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Motivation

« TOP500 (www.top500.0rqg) - June 2024

Aurora is the
second machine
to officially break

the exascale

barrier

ARM architecture
microprocessor
designed by
Fujitsu

Entered the list in
June 2022 at No.
3. and remains
the largest
system in
Europe.

the first system
reported with
performance

exceeding one

Exaflop/s (since
June 2022)

Rmax Rpeak Power
Rank System Cores (PFlop/s) (PFlop/s) (kW)
1 Frontier - HPE Cray EX235a, AMD Optimized 3rd 8,699,904 1,206.00 1,714.81 22,786
Generation EPYC 64C 2GHz, AMD Instinct MI250X, \\
Slingshot-11, HPE
DOE/SC/0ak Ridge National Laboratory
United States
2 Aurora - HPE Cray EX - Intel Exascale Compute Blade, 9,264,128 1,012.00 1,980.01 38,698
Xeon CPU Max 9470 52C 2.4GHz, Intel Data Center GPU
Max, Slingshot-11, Intel
DOE/SC/Argonne National Laboratory
United States
3 Eagle - Microsoft NDvb, Xeon Platinum 8480C 48C 2GHz, 2,073,600 561.20 846.84
NVIDIA H100, NVIDIA Infiniband NDR, Microsoft Azure
Microsoft Azure
United States
& Supercomputer Fugaku - Supercomputer Fugaku, 7,630,848 442.01 b37.21 29,899
Ab4LFX 48C 2.2GHz, Tofu interconnect D, Fujitsu
RIKEN Center for Comp™{ational Science
Japan
5 LUMI - HPE Cray EX235a, AMD Optimized 3rd Generation 2,752,704 37%9.70 531.51 7,107

/' EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE

EuroHPC/CSC
Finland

6D mash/torus
interconnect



http://www.top500.org/

Recent Highlights in Parallel Computing

 In March 2016, AlphaGo beat Lee
Sedol, a 9-dan professional.
AlphaGo ran on 48 CPUs and 8
GPUs.

* InJune 2016, Ford Using Deep
Learning for Lane Detection - new
sub-centimeter accurate approach
to estimate a moving venhicle’s
position within a lane in real-time

« Tesla announces a Al neural
network training supercomputer
(Dojo) on August 19, 2021.




Parallel Computing Platforms

Ananth Grama, Anshul Gupta,
George Karypis, and Vipin Kumar

To accompany the text “Introduction to Parallel Computing”,
Addison Wesley, 2003.
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Parallel Computing Platforms

An explicitly parallel program must specify concurrency
and interaction between concurrent subtasks.

The former is sometimes also referred to as the control
structure and the latter as the communication model.



Control Structure of Parallel Programs

« Parallelism can be expressed at various levels of
granularity - from instruction level to processes.

« Between these extremes exist a range of models, along
with corresponding architectural support.



Control Structure of Parallel Programs

* Processing units in parallel computers either operate
under the centralized control of a single control unit or
work independently.

 If there is a single control unit that dispatches the same
Instruction to various processors (that work on different
data), the model is referred to as single instruction
stream, multiple data stream (SIMD).

 If each processor has its own control unit, each
processor can execute different instructions on different
data items. This model is called multiple instruction
stream, multiple data stream (MIMD).



SIMD and MIMD Processors
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A typical SIMD architecture (a) and a typical MIMD architecture (b).



SIMD Processors

« Variants of this concept have found use in co-processing
units such as the MMX, SSE, AVX, ... units in Intel
processors and DSP chips such as the Sharc.

« SIMD relies on the regular structure of computations
(such as those in image processing).

 Itis often necessary to selectively turn off operations
on certain data items. For this reason, most SIMD
programming paradigms allow for an "activity mask",
which determines if a processor should participate in a
computation or not.



Conditional Execution in SIMD

Processors
ifB==0)
C=A;
else
C=A/B;
(a)
A A A Al o]
B[ o] B B[ 1] B[ o]
c[ o] c[ o] c[ o] c[ o]
Processor 0 Processor 1 Processor 2 Processor 3
Initial values
Idle Idle
A A Al 1] Al o]
B[ o] B B B[ o]
c c[ o c[ o] c[ o]
Processor 0 Processor 1 Processor 2 Processor 3
Step 1
Idl Idle
A A A Al o]
B[ o] B B B[ o]
c c c c[ o]
Process Processor 1 Processor 2 P or 3

Executing a conditional statement on an SIMD computer with four
processors: (a) the conditional statement; (b) the execution of the
statement in two steps.



