Search Algorithms for Discrete Optimization
Problems

To accompany the text Introduction to Parallel Computing",
Addison Wesley, 2003.

Topic Overview

Discrete Optimization - Basics
Seqguential Search Algorithms
Parallel Depth-First Search
Parallel Best-First Search

Speedup Anomalies in Parallel Search Algorithms

Discrete Optimization - Basics

« Discrete optimization forms a class of computationally
expensive problems of significant theoretical and
practical interest.

« Search algorithms systematically search the space of
possible solutions subject to constraints.

Definitions

A discrete optimization problem can be expressed as a
tuple (S, f). The set S is a finite or countably infinite set of

all solutions that satisfy specified constraints.

The function f is the cost function that maps each
element in set S onto the set of real numbers R.

The objective of a DOP is to find a feasible solution

X, SUCh that f(x,,) < f(x) forallx € S.

A number of diverse problems such as VLSI layouts,
robot motion planning, test pattern generation, and
facility location can be formulated as DOPs.

Discrete Optimization: Example

* In the O/1 integer-linear-programming problem, we are given
an Mx N matrix A, an mx 1 vector b, and an nx 1 vector C.

* The objective is to determine an Nx 1 vector = whose
elements can take on only the value O or 1.

« The vector must satisfy the constraint
Az > b

and the function

must be minimized.

Discrete Optimization: Example

 The 8-puzzle problem consists of a 3 X3 grid containing
eight tiles, numbered one through eight.

* One of the grid segments (called the ""blank") is empty. A
tile can be moved into the blank position from a position
adjacent to it, thus creating a blank in the tile's original
position.

« The goal is to move from a given initial position to the final
position in a minimum number of moves.

Discrete Optimization: Example

up

5

2

(S

8

3

7

6

(a)

p—
[>-]
(8]

up

W

left

w

up

I:’ Last tile moved

()

left

up

(O] Blank tile

down

left

OO(JIDE OOD(II
Q.
2
=

An 8-puzzle problem instance: (a) initial configuration; (b) final
configuration; and (c) a sequence of moves leading from the
Initial to the final configuration.

v

Discrete Optimization Basics

The feasible space S is typically very large.

For this reason, a DOP can be reformulated as the problem
of finding a minimum-cost path in a graph from a
designated initial node to one of several possible goal
nodes.

Each element x in S can be viewed as a path from the initial
node to one of the goal nodes.

This graph is called a state space.

Discrete Optimization Basics

Often, it is possible to estimate the cost to reach the goal
state from an intermediate state.

This estimate, called a heuristic estimate, can be effective
In guiding search to the solution.

If the estimate is guaranteed to be an underestimate, the
heuristic is called an admissible heuristic.

Admissible heuristics have desirable properties in terms of
optimality of solution (as we shall see later).

Discrete Optimization: Example

An admissible heuristic for 8-puzzle is as follows:

« Assume that each position in the 8-puzzle grid is
represented as a pair.

« The distance between positions (i,)) and (k,l) is defined as

Il - k| + [j - l|. This distance is called the Manhattan
distance.

* The sum of the Manhattan distances between the initial
and final positions of all tiles is an admissible heuristic.

10

Sequential Search Algorithms

Is the search space a tree or a graph?

The space of a O/1 integer program is a tree, while that of
an 8-puzzle is a graph.

This has important implications for search since unfolding
a graph into a tree can have significant overheads.

12

Sequential Search Algorithms

(b)
Two examples of unfolding a graph into a tree.

13

Depth-First Search Algorithms (DFS)

Applies to search spaces that are trees.

DFS begins by expanding the initial node and generating
Its successors. In each subsequent step, DFS expands
one of the most recently generated nodes.

If there exists no success, DFS backtracks to the parent
and explores an alternate child.

Often, successors of a node are ordered based on their
likelihnood of reaching a solution. This is called directed
DFS.

The main advantage of DFS is that its storage requirement
IS linear in the depth of the state space being searched.

Depth-First Search Algorithms

Step 1

7

4

1

/

7| 2
B46|:|
1|8
right
Step 2
7023 7| 20
D465E463F4
1| 8(0J 1| 8 5 1
hi
Step3 uy k\lgt
72| 3 710012
G| 4/ 6/[J] H 4/ 6|3
1/ 85 1| 8|5

[0] Blank tile

l:’ The last tile moved.

States resulting from the first three steps of depth-first
search applied to an instance of the 8-puzzle.

15

DFS Algorithms: Simple Backtracking

Simple backtracking performs DFS until it finds the first
feasible solution and terminates.

Not guaranteed to find a minimum-cost solution.

Uses no heuristic information to order the successors
of an expanded node.

Ordered backtracking uses heuristics to order the
successors of an expanded node.

16

Depth-First Branch-and-Bound (DFBB)

* DFS technique in which upon finding a solution, the
algorithm updates current best solution.

« DFBB does not explore paths that are guaranteed to
lead to solutions worse than current best solution.

« On termination, the current best solution is a globally
optimal solution.

17

Best-First Search (BFS) Algorithms

BFS algorithms use a heuristic to guide search.

