 

Let us revisit the example of dense matrix-matrix multiplication.

We first show how we can visualize this computation in terms of

intermediate matrices D.



Intermediate Data Partitioning: Example 
A decomposition of intermediate data structure   leads to the following 

decomposition into 8 + 4 tasks: 

Stage I

Stage II

Task 01:  D1,1,1= A1,1 B1,1 Task 02:  D2,1,1= A1,2 B2,1

Task 03:  D1,1,2= A1,1 B1,2 Task 04:  D2,1,2= A1,2 B2,2

Task 05:  D1,2,1= A2,1 B1,1 Task 06:  D2,2,1= A2,2 B2,1

Task 07:  D1,2,2= A2,1 B1,2 Task 08:  D2,2,2= A2,2 B2,2

Task 09:  C1,1 = D1,1,1 + D2,1,1 Task 10:  C1,2 = D1,1,2 + D2,1,2

Task 11:  C2,1 = D1,2,1 + D2,2,1 Task 12:  C2,,2 = D1,2,2 + D2,2,2



Intermediate Data Partitioning: Example 

The task dependency graph for the decomposition (shown in

previous foil) into 12 tasks is as follows:



Exploratory Decomposition 

• In many cases, the decomposition of the problem goes hand-in-

hand with its execution.

• These problems typically involve the exploration (search) of a

state space of solutions.

• Problems in this class include a variety of discrete optimization

problems (0/1 integer programming, QAP, etc.), theorem proving,

game playing, etc.



Exploratory Decomposition: Example 

A simple application of exploratory decomposition is in the solution 

to a 15 puzzle (a tile puzzle). We show a sequence of three moves 

that transforms a given initial state (a) to desired final state (d). 

Of-course, the problem of computing the solution, in general, is 

much more difficult than in this simple example. 



Exploratory Decomposition: Example 

The state space can be explored by generating various successor 

states of the current state and to view them as independent tasks. 



Exploratory Decomposition: Anomalous Computations 

• In many instances of exploratory decomposition, the decomposition

technique may change the amount of work done by the parallel

formulation.

• This change results in super- or sub-linear speedups. 



Hybrid Decompositions 

Often, a mix of decomposition techniques is necessary for 

decomposing a problem. Consider the following examples: 

• In quicksort, recursive decomposition alone limits concurrency (Why?). A 

mix of data and recursive decompositions is more desirable. 

• Even for simple problems like finding a minimum of a list of numbers, a 

mix of data and recursive decomposition works well.



Characteristics of Tasks 

Once a problem has been decomposed into independent tasks, the 

characteristics of these tasks critically impact choice and 

performance of parallel algorithms. Relevant task characteristics 

include: 

• Task generation. 

• Task sizes. 

• Size of data associated with tasks. 



Task Generation 

• Static task generation: Concurrent tasks can be identified a-priori. 

Typical matrix operations, graph algorithms, image processing 

applications, and other regularly structured problems fall in this 

class. These can typically be decomposed using data or recursive 

decomposition techniques. 

• Dynamic task generation: Tasks are generated as we perform 

computation. A classic example of this is in game playing - each 15 

puzzle board is generated from the previous one. These applications 

are typically decomposed using exploratory or speculative 

decompositions. 



Task Sizes 

• Task sizes may be uniform (i.e., all tasks are the same size) or non-

uniform. 

• Non-uniform task sizes may be such that they can be determined 

(or estimated) a-priori or not. 

• Examples in this class include discrete optimization problems, in 

which it is difficult to estimate the effective size of a state space. 



Mapping Techniques 

• Once a problem has been decomposed into concurrent tasks, these 

must be mapped to processes (that can be executed on a parallel 

platform). 

• Mappings must minimize overheads. 

• Primary overheads are communication and idling. 

• Minimizing these overheads often represents contradicting 

objectives. 

• Assigning all work to one processor trivially minimizes 

communication at the expense of significant idling.



Mapping Techniques for Minimum Idling 

Mapping must simultaneously minimize idling and load balance. 

Merely balancing load does not minimize idling. 



Mapping Techniques for Minimum Idling

Mapping techniques can be static or dynamic. 

• Static Mapping: Tasks are mapped to processes a-priori. For this to 

work, we must have a good estimate of the size of each task. Even 

in these cases, the problem may be NP complete. 

• Dynamic Mapping: Tasks are mapped to processes at runtime. 

This may be because the tasks are generated at runtime, or that 

their sizes are not known. 

Other factors that determine the choice of techniques include the

size of data associated with a task and the nature of underlying

domain.



Mapping of Tasks and Complexity

Determining the optimal mapping of tasks is an NP-complete 

problem in general. Some examples:

• Mapping of tasks with dependencies on a single processor is 

solvable in polynomial time.

• Mapping of tasks without dependencies on a parallel processors 

(even 2) is NP-complete.