MIMD Processors

In contrast to SIMD processors, MIMD processors can
execute different programs on different processors.

A variant of this, called single program multiple data
streams (SPMD) executes the same program on
different processors.

It is easy to see that SPMD and MIMD are closely
related in terms of programming flexibility and underlying
architectural support.

Single instruction, multiple thread (SIMT) Is an execution
model where SIMD is combined with multithreading.



SIMD-MIMD Comparison

SIMD computers require less hardware than MIMD
computers (single control unit).

However, since SIMD processors ae specially
designed, they tend to be expensive and have long
design cycles.

Not all applications are naturally suited to SIMD
processors.

In contrast, platforms supporting the SPMD paradigm
can be built from inexpensive off-the-shelf
components with relatively little effort in a short amount
of time.



Communication Model
of Parallel Platforms

« There are two primary forms of data exchange

between parallel tasks - accessing a shared data space
and exchanging messages.

« Platforms that provide a shared data space are called
shared-address-space machines or multiprocessors.

« Platforms that support messaging are also called
message passing platforms or multicomputers.



Shared-Address-Space Platforms

« Part (or all) of the memory is accessible to all
Processors.

* Processors interact by modifying data objects stored in
this shared-address-space.

 If the time taken by a processor to access any memory
word in the system global or local is identical, the
platform is classified as a uniform memory access
(UMA), else, a non-uniform memory access (NUMA)
machine.



NUMA and UMA Shared-Address-Space
Platforms
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Typical shared-address-space architectures: (a) Uniform-memory
access shared-address-space computer; (b) Uniform-memory-
access shared-address-space computer with caches and
memories; (¢) Non-uniform-memory-access shared-address-space
computer with local memory only.



NUMA and UMA
Shared-Address-Space Platforms

The distinction between NUMA and UMA platforms is important
from the point of view of algorithm design. NUMA machines
require locality from underlying algorithms for performance.

Programming these platforms is easier since reads and writes are
implicitly visible to other processors.

However, read-write data to shared data must be coordinated
(this will be discussed in greater detail when we talk about threads
programming).

Caches in such machines require coordinated access to multiple
copies. This leads to the cache coherence problem.



Message-Passing Platforms

These platforms comprise of a set of processors and
their own (exclusive) memory.

Instances of such a view come naturally from clustered
workstations and non-shared-address-space
multicomputers.

These platforms are programmed using (variants of)
send and receive primitives.

Libraries such as MPIl and PVM provide such primitives.



Message Passing
VS.
Shared Address Space Platforms

 Message passing requires little hardware support,
other than a network.

« Shared address space platforms can easily emulate
message passing. The reverse is more difficult to do (in
an efficient manner).



Physical Organization
of Parallel Platforms

We begin this discussion with an ideal parallel machine
called Parallel Random Access Machine, or PRAM.



Architecture of an
Ideal Parallel Computer

A natural extension of the Random Access Machine
(RAM) serial architecture is the Parallel Random Access
Machine, or PRAM.

« PRAMSs consist of p processors and a global memory
of unbounded size that is uniformly accessible to all
pProcessors.

* Processors share a common clock but may execute
different instructions in each cycle.



Architecture of an
Ideal Parallel Computer

* Depending on how simultaneous memory accesses are
handled, PRAMs can be divided into four subclasses.
— EXclusive-read, exclusive-write (EREW) PRAM.
— Concurrent-read, exclusive-write (CREW) PRAM.
— EXxclusive-read, concurrent-write (ERCW) PRAM.
— Concurrent-read, concurrent-write (CRCW) PRAM.



Architecture of an
Ideal Parallel Computer

« What does concurrent write mean, anyway?
— Common: write only if all values are identical.
— Arbitrary: write the data from a randomly selected processor.
— Priority: follow a predetermined priority order.
— Sum: Write the sum of all data items.



Interconnection Networks
for Parallel Computers

Interconnection networks carry data between
processors and to memory.

Interconnects are made of switches and links (wires,
fiber).

Interconnects are classified as static or dynamic.

Static networks consist of point-to-point communication

links among processing nodes and are also referred to
as direct networks.

Dynamic networks are built using switches and
communication links. Dynamic networks are also
referred to as indirect networks.



Network Topologies:

Completely Connected Network

Each processor is connected to every other processor.
The number of links in the network scales as O(p?).

While the performance scales very well, the hardware
complexity is not realizable for large values of p.

These networks are static counterparts of crossbars.
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Network Topologies:
Star Connected Network

« Every node is connected only to a common node at the
center.

« Distance between any pair of nodes is O(1). However,
the central node becomes a bottleneck.

