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Topic Overview 

• Discrete Optimization - Basics 

• Sequential Search Algorithms 

• Parallel Depth-First Search 

• Parallel Best-First Search 

• Speedup Anomalies in Parallel Search Algorithms 
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Discrete Optimization - Basics 

• Discrete optimization forms a class of computationally 

expensive problems of significant theoretical and 

practical interest. 

• Search algorithms systematically search the space of 

possible solutions subject to constraints. 
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Definitions 

• A discrete optimization problem can be expressed as a 
tuple (S, f). The set S is a finite or countably infinite set of 
all solutions that satisfy specified constraints. 

• The function f is the cost function that maps each 
element in set S onto the set of real numbers  R. 

• The objective of a DOP is to find a feasible solution 

xopt, such that f(xopt) ≤  f(x) for all x  S.

• A number of diverse problems such as VLSI layouts, 
robot motion planning, test pattern generation, and 
facility location can be formulated as DOPs. 
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Discrete Optimization: Example 

• In the 0/1 integer-linear-programming problem, we are given 

an m×n matrix A, an m×1 vector b, and an n×1 vector c.

• The objective is to determine an n×1 vector whose 

elements can take on only the value 0 or 1.

• The vector must satisfy the constraint

and the function 

must be minimized.
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Discrete Optimization: Example 

• The 8-puzzle problem consists of a 3×3   grid containing 

eight tiles, numbered one through eight. 

• One of the grid segments (called the ``blank'') is empty. A 

tile can be moved into the blank position from a position 

adjacent to it, thus creating a blank in the tile's original 

position. 

• The goal is to move from a given initial position to the final 

position in a minimum number of moves. 
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Discrete Optimization: Example 

An 8-puzzle problem instance: (a) initial configuration; (b) final 

configuration; and (c) a sequence of moves leading from the 

initial to the final configuration. 
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Discrete Optimization Basics 

• The feasible space S is typically very large.

• For this reason, a DOP can be reformulated as the problem 

of finding a minimum-cost path in a graph from a 

designated initial node to one of several possible goal 

nodes. 

• Each element  x in S can be viewed as a path from the initial 

node to one of the goal nodes. 

• This graph is called a state space. 
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Discrete Optimization Basics 

• Often, it is possible to estimate the cost to reach the goal 

state from an intermediate state. 

• This estimate, called a heuristic estimate, can be effective 

in guiding search to the solution. 

• If the estimate is guaranteed to be an underestimate, the 

heuristic is called an admissible heuristic. 

• Admissible heuristics have desirable properties in terms of 

optimality of solution (as we shall see later). 
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Discrete Optimization: Example 

An admissible heuristic for 8-puzzle is as follows: 

• Assume that each position in the 8-puzzle grid is 

represented as a pair. 

• The distance between positions  (i,j) and  (k,l) is defined as   

|i - k| + |j - l|. This distance is called the Manhattan 

distance. 

• The sum of the Manhattan distances between the initial 

and final positions of all tiles is an admissible heuristic.
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Sequential Search Algorithms 

• Is the search space a tree or a graph? 

• The space of a 0/1 integer program is a tree, while that of 

an 8-puzzle is a graph. 

• This has important implications for search since unfolding 

a graph into a tree can have significant overheads. 
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Sequential Search Algorithms 

Two examples of unfolding a graph into a tree. 
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Depth-First Search Algorithms (DFS)

• Applies to search spaces that are trees. 

• DFS begins by expanding the initial node and generating 

its successors. In each subsequent step, DFS expands 

one of the most recently generated nodes. 

• If there exists no success, DFS backtracks to the parent 

and explores an alternate child. 

• Often, successors of a node are ordered based on their 

likelihood of reaching a solution. This is called directed 

DFS.

• The main advantage of DFS is that its storage requirement 

is linear in the depth of the state space being searched. 14



Depth-First Search Algorithms 

States resulting from the first three steps of depth-first 

search applied to an instance of the 8-puzzle.
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DFS Algorithms: Simple Backtracking 

• Simple backtracking performs DFS until it finds the first 

feasible solution and terminates. 

• Not guaranteed to find a minimum-cost solution. 

• Uses no heuristic information to order the successors 

of an expanded node. 

