
Search Algorithms for Discrete Optimization

Problems

Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar

To accompany the text ``Introduction to Parallel Computing'',

Addison Wesley, 2003.

1

Topic Overview

• Discrete Optimization - Basics

• Sequential Search Algorithms

• Parallel Depth-First Search

• Parallel Best-First Search

• Speedup Anomalies in Parallel Search Algorithms

2

Discrete Optimization - Basics

• Discrete optimization forms a class of computationally

expensive problems of significant theoretical and

practical interest.

• Search algorithms systematically search the space of

possible solutions subject to constraints.

3

Definitions

• A discrete optimization problem can be expressed as a
tuple (S, f). The set S is a finite or countably infinite set of
all solutions that satisfy specified constraints.

• The function f is the cost function that maps each
element in set S onto the set of real numbers R.

• The objective of a DOP is to find a feasible solution

xopt, such that f(xopt) ≤ f(x) for all x  S.

• A number of diverse problems such as VLSI layouts,
robot motion planning, test pattern generation, and
facility location can be formulated as DOPs.

4

Discrete Optimization: Example

• In the 0/1 integer-linear-programming problem, we are given

an m×n matrix A, an m×1 vector b, and an n×1 vector c.

• The objective is to determine an n×1 vector whose

elements can take on only the value 0 or 1.

• The vector must satisfy the constraint

and the function

must be minimized.

5

Discrete Optimization: Example

• The 8-puzzle problem consists of a 3×3 grid containing

eight tiles, numbered one through eight.

• One of the grid segments (called the ``blank'') is empty. A

tile can be moved into the blank position from a position

adjacent to it, thus creating a blank in the tile's original

position.

• The goal is to move from a given initial position to the final

position in a minimum number of moves.

6

Discrete Optimization: Example

An 8-puzzle problem instance: (a) initial configuration; (b) final

configuration; and (c) a sequence of moves leading from the

initial to the final configuration.
7

Discrete Optimization Basics

• The feasible space S is typically very large.

• For this reason, a DOP can be reformulated as the problem

of finding a minimum-cost path in a graph from a

designated initial node to one of several possible goal

nodes.

• Each element x in S can be viewed as a path from the initial

node to one of the goal nodes.

• This graph is called a state space.

8

Discrete Optimization Basics

• Often, it is possible to estimate the cost to reach the goal

state from an intermediate state.

• This estimate, called a heuristic estimate, can be effective

in guiding search to the solution.

• If the estimate is guaranteed to be an underestimate, the

heuristic is called an admissible heuristic.

• Admissible heuristics have desirable properties in terms of

optimality of solution (as we shall see later).

9

Discrete Optimization: Example

An admissible heuristic for 8-puzzle is as follows:

• Assume that each position in the 8-puzzle grid is

represented as a pair.

• The distance between positions (i,j) and (k,l) is defined as

|i - k| + |j - l|. This distance is called the Manhattan

distance.

• The sum of the Manhattan distances between the initial

and final positions of all tiles is an admissible heuristic.

10

Sequential Search Algorithms

• Is the search space a tree or a graph?

• The space of a 0/1 integer program is a tree, while that of

an 8-puzzle is a graph.

• This has important implications for search since unfolding

a graph into a tree can have significant overheads.

12

Sequential Search Algorithms

Two examples of unfolding a graph into a tree.

13

Depth-First Search Algorithms (DFS)

• Applies to search spaces that are trees.

• DFS begins by expanding the initial node and generating

its successors. In each subsequent step, DFS expands

one of the most recently generated nodes.

• If there exists no success, DFS backtracks to the parent

and explores an alternate child.

• Often, successors of a node are ordered based on their

likelihood of reaching a solution. This is called directed

DFS.

• The main advantage of DFS is that its storage requirement

is linear in the depth of the state space being searched. 14

Depth-First Search Algorithms

States resulting from the first three steps of depth-first

search applied to an instance of the 8-puzzle.

15

DFS Algorithms: Simple Backtracking

• Simple backtracking performs DFS until it finds the first

feasible solution and terminates.

• Not guaranteed to find a minimum-cost solution.