The core data structure is a list, called Open list, that stores
unexplored nodes sorted on their heuristic estimates.

The best node is selected from the list, expanded, and its
off-spring are inserted at the right position.

If the heuristic is admissible, the BFS finds the optimal
solution.

22

Best-First Search (BFS) Algorithms

 BFS of graphs must be slightly modified to account for
multiple paths to the same node.

 Aclosed list stores all the nodes that have been previously
seen.

« If anewly expanded node exists in the open or closed
lists with better heuristic value, the node is not inserted
Into the open list.

23

The A* Algorithm

 ABFS techniqgue that uses admissible heuristics.
« Defines function I(x) for each node x as g(x) + h(x).

Here, g(X) Is the cost of getting to node x and h(x) is an
admissible heuristic estimate of getting from node x to
the solution.

The open list is sorted on I(x).

The space requirement of BFS is exponential in depth!

24

Best-First Search: Example

7] 2|3 1/2]3 -
4 6|5 456 (0] Blaok Tile
= 7] 8]0 [] Thetasttile moved
@ ®
2|3 2|3
6 6|5 6 65

o 0w =[]
/
w
)

2
Lth\»—-J;\]
/

v
g
-

72 7023 7] 2 7]2[3
7 [4]s 4/6/5| 7 7 [4]s 46|57
18 EE 18 110[8
SmpZ/ l
7[2[0] [7]2]3
8 1463 |40]66
185 [1]8]s

7123 7123
6 [4]6s 6 [4]6s
180 180
/\Stepl /\Swpl
7[2]3] [7]2]3 1[2]3] [1]2]3
7 [4]6]0] [4]6]s]7 7 [4]6[0| [4]6]s]7
1| 8|5 1/0] 8 1/ 8|5 10| 8
se3/ | sw2/ | L\ e
7[2[0] [7]2 1[2]0] [7]2[3] [7]2]3] [7]2]3
8 |4/ 6|3 4|0] 6 8 |4|6|3 40| 6 4| 6|5 40| 5
185 [1[8]s 1[8]s] [1]s]s] [O[1]s] [1]e]s
SN oy £| N\ P
7/ 2|3 7|10 3 71 2|3 723 7|10| 3 723
7 4|86 [4]2]6 [O[4]s| 7 7 4|86 [4]2]6 [O]4]s| 7
1ofs| [18s| [1]8]s 10ls] [1]s[s] [1]8]s
7 7

(©

Applying best-first search to the 8-puzzle: (a) initial configuration; (b)
final configuration; and (c) states resulting from the first four steps
of best-first search. Each state is labeled with its -value (that is, the

Manhattan distance from the state to the final state).

Parallel Depth-First Search

How Is the search space partitioned across processors?
Different subtrees can be searched concurrently.
However, subtrees can be very different in size.

It is difficult to estimate the size of a subtree rooted at a
node.

Dynamic load balancing is required.

27

Parallel Depth-First Search

(a) (b)

The unstructured nature of tree search and the imbalance
resulting from static partitioning.

28

Parallel Depth-First Search: Dynamic Load
Balancing

When a processor runs out of work, it gets more work
from another processor.

This Is done using work requests and responses in
message passing machines and locking and extracting
work in shared address space machines.

On reaching final state at a processor, all processors
terminate.

Unexplored states can be conveniently stored as local
stacks at processors.

The entire space is assigned to one processor to begin
with.

29

Parallel Depth-First Search: Dynamic Load
Balancing

Service any pending
messages
Do a fixed amount of work

Finished Got

work T

Processor active

available

work

Processor idle

Select a processor and Service any pending
request work from it messages
Got a reject

Issued a reauest

A generic scheme for dynamic load balancing.

30

Parameters in Parallel DFS: Work Splitting

Work is split by splitting the stack into two.

Ideally, we do not want either of the split pieces to be
small.

Select nodes near the bottom of the stack (node splitting),
or

Select some nodes from each level (stack splitting).

The second strategy generally yields a more even split of
the space.

31

Parameters in Parallel DFS: Work Splitting

N
@) \?@ 5 @ 4

16

17

19

24

23

Current State

() (b)

Splitting the DFS tree: the two subtrees along with their

stack representations are shown in (a) and (b).
32

Load-Balancing Schemes

Who do you request work from? Note that we would
like to distribute work requests evenly, in a global sense.

Asynchronous round robin: Each processor maintains
a counter and makes requests in a round-robin fashion.

Global round robin: The system maintains a global
counter and requests are made in a round-robin
fashion, globally.

Random polling: Request a randomly selected
processor for work.

33

Analysis of Load-Balancing Schemes:
Conclusions

 Asynchronous round robin has poor performance
because it makes a large number of work requests.

« Global round robin has poor performance because of

contention at counter, although it makes the least
number of requests.

 Random polling strikes a desirable compromise.

44

Termination Detection

« How do you know when everyone's done?

« A number of algorithms have been proposed.

48

Dijkstra’'s Token Termination Detection

Assume that all processors are organized in a logical
ring.

Assume, for now that work transfers can only happen
from P; to P; if j>1.