* |n this sense, star connected networks are static

counterparts of buses.
< Address

\ Data

Shared Memory

Processor 0 Processor 1

static network dynamic network



Network Topologies:
Linear Arrays, Meshes, and kA-d Meshes

In a linear array, each node has two neighbors, one to
its left and one to its right. If the nodes at either end are
connected, we refer to it as a 1-D torus or a ring.

A generalization to 2 dimensions has nodes with 4
neighbors, to the north, south, east, and west.

A further generalization to d dimensions has nodes with
2d neighbors.

A special case of a d-dimensional mesh is a hypercube.
Here, d = log p, where p is the total number of nodes.



Network Topologies: Linear Arrays
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Linear arrays: (a) with no wraparound links; (b) with
wraparound link.



Network Topologies:
Two- and Three Dimensional Meshes

Ve N

N N

T
A

2N
N4
R
N4
2N
o/
O
./

2R
N>

2R
N

S

7\
o/
\_/
e
5N
N
\
L

‘N
o/

'
M/

)
(N
)
o
()
N
)
o/

O

&J\

A
Neie
<J\<\ N \
Q:;

) ) () ()

)
I

S

(a) (b) (c)

Two and three dimensional meshes: (a) 2-D mesh with no
wraparound; (b) 2-D mesh with wraparound link (2-D torus); and
(c) a 3-D mesh with no wraparound.



Network Topologies:
Hypercubes and their Construction

Construction of hypercubes from hypercubes of lower
dimension.



Network Topologies:
Properties of Hypercubes

The distance between any two nodes is at most log p.
Each node has log p neighbors.

The distance between two nodes is given by the number
of bit positions at which the two nodes differ.



Evaluating
Static Interconnection Networks

Diameter: The distance between the farthest two nodes in the
network. The diameter of a linear array is p — 1, that of a mesh
is 2(v/P— 1), that of a tree and hypercube is log p, and that of a
completely connected network is O(1).

Bisection Width: The minimum number of wires you must cut
to divide the network into two equal parts. The bisection width
of a linear array and tree is 1, that of a mesh is /P, that of a
hypercube is p/2 and that of a completely connected network
is p?/4.

Cost: The number of links or switches (whichever is
asymptotically higher) is a meaningful measure of the cost.

Arc Connectivity: is the minimum number of arcs that must
be removed from the network to break it into two disconnected
networks



Evaluating
Static Interconnection Networks

Network Diameter \?\i/isdet(i:wtion égcnnectivity E:Nocit of links)
Completely-connected 1 p3/4 p—1 p(p—1)/2
Star 2 1 1 p—1
Complete binary tree > 1og((p + 1)/2) 1 1 p—1
Linear array p—1 1 1 p—1

2-D mesh, no wraparound 2(\/3_9 — l) .\/15 2 2(}9 - \/15)
2-D wraparound mesh 2 Lﬁ/zJ 2\/}'_9 4 2p
Hypercube logp p/2 logp (plogp)/2

Wraparound k-ary d-cube d k/2] 2k4—1 2d dp




Communication Costs
in Parallel Machines

« Along with idling and contention, communication is a
major overhead in parallel programs.

 The cost of communication is dependent on a variety
of features including the programming model
semantics, the network topology, data handling and
routing, and associated software protocols.



Message Passing Costs in
Parallel Computers

 The total time to transfer a message over a network
comprises of the following:

— Startup time (t,): Time spent at sending and receiving nodes
(executing the routing algorithm, programming routers, etc.).

— Per-hop time (t,,): This time is a function of number of hops and
Includes factors such as switch latencies, network delays, etc.

— Per-word transfer time (t,): This time includes all overheads
that are determined by the length of the message. This
Includes bandwidth of links, error checking and correction, etc.



Store-and-Forward Routing

« Amessage traversing multiple hops is completely
received at an intermediate hop before being
forwarded to the next hop.

« The total communication cost for a message of size m
words to traverse | communication links is

teomm = ts + (Miy + tp)l.

* In most platforms, t;, is small and the above expression
can be approximated by

teomm = ts + mlt,,.



Routing Techniques
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Passing a message from node P, to P; (a) through a store-and-
forward communication network; (b) and (c) extending the concept
to cut-through routing. The shaded regions represent the time that

the message is in transit. The startup time associated with this

message transfer is assumed to be zero.
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(c) The same message broken into four parts
and sent over the network.



Cut-Through Routing

Takes the concept of packet routing to an extreme by
further dividing messages into basic units called flits.

Since flits are typically small, the header information
must be minimized.