• Uses no heuristic information to order the successors

of an expanded node.

• Ordered backtracking uses heuristics to order the

successors of an expanded node.

16

Depth-First Branch-and-Bound (DFBB)

• DFS technique in which upon finding a solution, the

algorithm updates current best solution.

• DFBB does not explore paths that are guaranteed to

lead to solutions worse than current best solution.

• On termination, the current best solution is a globally

optimal solution.

17

Best-First Search (BFS) Algorithms

• BFS algorithms use a heuristic to guide search.

• The core data structure is a list, called Open list, that stores

unexplored nodes sorted on their heuristic estimates.

• The best node is selected from the list, expanded, and its

off-spring are inserted at the right position.

• If the heuristic is admissible, the BFS finds the optimal

solution.

22

Best-First Search (BFS) Algorithms

• BFS of graphs must be slightly modified to account for

multiple paths to the same node.

• A closed list stores all the nodes that have been previously

seen.

• If a newly expanded node exists in the open or closed

lists with better heuristic value, the node is not inserted

into the open list.

23

The A* Algorithm

• A BFS technique that uses admissible heuristics.

• Defines function l(x) for each node x as g(x) + h(x).

• Here, g(x) is the cost of getting to node x and h(x) is an

admissible heuristic estimate of getting from node x to

the solution.

• The open list is sorted on l(x).

The space requirement of BFS is exponential in depth!

24

Best-First Search: Example

Applying best-first search to the 8-puzzle: (a) initial configuration; (b)
final configuration; and (c) states resulting from the first four steps
of best-first search. Each state is labeled with its -value (that is, the

Manhattan distance from the state to the final state).
25

Parallel Depth-First Search

• How is the search space partitioned across processors?

• Different subtrees can be searched concurrently.

• However, subtrees can be very different in size.

• It is difficult to estimate the size of a subtree rooted at a

node.

• Dynamic load balancing is required.

27

Parallel Depth-First Search

The unstructured nature of tree search and the imbalance

resulting from static partitioning.

28

Parallel Depth-First Search: Dynamic Load

Balancing

• When a processor runs out of work, it gets more work

from another processor.

• This is done using work requests and responses in

message passing machines and locking and extracting

work in shared address space machines.

• On reaching final state at a processor, all processors

terminate.

• Unexplored states can be conveniently stored as local

stacks at processors.

• The entire space is assigned to one processor to begin

with.
29

Parallel Depth-First Search: Dynamic Load

Balancing

A generic scheme for dynamic load balancing.
30

Parameters in Parallel DFS: Work Splitting

• Work is split by splitting the stack into two.

• Ideally, we do not want either of the split pieces to be

small.

• Select nodes near the bottom of the stack (node splitting),

or

• Select some nodes from each level (stack splitting).

• The second strategy generally yields a more even split of

the space.

31

Parameters in Parallel DFS: Work Splitting

Splitting the DFS tree: the two subtrees along with their

stack representations are shown in (a) and (b).
32

Load-Balancing Schemes

• Who do you request work from? Note that we would

like to distribute work requests evenly, in a global sense.

• Asynchronous round robin: Each processor maintains

a counter and makes requests in a round-robin fashion.

• Global round robin: The system maintains a global

counter and requests are made in a round-robin

fashion, globally.

• Random polling: Request a randomly selected

processor for work.

33

Analysis of Load-Balancing Schemes:

Conclusions

• Asynchronous round robin has poor performance

because it makes a large number of work requests.

• Global round robin has poor performance because of

contention at counter, although it makes the least

number of requests.

• Random polling strikes a desirable compromise.

44

Termination Detection

• How do you know when everyone's done?

• A number of algorithms have been proposed.

48

Dijkstra's Token Termination Detection

• Assume that all processors are organized in a logical

ring.

• Assume, for now that work transfers can only happen

from Pi to Pj if j > i.

• Processor P0 initiates a token on the ring when it goes

idle.

• Each intermediate processor receives this token and

forwards it when it becomes idle.

• When the token reaches processor P0, all processors

are done.