• Ordered backtracking uses heuristics to order the 

successors of an expanded node.
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Depth-First Branch-and-Bound (DFBB) 

• DFS technique in which upon finding a solution, the 

algorithm updates current best solution. 

• DFBB does not explore paths that are guaranteed to 

lead to solutions worse than current best solution. 

• On termination, the current best solution is a globally 

optimal solution. 
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Best-First Search (BFS) Algorithms 

• BFS algorithms use a heuristic to guide search. 

• The core data structure is a list, called Open list, that stores 

unexplored nodes sorted on their heuristic estimates. 

• The best node is selected from the list, expanded, and its 

off-spring are inserted at the right position. 

• If the heuristic is admissible, the BFS finds the optimal

solution. 
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Best-First Search (BFS) Algorithms 

• BFS of graphs must be slightly modified to account for 

multiple paths to the same node.

• A closed list stores all the nodes that have been previously 

seen. 

• If a newly expanded node exists in the open or closed 

lists with better heuristic value, the node is not inserted 

into the open list. 
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The A* Algorithm 

• A BFS technique that uses admissible heuristics. 

• Defines function l(x) for each node x as g(x) + h(x). 

• Here, g(x) is the cost of getting to node x and h(x) is an 

admissible heuristic estimate of getting from node x to 

the solution. 

• The open list is sorted on l(x). 

The space requirement of BFS is exponential in depth!
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Best-First Search: Example 

Applying best-first search to the 8-puzzle: (a) initial configuration; (b) 
final configuration; and (c) states resulting from the first four steps 
of best-first search. Each state is labeled with its   -value (that is, the 

Manhattan distance from the state to the final state). 
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Parallel Depth-First Search 

• How is the search space partitioned across processors? 

• Different subtrees can be searched concurrently. 

• However, subtrees can be very different in size. 

• It is difficult to estimate the size of a subtree rooted at a 

node. 

• Dynamic load balancing is required. 
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Parallel Depth-First Search 

The unstructured nature of tree search and the imbalance

resulting from static partitioning. 

28



Parallel Depth-First Search: Dynamic Load 

Balancing 

• When a processor runs out of work, it gets more work 

from another processor. 

• This is done using work requests and responses in 

message passing machines and locking and extracting 

work in shared address space machines. 

• On reaching final state at a processor, all processors 

terminate. 

• Unexplored states can be conveniently stored as local 

stacks at processors. 

• The entire space is assigned to one processor to begin 

with. 
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Parallel Depth-First Search: Dynamic Load 

Balancing 

A generic scheme for dynamic load balancing. 
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Parameters in Parallel DFS: Work Splitting 

• Work is split by splitting the stack into two. 

• Ideally, we do not want either of the split pieces to be 

small. 

• Select nodes near the bottom of the stack (node splitting), 

or 

• Select some nodes from each level (stack splitting). 

• The second strategy generally yields a more even split of 

the space. 
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Parameters in Parallel DFS: Work Splitting 

Splitting the DFS tree: the two subtrees along with their 

stack representations are shown in (a) and (b). 
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Load-Balancing Schemes 

• Who do you request work from? Note that we would 

like to distribute work requests evenly, in a global sense. 

• Asynchronous round robin: Each processor maintains 

a counter and makes requests in a round-robin fashion. 

• Global round robin: The system maintains a global 

counter and requests are made in a round-robin 

fashion, globally. 

• Random polling: Request a randomly selected 

processor for work. 
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Analysis of  Load-Balancing Schemes: 

Conclusions 

• Asynchronous round robin has poor performance 

because it makes a large number of work requests. 

• Global round robin has poor performance because of 

contention at counter, although it makes the least 

number of requests. 

• Random polling strikes a desirable compromise. 
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Termination Detection 

• How do you know when everyone's done? 

• A number of algorithms have been proposed.
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Dijkstra's Token Termination Detection 

• Assume that all processors are organized in a logical 

ring. 

• Assume, for now that work transfers can only happen 

from Pi to Pj if j > i. 

• Processor P0 initiates a token on the ring when it goes 

idle. 

• Each intermediate processor receives this token and 

forwards it when it becomes idle. 

• When the token reaches processor P0, all processors 

are done. 
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Dijkstra's Token Termination Detection 

Now, let us do away with the restriction on work transfers. 