• The same problem but with uniform task size can be solved in 

polynomial time.

• If we add dependencies the problem becomes NP-complete.



Schemes for Static Mapping 

• Mappings based on data partitioning. 

• Mappings based on task graph partitioning. 

• Hybrid mappings. 



Mappings Based on Data Partitioning 

We can combine data partitioning with the ``owner-computes'' rule to 

partition the computation into subtasks. The simplest data 

decomposition schemes for dense matrices are 1-D block 

distribution schemes. 



Block Array Distribution Schemes 

Block distribution schemes can be generalized to higher 

dimensions as well. 



Block Array Distribution Schemes: Examples 

• For multiplying two dense matrices A and B, we can partition the 

output matrix C using a block decomposition. 

• For load balance, we give each task the same number of 

elements of C. (Note that each element of C corresponds to a 

single dot product.) 

• The choice of precise decomposition (1-D or 2-D) is determined 

by the associated communication overhead. 

• In general, higher dimension decomposition allows the use of 

larger number of processes. 



Data Sharing in Dense Matrix Multiplication 



Cyclic and Block Cyclic Distributions 

• If the amount of computation associated with data items varies, 

a block decomposition may lead to significant load imbalances. 

• A simple example of this is in LU decomposition (or Gaussian 

Elimination) of dense matrices.



LU Factorization of a Dense Matrix 

A decomposition of LU factorization into 14 tasks - notice the

significant load imbalance.

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

13:

14:



LU Factorization of a Dense Matrix 

A serial column-based algorithm to factor a nonsingular matrix A into

a lower-triangular matrix L and an upper-triangular matrix U.

1. procedure COL_LU (A)

2. begin

3. for k := 1 to n do

4. for j := k + 1 to n do

5. A[j, k]:= A[j, k]/A[k, k];

6. endfor;

7. for j := k + 1 to n do

8. for i := k + 1 to n do

9. A[i, j] := A[i, j] - A[i, k] x A[k, j];

10. endfor;

11. endfor;

/*

After this iteration, column A[k + 1 : n, k] is logically the kth

column of L and row A[k, k : n] is logically the kth row of U.

*/

12. endfor;

13. end COL_LU



Block-Cyclic Distribution for Gaussian Elimination 

The active part of the matrix in Gaussian Elimination changes. 

By assigning blocks in a block-cyclic fashion, each processor 

receives blocks from different parts of the matrix. 



Block Cyclic Distributions 

• Variation of the block distribution scheme that can be used to 

alleviate the load-imbalance and idling problems. 

• Partition an array into many more blocks than the number of 

available processes. 

• Blocks are assigned to processes in a round-robin manner so that 

each process gets several non-adjacent blocks. 



Block-Cyclic Distribution 

• A cyclic distribution is a special case in which block size is one. 

• A block- cyclic distribution is a case in which block size is n/p, 

where n is the dimension of the matrix and p is the number of 

processes. 



Mappings Based on Task Paritioning 

• Partitioning a given task-dependency/task-interaction graph across 

processes. 

• Determining an optimal mapping for a general task-

dependency/task-interaction graph is an NP-complete problem. 

• Excellent heuristics exist for structured graphs. 



Task Paritioning: Mapping a Binary Tree Dependency 

Graph

Example illustrates the dependency graph of one view of quick-

sort and how it can be assigned to processes in a hypercube. 



Task Paritioning: Mapping a Sparse Graph 

Sparse graph for computing a sparse matrix-vector product and 

its mapping. 



Hierarchical Mappings 

• Sometimes a single mapping technique is inadequate. 

• For example, the task mapping of the binary tree (quicksort) cannot 

use a large number of processors. 

• For this reason, task mapping can be used at the top level and 

data partitioning within each level. 



Hierarchical Mapping

An example of task partitioning at top level with data 

partitioning at the lower level. 



Schemes for Dynamic Mapping 

• Dynamic mapping is sometimes also referred to as dynamic load 

balancing, since load balancing is the primary motivation for 

dynamic mapping. 

• Dynamic mapping schemes can be centralized or distributed. 



Centralized Dynamic Mapping 

• Processes are designated as masters or slaves. 

• When a process runs out of work, it requests the master for more 

work. 

• When the number of processes increases, the master may become 

the bottleneck. 

• To alleviate this, a process may pick up a number of tasks (a chunk) 

at one time. This is called Chunk scheduling. 

• Selecting large chunk sizes may lead to significant load imbalances 

as well. 

• A number of schemes have been used to gradually decrease chunk 

size as the computation progresses.



Distributed Dynamic Mapping 

• Each process can send or receive work from other processes. 

• This alleviates the bottleneck in centralized schemes. 

• There are four critical questions: how are sensing and receiving 

processes paired together, who initiates work transfer, how much 

work is transferred, and when is a transfer triggered? 

• Answers to these questions are generally application specific. We 

will look at some of these techniques later in this class. 