49

Dijkstra's Token Termination Detection

Now, let us do away with the restriction on work transfers.

• When processor P0 goes idle, it colors itself green and initiates

a green token.

• If processor Pj sends work to processor Pi and j > i then

processor Pj becomes red.

• If processor Pi has the token and Pi is idle, it passes the token to

Pi+1. If Pi is red, then the color of the token is set to red

before it is sent to Pi+1. If Pi is green, the token is passed

unchanged.

• After Pi passes the token to Pi+1, Pi becomes green .

• The algorithm terminates when processor P0 receives a green

token and is itself idle. 50

Tree-Based Termination Detection

• Associate weights with individual workpieces.

Initially, processor P0 has all the work and a weight of

one.

• Whenever work is partitioned, the weight is split into

half and sent with the work.

• When a processor gets done with its work, it sends its

parent the weight back.

• Termination is signaled when the weight at processor

P0 becomes 1 again.

• Note that underflow and finite precision are important

factors associated with this scheme.
51

Tree-Based Termination Detection

Tree-based termination detection. Steps 1-6 illustrate the weights

at various processors after each work transfer

52

Parallel Formulations of Depth-First Branch-and-Bound

• Parallel formulations of depth-first branch-and-bound

search (DFBB) are similar to those of DFS.

• Each processor has a copy of the current best

solution. This is used as a local bound.

• If a processor detects another solution, it compares the

cost with current best solution. If the cost is better, it

broadcasts this cost to all processors.

• If a processor's current best solution path is worse than

the globally best solution path, only the efficiency of the

search is affected, not its correctness.

53

Parallel Best-First Search

• The core data structure is the Open list (typically implemented

as a priority queue).

• Each processor locks this queue, extracts the best node,

unlocks it.

• Successors of the node are generated, their heuristic

functions estimated, and the nodes inserted into the open list

as necessary after appropriate locking.

• Termination signaled when we find a solution whose cost is

better than the best heuristic value in the open list.

• Since we expand more than one node at a time, we may expand

nodes that would not be expanded by a sequential algorithm.

55

Parallel Best-First Search

A general schematic for parallel best-first search using a

centralized strategy. The locking operation is used here to

serialize queue access by various processors. 56

Parallel Best-First Search

• The open list is a point of contention.

• Avoid contention by having multiple open lists.

• Initially, the search space is statically divided across

these open lists.

• Processors concurrently operate on these open lists.

• Since the heuristic values of nodes in these lists may

diverge significantly, we must periodically balance the

quality of nodes in each list.

• A number of balancing strategies based on ring,

blackboard, or random communications are possible.

58

Parallel Best-First Search

A message-passing implementation of parallel best-first search

using the ring communication strategy.

59

Parallel Best-First Search

An implementation of parallel best-first search using the

blackboard communication strategy.

60

Parallel Best-First Graph Search

• Graph search involves a closed list, where the major
operation is a lookup (on a key corresponding to the state).

• The classic data structure is a hash.

• Hashing can be parallelized by using two functions - the first
one hashes each node to a processor, and the second one
hashes within the processor.

• This strategy can be combined with the idea of multiple open
lists.

• If a node does not exist in a closed list, it is inserted into
the open list at the target of the first hash function.

• In addition to facilitating lookup, randomization also equalizes
quality of nodes in various open lists.

61

Speedup Anomalies in Parallel Search

• Since the search space explored by processors is

determined dynamically at runtime, the actual work might

vary significantly.

• Executions yielding speedups greater than p by using p

processors are referred to as acceleration anomalies.

Speedups of less than p using p processors are called

deceleration anomalies.

• Speedup anomalies also manifest themselves in best-first

search algorithms.

• If the heuristic function is good, the work done in parallel

best-first search is typically more than that in its serial

counterpart.
62

Speedup Anomalies in Parallel Search

The difference in number of nodes searched by sequential and

parallel formulations of DFS. For this example, parallel DFS

reaches a goal node after searching fewer nodes than

sequential DFS.

63

Speedup Anomalies in Parallel Search

A parallel DFS formulation that searches more nodes than its

sequential counterpart.

64