• When processor P0 goes idle, it colors itself green and initiates 

a green token. 

• If processor Pj sends work to processor Pi and  j > i then 

processor Pj becomes red. 

• If processor Pi has the token and Pi is idle, it passes the token to 

Pi+1. If Pi is red, then the color of the token is set to red

before it is sent to Pi+1. If Pi is green, the token is passed 

unchanged.

• After Pi passes the token to Pi+1, Pi becomes green . 

• The algorithm terminates when processor P0 receives a green

token and is itself idle. 50



Tree-Based Termination Detection 

• Associate weights with individual workpieces. 

Initially, processor P0 has all the work and a weight of 

one. 

• Whenever work is partitioned, the weight is split into 

half and sent with the work. 

• When a processor gets done with its work, it sends its 

parent the weight back. 

• Termination is signaled when the weight at processor 

P0 becomes 1 again. 

• Note that underflow and finite precision are important 

factors associated with this scheme. 
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Tree-Based Termination Detection 

Tree-based termination detection. Steps 1-6 illustrate the weights 

at various processors after each work transfer
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Parallel Formulations of  Depth-First Branch-and-Bound

• Parallel formulations of depth-first branch-and-bound 

search (DFBB) are similar to those of DFS. 

• Each processor has a copy of the current best 

solution. This is used as a local bound. 

• If a processor detects another solution, it compares the 

cost with current best solution. If the cost is better, it 

broadcasts this cost to all processors. 

• If a processor's current best solution path is worse than 

the globally best solution path, only the efficiency of the 

search is affected, not its correctness. 
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Parallel Best-First Search 

• The core data structure is the Open list (typically implemented 

as a priority queue). 

• Each processor locks this queue, extracts the best node, 

unlocks it. 

• Successors of the node are generated, their heuristic 

functions estimated, and the nodes inserted into the open list 

as necessary after appropriate locking. 

• Termination signaled when we find a solution whose cost is 

better than the best heuristic value in the open list. 

• Since we expand more than one node at a time, we may expand 

nodes that would not be expanded by a sequential algorithm. 
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Parallel Best-First Search 

A general schematic for parallel best-first search using a 

centralized strategy. The locking operation is used here to 

serialize queue access by various processors. 56



Parallel Best-First Search 

• The open list is a point of contention. 

• Avoid contention by having multiple open lists. 

• Initially, the search space is statically divided across 

these open lists. 

• Processors concurrently operate on these open lists. 

• Since the heuristic values of nodes in these lists may 

diverge significantly, we must periodically balance the 

quality of nodes in each list. 

• A number of balancing strategies based on ring, 

blackboard, or random communications are possible. 
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Parallel Best-First Search 

A message-passing implementation of parallel best-first search 

using the ring communication strategy.
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Parallel Best-First Search 

An implementation of parallel best-first search using the 

blackboard communication strategy.
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Parallel Best-First Graph Search 

• Graph search involves a closed list, where the major 
operation is a lookup (on a key corresponding to the state).

• The classic data structure is a hash. 

• Hashing can be parallelized by using two functions - the first 
one hashes each node to a processor, and the second one 
hashes within the processor. 

• This strategy can be combined with the idea of multiple open 
lists. 

• If a node does not exist in a closed list, it is inserted into 
the open list at the target of the first hash function. 

• In addition to facilitating lookup, randomization also equalizes 
quality of nodes in various open lists. 
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Speedup Anomalies in Parallel Search 

• Since the search space explored by processors is 

determined dynamically at runtime, the actual work might 

vary significantly.

• Executions yielding speedups greater than p by using p

processors are referred to as acceleration anomalies. 

Speedups of less than p using p processors are called 

deceleration anomalies.

• Speedup anomalies also manifest themselves in best-first 

search algorithms.

• If the heuristic function is good, the work done in parallel 

best-first search is typically more than that in its serial 

counterpart.
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Speedup Anomalies in Parallel Search 

The difference in number of nodes searched by sequential and 

parallel formulations of DFS. For this example, parallel DFS 

reaches a goal node after searching fewer nodes than 

sequential DFS. 
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Speedup Anomalies in Parallel Search 

A parallel DFS formulation that searches more nodes than its 

sequential counterpart.
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