This is done by forcing all flits to take the same path, in
seguence.

A tracer message first programs all intermediate routers.
All flits then take the same route.

Error checks are performed on the entire message,
as opposed to flits.

No sequence numbers are needed.



Simplified Cost Model for
Communicating Messages

The cost of communicating a message between two

nodes | hops away using cut-through routing is given
by
tecomm = ts + [ty + tym.

In this expression, t,, is typically smaller than t, and
t,,. For this reason, the second term in the RHS does
not show, particularly, when m is large.

Furthermore, it is often not possible to control
routing and placement of tasks.

For these reasons, we can approximate the cost of
message transfer by

tcamm — ts + twm-



Simplified Cost Model for
Communicating Messages

It is Important to note that the original expression for
communication time is valid for only uncongested
networks.

If a link takes multiple messages, the corresponding t,,
term must be scaled up by the number of messages.

Different communication patterns congest different
networks to varying extents.

It is important to understand and account for this in the
communication time accordingly.



Routing Mechanisms
for Interconnection Networks

 How does one compute the route that a message takes
from source to destination?

— Routing must prevent deadlocks - for this reason, we use
dimension-ordered or e-cube routing.

— Routing must avoid hot-spots - for this reason, two-step
routing is often used. In this case, a message from source s to
destination d is first sent to a randomly chosen intermediate
processor i and then forwarded to destination d.



Routing Mechanisms
for Interconnection Networks

Sten 1 (010 =110) Stenp 2 (110 =111)

Routing a message from node P, (010) to node P, (111) in a three-
dimensional hypercube using E-cube routing.



Mapping Techniques for Graphs

« Often, we need to embed a known communication
pattern into a given interconnection topology.

« We may have an algorithm designed for one network,
which we are porting to another topology.

For these reasons, it is useful to understand mapping
between graphs.



Mapping Techniques for Graphs: Metrics

 When mapping a graph G(V,E) into G’(V’,E’), the
following metrics are important:

« The maximum number of edges mapped onto any edge
In E’is called the congestion of the mapping.

« The maximum number of links in E’that any edge in E is
mapped onto is called the dilation of the mapping.

 The ratio of the number of nodes in the set V’to that In
set V is called the expansion of the mapping.



Embedding a Linear Array
into a Hypercube

« Alinear array (or a ring) composed of 29 nodes (labeled
0 through 29 — 1) can be embedded into a d-dimensional
hypercube by mapping node i of the linear array onto
node

* G(I, d) of the hypercube. The function G(i, x) is defined
as follows:



Embedding a Linear Array
into a Hypercube

The function G is called the binary reflected Gray
code (RGC).

Since adjoining entries (G(1, d) and G(i + 1, d)) differ
from each other at only one bit position, corresponding
processors are mapped to neighbors in a hypercube.
Therefore, the congestion, dilation, and expansion of
the mapping are all 1.



Embedding a Linear Array
into a Hypercube: Example

1-bit Gray code 2-bit Gray code ~ 3-bit Gray code  3-D hypercube  8-processor ring

0 000 0 0
0 0j0 1 1 1
1"1 o1 1 3 2
10 010 2 3
Reflect 110 € &
along th

line 111 7 5
101 5 6
100 4 7

@

(@) A three-bit reflected Gray code ring; and (b) its embedding into a
three-dimensional hypercube.



Embedding a Mesh
into a Hypercube

« A2 x 2% wraparound mesh can be mapped to a 2™
node hypercube by mapping node (i, ) of the mesh onto

node G(i, r- 1) || G(j, s — 1) of the hypercube (where ||
denotes concatenation of the two Gray codes).



Embedding a Mesh into a Hypercube
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(a) A4 x 4 mesh illustrating the mapping of mesh nodes to the nodes
In a four-dimensional hypercube; and (b) a 2 x 4 mesh embedded into
a three-dimensional hypercube.

Once again, the congestion, dilation, and expansion
of the mapping is 1.



Embedding a Mesh into a Linear Array

« Since a mesh has more edges than alinear array, we
will not have an optimal congestion/dilation mapping.

« We first examine the mapping of a linear array into a
mesh and then invert this mapping.

« This gives us an optimal mapping (in terms of
congestion).



Embedding a Mesh into a Linear Array:
Example
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(a) Mapping a linear array into a
2D mesh (congestion 1).

(b) Inverting the mapping - mapping a 2D mesh into a
linear array (congestion 5)

(a) Embedding a 16 node linear array into a 2-D mesh; and (b) the
Inverse of the mapping. Solid lines correspond to links in the linear
array and normal lines to links in the mesh.