Processor P, initiates a token on the ring when it goes
idle.

Each intermediate processor receives this token and
forwards it when it becomes idle.

When the token reaches processor P, all processors
are done.

49

Dijkstra’'s Token Termination Detection
Now, let us do away with the restriction on work transfers.
When processor P, goes idle, it colors itself green and initiates
a green token.

If processor P; sends work to processor P; and | > i then
processor P; becomes red.

If processor P; has the token and P; is idle, it passes the token to
P..,. If P,is red, then the color of the token is set to red
before it is sent to P,,,. If P; Is green, the token is passed
unchanged.

After P; passes the token to P;,,, P; becomes green .

The algorithm terminates when processor P, receives a green
token and is itself idle. 50

Tree-Based Termination Detection

Associate weights with individual workpieces.

Initially, processor P, has all the work and a weight of
one.

Whenever work is partitioned, the weight is split into
half and sent with the work.

When a processor gets done with its work, it sends its
parent the weight back.

Termination is signaled when the weight at processor
P, becomes 1 again.

Note that underflow and finite precision are important

factors associated with this scheme. o

Tree-Based Termination Detection

Step 1 Step 2 Step 3

Step 4 Step 5 Step 6

Tree-based termination detection. Steps 1-6 illustrate the weights
at various processors after each work transfer

52

Parallel Formulations of Depth-First Branch-and-Bound

« Parallel formulations of depth-first branch-and-bound
search (DFBB) are similar to those of DFS.

« Each processor has a copy of the current best
solution. This is used as a local bound.

 If a processor detects another solution, it compares the
cost with current best solution. If the cost is better, it
broadcasts this cost to all processors.

« If a processor's current best solution path is worse than
the globally best solution path, only the efficiency of the
search is affected, not its correctness.

53

Parallel Best-First Search

The core data structure is the Open list (typically implemented
as a priority queue).

Each processor locks this queue, extracts the best node,
unlocks it.

Successors of the node are generated, their heuristic
functions estimated, and the nodes inserted into the open list
as necessary after appropriate locking.

Termination signaled when we find a solution whose cost is
better than the best heuristic value in the open list.

Since we expand more than one node at a time, we may expand
nodes that would not be expanded by a sequential algorithm.

55

Parallel Best-First Search

Global list maintained
at designated processor

A general schematic for parallel best-first search using a
centralized strategy. The locking operation is used here to

serialize queue access by various processors. 56

Parallel Best-First Search

The open list is a point of contention.
Avoid contention by having multiple open lists.

Initially, the search space is statically divided across
these open lists.

Processors concurrently operate on these open lists.

Since the heuristic values of nodes in these lists may
diverge significantly, we must periodically balance the
guality of nodes in each list.

A number of balancing strategies based on ring,
blackboard, or random communications are possible.

58

Parallel Best-First Search

Exchange
best nodes

Local list Local list
\ Local list
M -
xchange o
best nodes —
Exchange

best nodes

PU Pp—l
Py

A message-passing implementation of parallel best-first search
using the ring communication strategy.

59

Parallel Best-First Search

Exchange Exchange
\bﬂt nodes

iy o

. Exchange .
Local list best nodes Local list

Local list

o P,
P

An implementation of parallel best-first search using the
blackboard communication strategy.

60

Parallel Best-First Graph Search

Graph search involves a closed list, where the major
operation is a lookup (on a key corresponding to the state).

The classic data structure is a hash.

Hashing can be parallelized by using two functions - the first
one hashes each node to a processor, and the second one
hashes within the processor.

This strategy can be combined with the idea of multiple open
lists.

If a node does not exist in a closed list, it is inserted into
the open list at the target of the first hash function.

In addition to facilitating lookup, randomization also equalizes
guality of nodes in various open lists.

61

Speedup Anomalies in Parallel Search

Since the search space explored by processors is
determined dynamically at runtime, the actual work might
vary significantly.

Executions yielding speedups greater than p by using p
processors are referred to as acceleration anomalies.
Speedups of less than p using p processors are called
deceleration anomalies.

Speedup anomalies also manifest themselves in best-first
search algorithms.

If the heuristic function is good, the work done in parallel
best-first search is typically more than that in its serial
counterpart.

62

Speedup Anomalies in Parallel Search

Start node S Start node S
/@\ ;O\
/2 O\ o RZ/ O\ i O\\
@) /O 110 R3 O ;@ ?O
O 20 RS O 3O
J@) 0O 130 O O L4 O
/ \ Goal node G / \ Goal node G
0 80O O O
Total number of nodes generated by Total number of nodes generated by
sequential formulation = 13 two-processor formulation of DFS =9
(a) (b)

The difference in number of nodes searched by sequential and
parallel formulations of DFS. For this example, parallel DFS
reaches a goal node after searching fewer nodes than
sequential DFS.

63

Speedup Anomalies in Parallel Search

Start node S Start node S

70
Goal node G Goal node G
Total number of nodes generated by Total number of nodes generated by
sequential DFS =7 two-processor formulation of DFS = 12
(a) (b)

A parallel DFS formulation that searches more nodes than its
seguential counterpart.

64

